一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法及装置转让专利

申请号 : CN201810291474.4

文献号 : CN108483619B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 肖恩荣吴振斌许丹鲁汭陈迪松武俊梅周巧红徐栋

申请人 : 中国科学院水生生物研究所

摘要 :

本发明公开了一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法及装置,步骤:A、污水连续由装置顶部进入;B、污水流入阳极导电填料层,氨氮在阳极脱氮菌属作用下被氧化成硝酸盐氮;C、接着污水流入非导电填料隔离层;D、随后污水流入阴极导电填料层,硝酸盐氮被还原成氮气;E、最后污水经底部非导电填料层内排水管流出,出水中总氮去除。阴极导电填料层分别与底部非导电填料层、非导电填料隔离层相连,阳极导电填料层分别与非导电填料隔离层、上部非导电填料层相连,在非导电填料层上部中种植湿地植物,阳极集电极、阴极集电极通过内导线短路连接。方法简单,操作便捷,原位利用产生的电能,显著提高低碳高氨氮污水总氮去除效果。

权利要求 :

1.一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法,其步骤是:

A、污水连续由装置顶部进入并均匀布水,依次流入上部非导电填料层,植物根系分布在这一层的中上部,本层由湿地植物的根系泌氧及进水中带入的溶解氧使该区域呈现好氧状态,氨氮在硝化菌和亚硝化菌下转化为硝酸盐氮,异养反硝化菌利用有机碳源作为电子供体将硝酸盐氮还原成氮气;

B、经过步骤(A)的污水流入阳极导电填料层,有机物在该层被电化学活性菌利用产生电子,未氧化的有机物在这一层去除,部分硝酸盐氮异养反硝化得到去除;该层和阴极导电填料层直接通过内部导线连接形成短路,在阳极脱氮菌属作用下发生异养硝化作用,将污水中的氨氮通过氨氧化过程转化成硝酸盐氮;电化学活性菌通过呼吸把新陈代谢产生的电子通过内部导线转移到电子受体硝酸盐氮中,部分硝酸盐氮被阳极脱氮菌属还原成氮气;

C、接着污水流入非导电填料隔离层,该层为阳极导电填料层和阴极导电填料层间的分隔器;

D、随后污水流入阴极导电填料层,在该层中经由内部导线传递来的电子被用作还原硝酸盐氮的电子供体,在阴极脱氮菌属作用下,大部分硝酸盐氮被还原成氮气;

E、最后污水经底部非导电填料层内的排水管流出,出水中总氮含量下行垂直流人工湿地的总氮去除;

所述的电化学活性菌属为具有胞外电子传递的一类微生物,包括地杆菌属、假单胞菌属、脱硫单胞菌属和红育菌属其中的一种或一到四种的任意组合;

所述的阳极脱氮菌属为硝化和反硝化菌属,包括地杆菌属、动胶菌属、固氮弧菌属其中的一种或一到三种和不动杆菌属、黄杆菌属、脱氯单胞菌属其中的一种或一到三种的任意组合;

所述的阴极脱氮菌属为地杆菌属、索氏菌属、不动杆菌属、Dokdonella属、

Ferruginibacter属其中的一种或一到五种的任意组合。

2.一种采用权利要求1所述的原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法的装置,该装置自下而上铺设有底部非导电填料层(1)、阴极导电填料层(2)、非导电填料隔离层(3)、阳极导电填料层(4)、上部非导电填料层(5),其特征在于:阴极导电填料层(2)分别与底部非导电填料层(1)、非导电填料隔离层(3)相连,阳极导电填料层(4)分别与非导电填料隔离层(3)、上部非导电填料层(5)相连,在非导电填料层(5)上部中种植湿地植物(6),阳极集电极(7)、阴极集电极(8)通过内导线(9)短路连接,阳极集电极(7)和阴极集电极(8)分别放置在阳极导电填料层(4)及阴极导电填料层(2)内,内导线(9)埋设于阳极导电填料层(4)及阴极导电填料层(2)内,其两端分别与阳极集电极(7)、阴极集电极(8)连接。

3.根据权利要求2所述的装置,其特征在于:所述的阳极填料层(4)和阴极导电填料层

2

(2)内填料为颗粒活性炭或石墨颗粒;颗粒活性炭粒径为1-5mm,比表面积为500-900m /g,填充密度为0.45-0.55g/cm3;石墨颗粒填充粒径为1-5mm,填充密度为1.8-2g/cm3。

4.根据权利要求2所述的装置,其特征在于:所述的湿地植物(6)为美人蕉、风车草、芦苇、芦竹、水甜茅、大米草、鸢尾、茭白、千屈菜、野古草、菖蒲、象草中的一种或一至十二种的任意组合。

5.根据权利要求2所述的装置,其特征在于:所述的阳极集电极(7)和阴极集电极(8)为石墨毡、石墨棒或不锈钢材质。

6.根据权利要求2所述的装置,其特征在于:所述的上部非导电填料层(5)厚度为20-

30cm,阳极导电填料层(4)厚度为10-30cm,非导电填料隔离层(3)厚度为10-20cm,阴极导电填料层(2)厚度为15-30cm,底部非导电填料层(1)厚度为5-10m。

7.根据权利要求2所述的装置,其特征在于:所述的装置底部非导电填料层(1)、非导电填料隔离层(3)、上部非导电填料层(5)为砾石、砂石、无烟煤、生物陶粒中的一种或一至四种。

说明书 :

一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的

方法及装置

技术领域

[0001] 本发明属于污水处理领域,更具体涉及一种提高微生物燃料电池和垂直流人工湿地耦合系统处理低碳高氨氮污水(生活污水、低浓度的垃圾渗滤液、污泥消化液等)时总氮去除效能的运行方法,同时还涉及一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置。

背景技术

[0002] 低碳氮比(C/N ≤5)是我国南方地区污水的典型特征,传统生化处理工艺(如活性污泥法、生物膜法等)在反硝化过程中因碳源不足导致脱氮效率低,出水水质难以满足日益严格的排放标准要求,与生态环境要求的生态水水质差距更大。而投加甲醇、乙醇等有机碳源虽可提高生物反硝化过程,可也增加了运行成本。
[0003] 人工湿地(CW)作为一种环境友好且成本低廉的生态工程技术,已经逐步成为污水分散处理及深度净化的主流工艺之一。在人工湿地中氮的脱除主要通过生物硝化和反硝化作用两个阶段;在硝化作用中氨氮被氧化为硝态氮,在反硝化作用中硝态氮被还原为氮气最终释放到大气中。在第一阶段中氧气不足时,硝化作用会受到抑制,减少转化成的硝酸盐氮,进一步总氮去除;在第二阶段有机碳源不足时,反硝化作用会受到抑制,影响总氮去除。虽然人工湿地系统中也有丰富的碳源供应途径(微生物和死亡植物的分解,植物根系分泌、基质中沉积有机物的释放)和脱氮途径(共生的好氧、厌氧、自养、异养等脱氮微生物,基质吸附、植物吸收等),但是对于进水COD/N(≤5)的污水,仍然面临因碳源不足而导致的总氮去除能力有限的问题(Jan Vymazal, Removal of nutrients in various types of constructed wetlands, in Science of the Total Environment, 2007,48-65.)。如何进一步提高其反硝化效率,已成为当前国际上人工湿地脱氮技术研究的热点和难点。
[0004]  MFC脱氮技术近年来也得到同行学者们的关注。其原理为:阳极中产电菌氧化有机物产生的电子经由外电路传递到阴极,和阴极中硝酸盐、以及从阳极室传递来的质子发生还原反应,从而硝酸盐被还原成氮气。
[0005]  MFC脱氮受到运行方式和操作参数的影响较大。如DO对好氧和厌氧生物阴极脱氮的影响有所不同,因氧的还原电势高于硝酸盐氮,可优先成为阴极的主要电子受体。因此,厌氧生物阴极MFC脱氮中要维持DO 在低水平(<0.5 mg/L)。而好氧阴极MFC脱氮主要发生同步硝化反硝化过程,为了使生物膜表层微生物发生硝化作用将氨氮氧化成硝态氮,DO不能太低(Virdis B., et al., Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 2010,44(9):2970-2980)。
[0006]  氨氮也可直接作为电子供体传递电子给电极(Jadhav et al., effective ammonium removal  by anaerobic oxidation in microbial  fuel cells. Environmental Technology,2015,36(6):767-775),发生阳极氨氧化过程时,产电量随着阳极氨氮的加入而提高,且硝态氮和亚硝态氮随着氨氮的减少而增加(He Y, Wang Y, Song X. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor. Bioresource Technology, 2016, 203: 245-251.)。
[0007]  外阻可以通过影响阳极电势、电流大小以及电极生物膜群落结构来影响MFC的污水净化性能 (Zhang L, et al. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. Journal of Power Sources, 2011, 196(15): 6029-6035. )。低外阻运行会使生物膜与电极之间获得更快的电子传递,更有利于污染物的去除 ( Jang J K, et al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochemistry, 2004, 39(8): 1007-1012. )。外阻的高低直接影响了MFC反应器电流的大小,即电子从阳极向阴极流动的速率,因而会对阴极反硝化产生影响。
[0008]  基于上述理论,当MFC短路运行(即外电阻为0 Ω)时,系统可以提供最大的电流,可保证电极与污染物之间最高速率的电子转移。当MFC短路运行时,系统实际上简化为两个电极连接,甚至是一块导电材料。此时,阳极细菌通过呼吸作用把他们新陈代谢产生的电子转移到硝酸盐电子受体中,可实现电能的原位利用。
[0009] 人工湿地-微生物燃料电池耦合系统由于成本低,近年来逐步应用于污水的处理。虽然有研究报道了CW-MFC用于处理高氮废水有较好的效果(Oon et al., Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresource Technology, 2015, 186: 270-275.),但是在阴极曝气情况下,增加了系统运行费用。针对低碳高氨氮污水,如何在无需机械曝气条件下实现CW-MFC系统的高效脱氮也是目前的研究难点之一。

发明内容

[0010] 本发明的目的是在于提供了一种提高下行垂直流人工湿地-微生物燃料电池(DFCW-MFC)系统处理低碳高氨氮污水(如生活污水、低浓度的垃圾渗滤液、污泥消化液等)的总氮去除效能的运行方法,方法简单易行,操作便捷,原位利用产生的电能,可显著提高此类污水的总氮去除效果。
[0011] 本发明的另一个目的是在于提供了一种提高下行垂直流人工湿地-微生物燃料电池系统处理低碳高氨氮污水总氮去除效能的装置,结构简单,组装方便,可显著提高有机碳源、氧缺乏条件下下行垂直流人工湿地的脱氮效果。
[0012] 为了实现上述的目的,本发明采用以下技术措施:
[0013] 通过微生物燃料电池与下行垂直流人工湿地的有效嵌合,使得生物膜与电极之间获得更快的电子传递,并原位利用电能,利用阳极细菌的呼吸作用把产生的电子转移到电子受体硝酸盐中,来实现强化脱氮效果。
[0014] 技术方案:以下行垂直流人工湿地结构为基础,通过填埋阴极导电填料层、阳极导电填料层,种植湿地植物形成了微生物燃料电池-下行垂直流人工湿地耦合构型。进一步通过内导线直接连接提高电子转移速率,强化系统对总氮的去除。
[0015] 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的方法,其步骤如下:
[0016] A、污水连续由装置顶部进入并均匀布水,依次流入上部非导电填料层,植物根系主要分布在这一层的中上部,本层由于湿地植物的根系泌氧作用及进水中带入的溶解氧使得该区域主要呈现好氧状态,部分氨氮在硝化菌和亚硝化菌作用下转化为硝酸盐氮,异养反硝化菌利用有机碳源作为电子供体将小部分硝酸盐氮还原成氮气;
[0017] B、经过步骤A的污水流入阳极导电填料层,部分有机物在该层被电化学活性菌利用产生电子,未氧化的有机物在这一层基本可完全去除,部分硝酸盐氮由于异养反硝化得到进一步去除;该层和阴极导电填料层直接通过内部导线连接形成“短路”,在阳极脱氮菌属作用下发生异养硝化作用,将污水中的氨氮通过氨氧化过程转化成硝酸盐氮;电化学活性菌通过呼吸作用把他们新陈代谢产生的电子通过内部导线转移到电子受体硝酸盐氮中,部分硝酸盐氮被阳极脱氮菌属还原成氮气;
[0018] C、接着污水流入非导电填料隔离层,该层主要功能是作为阳极导电填料层和阴极导电填料层间的分隔器;
[0019] D、随后污水流入阴极导电填料层,在该层中经由内部导线传递来的电子被用作还原硝酸盐氮的电子供体,在阴极脱氮菌属作用下,部分硝酸盐氮被还原成氮气。
[0020] E、最后污水经底部非导电填料层内的排水管流出,出水中总氮含量较常规下行垂直流人工湿地的出水总氮含量低,总氮去除率提高了50-80%。
[0021] 所述污水为COD/TN≤5且NO3/TN≥60%。
[0022] 所述的电化学活性菌属为具有胞外电子传递的一类微生物,包括地杆菌属(Geobacter)、假单胞菌属(Pseudomonas)、脱硫单胞菌属(Desulfuromonas)和红育菌属(Rhodoferax)等其中的一种或一到四种的任意组合。
[0023] 所述的阳极脱氮菌属为具有脱氮功能的硝化和反硝化菌属,包括地杆菌属(Geobacter)、动胶菌属(Zoogloea)、固氮弧菌属(Azoarcus)等其中的一种或一到三种和不动杆菌属(Acinetobacter)、黄杆菌属(Flavobacterium)、脱硫单胞菌属(Dechloromonas)等其中的一种或一到三种的任意组合。
[0024] 所述的阴极脱氮菌属为地杆菌属(Geobacter)、索氏菌属(Thauera)、不动杆菌属(Acinetobacter)、Dokdonella、Ferruginibacter等其中的一种或一到五种的任意组合。
[0025] 上述五个步骤中关键在于步骤B中的“短路”连接方式,此短路连接方式使得阳极区域处于高电流密度环境下,此时生物膜与电极之间可获得更快的电子传递,有利于电化学活性菌地杆菌属(Geobacter)、假单胞菌属(Pseudomonas)等的富集,可促进发生氨氧化过程的不动杆菌属(Acinetobacter)和黄杆菌属(Flavobacterium)生长,从而使得更多的氨氮有效转化为硝酸盐氮,最终在地杆菌属(Geobacter)、动胶菌属(Zoogloea)等硝酸盐氮还原菌作用下转化为氮气而脱除。总氮去除可稳定在75%以上。
[0026] 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置,该装置自下而上铺设有底部非导电填料层、阴极导电填料层;非导电填料隔离层;阳极导电填料层、上部非导电填料层;其特征在于:阴极导电填料层分别与底部非导电填料层、非导电填料隔离层相连,阳极导电填料层分别与非导电填料隔离层、上部非导电填料层相连,在非导电填料层上部中种植湿地植物,阳极集电极、阴极集电极通过内导线短路连接,阳极集电极和阴极集电极分别放置在阳极导电填料层及阴极导电填料层内,内导线埋设于阳极导电填料层及阴极导电填料层内,其两端分别与阳极集电极、阴极集电极连接。
[0027] 所述的一种原位利用污水产电强化上行垂直流人工湿地脱氮效能的装置,其特征在于:所述的阳极填料层和阴极导电填料层内填料为颗粒活性炭或石墨;颗粒活性炭粒径为1-5mm,比表面积为500-900m2/g,填充密度为0.45-0.55g/cm3;石墨颗粒填充粒径为1-5mm,填充密度为1.8-2g/cm3。
[0028] 所述的阳极集电极和阴极集电极为石墨毡、石墨棒或不锈钢材质。
[0029] 所述的下行垂直流人工湿地-微生物燃料电池耦合装置的填料厚度范围为60-120cm。
[0030] 所述的装置上部非导电填料层厚度为20-30cm,阳极导电填料层厚度为10-30cm,非导电填料隔离层厚度为10-20cm,阴极导电填料层厚度为15-30cm,底部非导电填料层厚度为5-10m。
[0031] 所述的装置上部非导电填料层、非导电填料隔离层、底部非导电填料为砾石、砂石、无烟煤、生物陶粒中的一种或一至四种任意一种;
[0032] 所述的湿地植物为美人蕉、风车草、芦苇、芦竹、水甜茅、大米草、鸢尾、茭白、千屈菜、野古草、菖蒲、象草中的一种或一至十二种的任意组合。
[0033] 所述污水为COD/TN≤5且氮形态主要为氨氮(NH3/TN≥60%) ,尤其是低浓度的垃圾渗滤液、污泥消化液等,总氮的去除率可达到70%以上。
[0034] 所处理的污水在装置中的停留时间为10至48小时。
[0035] 上述装置中:1)上部非导电填料层中种植湿地植物,使得湿地植物根系分布在该层中的上中部,这种设置可以通过植物根系泌氧营造上部非导电填料层的好氧环境,从而使得污水中的部分氨氮在流入阳极填料层前转化为硝酸盐氮。实验结果显示,通过湿地植物根系泌氧,上部非导电填料层的溶解氧可达1.0-2.5mg/L,可将污水中的20%-30%氨氮转化成硝酸盐氮。2)阳极集电极、阴极集电极通过内导线短路连接,使得阳极、阴极区域处于高电流密度环境下,此时生物膜与电极之间可获得更快的电子传递。实验数据表明,短路连接后,富集在阴、阳极区域的电化学活性菌地杆菌属(Geobacter)、假单胞菌属(Pseudomonas)等的丰度增加0.5-2.1倍;发生氨氧化过程的不动杆菌属(Acinetobacter)和黄杆菌属(Flavobacterium)丰度增加2-3.5倍;硝酸盐氮还原菌地杆菌属(Geobacter)、动胶菌属(Zoogloea)的丰度增加1.8-3.5倍;总氮去除率达到68-75%。
[0036] 本发明与现有的技术相比,具有以下的优点和效果:
[0037] 1、本发明在不改变原有下行垂直流湿地构造的基础上,通过简单的电极填埋和导线连接,铺设阳极导电填料层和阴极导电填料层,使得在低碳、低氧条件下,通过阳极区域发生的氨氧化过程将氨氮转化成硝酸盐氮,并进一步通过阳极细菌的呼吸作用把新陈代谢产生的电子作为供体发生反硝化脱氮过程,一定程度上强化了硝酸盐氮的去除效率,从而提高了低碳氮比废水的总氮去除效果。
[0038] 2、本发明中阳极导电填料层、阴极导电填料层与导线组成的短路电路,原位利用MFC产生的电能用于强化脱氮,与生物膜电极-人工湿地或者电解池-人工湿地耦合系统相比,不仅不需要外加电源,而且可以获取污水中的电能。
[0039] 3、短路运行通过影响电极电势来影响电极生物膜群结构,有利于阳极产电菌的富集和生长,可促进阳极发生氨氧化过程,使得更多的氨氮有效转化为硝酸盐氮,进一步通过反硝化去除,从而提高了反应器的整体脱氮性能,尤其适用于高氨氮低有机碳进水。
[0040] 4、短路运行有利于变形菌门的生长和富集,包括地杆菌属(Geobacter)、脱硫单胞菌属(Desulfuromonas)、假单胞菌属(Pseudomonas)和红育菌属(Rhodoferax)。此外,短路运行模式促进了脱氮菌属的生长,尤其是地杆菌属(Geobacter)、不动杆菌属(Acinetobacter)、固氮弧菌属(Azoarcus)和黄杆菌属(Flavobacterium)。

附图说明

[0041] 图1为一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置结构示意图。
[0042] 其中:1-底部非导电填料层;2-阴极导电填料层;3-非导电填料隔离层;4-阳极导电填料层;5-上部非导电填料层;6-湿地植物; 7-阳极集电极(市场上购买);8-阴极集电极(市场上购买);9-内导线(普通)。

具体实施方式

[0043] 以下结合附图1对发明的具体实施例进行解释和说明,并不构成对本发明的限制。
[0044] 实施例1:
[0045] 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的运行方法,其步骤如下:
[0046] A、污水连续由系统顶部进入并均匀布水,依次流入上部非导电填料层5,植物根系主要分布在这一层的中上部,本层由于湿地植物的根系泌氧作用及进水中带入的溶解氧使得该区域呈现好氧状态,部分氨氮在硝化菌和亚硝化菌作用下转化为硝酸盐氮,异养反硝化菌利用有机碳源作为电子供体将小部分硝酸盐氮还原成氮气;
[0047] B、经过步骤A的污水流入阳极导电填料层4,部分有机物在该层被电化学活性菌属利用产生电子,未氧化的有机物在这一层基本可完全去除,部分硝酸盐氮由于异养反硝化得到进一步去除;该层中的阳极集电极7和阴极导电填料层2中的阴极集电极8直接通过内导线9连接形成“短路”,在阳极脱氮菌属作用下发生异养硝化作用,将污水中的氨氮通过氨氧化过程转化成硝酸盐氮;电化学活性菌阳极细菌通过呼吸作用把他们新陈代谢产生的电子通过内部导线9转移到电子受体硝酸盐氮中,部分硝酸盐氮被阳极脱氮菌属还原成氮气;
[0048] C、接着污水流入非导电填料隔离层3,该层主要功能是作为阳极导电填料层4和阴极导电填料层2间的分隔器;
[0049] D、随后污水流入阴极导电填料层2,在该层中经由内部导线9传递来的电子被用作还原硝酸盐氮的电子供体,在阴极脱氮菌属作用下,大部分硝酸盐氮被还原成氮气。
[0050] E、最后污水经底部非导电填料层1内的排水管流出,出水中总氮含量较常规上行流人工湿地的出水总氮含量低,总氮去除率提高了50-80%。
[0051] 所述的污水为COD/TN≤5且氮形态主要为氨氮(NH3/TN≥60%)。
[0052] 所述的电化学活性菌属为具有胞外电子传递的一类微生物,包括地杆菌属(Geobacter)、假单胞菌属(Pseudomonas)、脱硫单胞菌属(Desulfuromonas)和红育菌属(Rhodoferax)等其中的一种或一到四种的任意组合。
[0053] 所述的阳极脱氮菌属为具有脱氮功能的硝化和反硝化菌属,包括地杆菌属(Geobacter)、动胶菌属(Zoogloea)、固氮弧菌属(Azoarcus)等其中的一种或一到三种和不动杆菌属(Acinetobacter)、黄杆菌属(Flavobacterium)和脱硫单胞菌属(Dechloromonas)等其中的一种或一到三种的任意组合。
[0054] 所述的阴极脱氮菌属为地杆菌属(Geobacter)、索氏菌属(Thauera)、不动杆菌属(Acinetobacter)、Dokdonella属、Ferruginibacter属等其中的一种或一到五种的任意组合。
[0055] 实验结果表明:采用本发明中的装置,显著提高阳极区的产电菌属的生长和富集。阳极区域的优势菌地杆菌属(Geobacter)的丰度提高0.8-1.2倍、脱硫单胞菌属(Desulfuromonas)的丰度提高8-10倍。
[0056] 实施例2:
[0057] 一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置,该结构自下而上铺设有底部非导电填料层1、阴极导电填料层2;非导电填料隔离层3;阳极导电填料层4;其特征在于:阴极导电填料层2分别与底部非导电填料层1、非导电填料隔离层3相连,阳极导电填料层4分别与非导电填料隔离层3、上部非导电填料层5相连,在非导电填料层5上部中种植湿地植物6,阳极集电极7、阴极集电极8通过内导线9短路连接,阳极集电极7和阴极集电极8分别放置在阳极导电填料层4及阴极导电填料层2内,内导线9埋设于阳极导电填料层4及阴极导电填料层2内,其两端分别与阳极集电极7、阴极集电极8连接。
[0058] 所述的一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置,其特征在于:所述的阳极填料层4和阴极导电填料层2内填料为颗粒活性炭或石墨颗粒;颗粒活性炭粒径为1或3或5mm,比表面积为500或600或700或800或900m2/g,填充密度为0.45或0.5或0.55g/cm3;石墨颗粒填充粒径为1或3或5mm,填充密度为1.8或1.9或2g/cm3。
[0059] 所述的湿地植物6为美人蕉、风车草、芦苇、芦竹、水甜茅、大米草、鸢尾、茭白、千屈菜、野古草、菖蒲、象草中的一种或一至十二种的任意组合。
[0060] 所述的阳极集电极7和阴极集电极8为石墨毡、石墨棒或不锈钢材质。
[0061] 所述的一种原位利用污水产电强化下行垂直流人工湿地脱氮效能的装置的填料厚度范围为60或70或80或90或100或110或120cm。
[0062] 所述的上部非导电填料层5厚度为20或25或30cm,阳极导电填料层4厚度为10或15或20或25或30cm,非导电填料隔离层3厚度为10或15或20cm,阴极导电填料层2厚度为15或20或25或30cm,底部非导电填料层1厚度为5或8或10m。
[0063] 所述的装置底部非导电填料层1、非导电填料隔离层3、上部非导电填料层5为砾石、砂石、无烟煤、生物陶粒中的一种或一至四种。
[0064] 所处理的污水为低碳氮比(C/N≤5且NH3/TN≥60%)污水,尤其是低浓度的垃圾渗滤液、污泥消化液等。经该装置处理后,总氮去除率可达80%以上。
[0065] 所处理的污水在装置中的停留时间为10至48小时。
[0066] 实验结果表明:采用本发明中的装置较常规的下行垂直流人工湿地对总氮的去除率可提高30-60%。