一种热稳定性改良的低温外切菊粉酶突变体Mut8S转让专利

申请号 : CN201810597684.6

文献号 : CN108504644B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周峻沛黄遵锡张蕊何丽梅韩楠玉丁俊美许波唐湘华

申请人 : 云南师范大学

摘要 :

本发明涉及基因工程及蛋白质改造技术领域,具体来说是一种热稳定性改良的低温外切菊粉酶突变体Mut8S,突变体Mut8S的氨基酸序列如SEQ ID NO.1所示。Mut8S的最适pH为6.5;最适温度为40℃,在0℃、10℃、20℃、30℃和50℃时分别具有16%、27%、51%、76%和78%的酶活;50℃处理60min后,Mut8S仍然保持100%的酶活;该酶可水解菊粉产生果糖。本发明的热稳定性改良的低温外切菊粉酶突变体Mut8S可应用于食品、酿酒和生物能源等行业。

权利要求 :

1.一种热稳定性改良的低温外切菊粉酶突变体Mut8S,其特征在于,所述的突变体Mut8S的氨基酸序列如SEQ ID NO.1所示。

2.权利要求1所述的突变体Mut8S的编码基因,其特征在于,所述的编码基因的核苷酸序列如SEQ ID NO.2所示。

3.包含权利要求2所述的编码基因的重组载体。

4.包含权利要求2所述的编码基因的重组菌。

5.权利要求1所述的热稳定性改良的低温外切菊粉酶突变体Mut8S的制备方法,其特征在于,包括以下步骤:

1)在Mut8S编码基因的5'端补加HRV3C蛋白酶酶切位点编码序列;

2)将1)中的序列与表达载体pET-28a(+)相连接,并将连接产物转化大肠杆菌BL21(DE3),获得包含Mut8S编码基因的重组菌株;

3)培养重组菌株,诱导重组外切菊粉酶突变体Mut8S表达;

4)回收并纯化所表达的重组外切菊粉酶突变体Mut8S;

5)用HRV3C蛋白酶酶切重组外切菊粉酶突变体Mut8S;

6)回收并纯化外切菊粉酶突变体Mut8S;

7)活性测定。

6.权利要求1所述的突变体Mut8S在食品或酿酒制备中的应用。

说明书 :

一种热稳定性改良的低温外切菊粉酶突变体Mut8S

技术领域

[0001] 本发明属于基因工程技术领域,涉及蛋白质改造技术,具体为一种热稳定性改良的低温外切菊粉酶突变体Mut8S。

背景技术

[0002] 菊粉,又称菊糖,由果糖分子通过β-2,1糖苷键聚合而成,末端与一分子葡萄糖残基相连,广泛存在于菊芋、牛蒡、菊苣等多种植物中。菊粉酶具有2种作用方式:一种为内切型菊粉酶,水解菊粉多糖链内部的β-2,1糖苷键,生成低聚果糖;另一种为外切型菊粉酶,从非还原端逐个水解β-2,1糖苷键,最终生成果糖和少部分的葡萄糖。菊粉的水解产物即果糖广泛用于食品、医药、生物能源等工业。例如,果糖甜度是蔗糖的1.5–2.0倍,并且热量低、风味好,可作为天然甜味剂替代蔗糖;果糖代谢不受胰岛素的制约,可以供糖尿病患者食用;果糖经酵母等发酵后可以用来生产生物乙醇。因而,外切菊粉酶可应用于食品、酿酒和生物能源等行业中(Singh  RS  et al.International Journal  of  Biological Macromolecules,2017,96:312–322.)。
[0003] 酶的生产、保存、运输、应用等常常需要酶具有良好的热稳定性。低温酶可应用于低温环境要求下的生物技术领域,低温下的处理(如果汁澄清)可防止微生物的污染、营养损失和食品品质降低,还可起到降低能耗的作用(Cavicchioli et al.Microbial Biotechnology,2011,4(4):449–460.)。因此,低温外切菊粉酶可用于酒的发酵、食品的腌制、去污、低温下的菊粉加工等,具有重要的开发价值。然而,低温酶普遍热稳定性差,需要改良其热稳定性。

发明内容

[0004] 本发明的目的旨在提供一种热稳定性改良的低温外切菊粉酶突变体Mut8S,可应用于食品、酿酒和生物能源等行业。
[0005] 为了实现该技术目标,本发明具体通过以下技术方案实现:
[0006] 一种热稳定性改良的低温外切菊粉酶突变体Mut8S,所述的突变体Mut8S的氨基酸序列如SEQ ID NO.1所示。与GenBank记录的外切菊粉酶序列AGC01503(SEQ ID No.3)相比:Mut8S不含有位于AGC01503的N端的信号肽序列“MIKLKKYGVLMLLLGVFGTSLA”;Mut8S含AGC01503的八点突变,包括AGC01503的第61位氨基酸N突变为E、第156位氨基酸K突变为R、第236为氨基酸P突变为E、第243位氨基酸T突变为K、第268位氨基酸D突变为E、第277位氨基酸T突变为D、第390位氨基酸Q突变为K、第409位氨基酸R突变为D;在N末端,Mut8S比AGC01503多了氨基酸“GP”。
[0007] 所述突变体Mut8S的最适pH为6.5;最适温度为40℃,在0℃、10℃、20℃、30℃和50℃时分别具有16%、27%、51%、76%和78%的酶活;50℃处理60min后,Mut8S仍然保持100%的酶活;该酶可水解菊粉产生果糖。
[0008] 本发明提供了所述的热稳定性改良的低温外切菊粉酶突变体Mut8S编码基因,其核苷酸序列如SEQ ID NO.2所示。
[0009] 本发明的另一目的在于提供一种包含热稳定性改良的低温外切菊粉酶突变体Mut8S编码基因的重组载体。
[0010] 本发明的另一目的在于提供一种包含热稳定性改良的低温外切菊粉酶突变体Mut8S编码基因的重组菌。
[0011] 另外,本发明所述的外切菊粉酶突变体Mut8S在食品及酿酒制备中的应用也在本发明的保护范围内。
[0012] 本发明所述的低温外切菊粉酶突变体Mut8S的制备方法,具体包括以下步骤:
[0013] 1)合成Mut8S编码基因序列,合成时在Mut8S编码基因的5'端补加HRV 3C蛋白酶酶切位点编码序列和EcoRI限制性酶切位点序列(5'GAATTCctggaagttctgttccag 3'),并在Mut8S编码基因的3'端补加XhoI限制性酶切位点序列(5'CTCGAG 3');
[0014] 2)将1)中合成的序列通过EcoRI和XhoI位点与表达载体pET-28a(+)相连接,并将连接产物转化大肠杆菌BL21(DE3),获得包含Mut8S编码基因的重组菌株;
[0015] 3)培养重组菌株,诱导重组外切菊粉酶突变体Mut8S表达;
[0016] 4)回收并纯化所表达的重组外切菊粉酶突变体Mut8S;
[0017] 5)用HRV 3C蛋白酶酶切重组外切菊粉酶突变体Mut8S;
[0018] 6)回收并纯化外切菊粉酶突变体Mut8S;
[0019] 7)活性测定。
[0020] 本发明的有益效果为:
[0021] 与野生酶InuAGN25DVS相比,突变酶Mut8S的最适pH、热活性和热稳定性发生了改变,低温下的活性得到了提高,热稳定性得到了提高。纯化的野生酶InuAGN25DVS的最适pH为6.0,而突变酶Mut8S的最适pH为6.5;纯化的野生酶InuAGN25DVS的最适温度为45℃,在0℃、10℃、20℃、30℃和50℃时分别具有11%、21%、36%、68%和89%的酶活,而突变酶Mut8S的最适温度为40℃,在0℃、10℃、20℃、30℃和50℃时分别具有16%、27%、51%、76%和78%的酶活;50℃处理60min后,野生酶InuAGN25DVS剩余64%的酶活,而突变酶Mut8S仍然保持100%的酶活。本发明的热稳定性改良的低温外切菊粉酶突变体Mut8S可应用于食品、酿酒和生物能源等行业。

附图说明

[0022] 图1:野生酶InuAGN25DVS和突变酶Mut8S的SDS-PAGE分析,其中,M:蛋白质Marker;HRV 3CW:InuAGN25DVS;HisW:InuAGN25DVSHis;HRV 3CM:Mut8S;HisM:Mut8SHis;
[0023] 图2:纯化的野生酶InuAGN25DVS和突变酶Mut8S的pH活性;
[0024] 图3:纯化的野生酶InuAGN25DVS和突变酶Mut8S的pH稳定性;
[0025] 图4:纯化的野生酶InuAGN25DVS和突变酶Mut8S的热活性;
[0026] 图5:纯化的野生酶InuAGN25DVS和突变酶Mut8S的热稳定性;
[0027] 图6:纯化的野生酶InuAGN25DVS和突变酶Mut8S水解菊粉的产物分析,其中,F:果糖;G:葡萄糖;CK:对照组,含底物和失活的酶(煮沸10min);S:反应组。

具体实施方式

[0028] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0029] 本发明以下实施例中的实验材料和试剂:
[0030] 1、菌株及载体:大肠杆菌Escherichia coli BL21(DE3)和表达载体pET-28a(+)可购于Novagen公司;质粒pEASY-E1-Z2-5由云南师范大学提供。
[0031] 2、酶类及其它生化试剂:HRV 3C蛋白酶及限制性内切酶购自TaKaRa公司,Nickel-NTAAgarose购自QIAGEN公司,DNA聚合酶、dNTP及 II试剂盒购自南京诺维赞公司,菊粉购自Sigma公司,其它都为国产试剂(均可从普通生化试剂公司购买得到)。
[0032] 3、培养基
[0033] LB培养基:Peptone 10g,Yeast extract 5g,NaCl 10g,加蒸馏水至1000mL,pH自然(约为7)。固体培养基在此基础上加2.0%(w/v)琼脂。
[0034] 说明:以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。
[0035] 实施例1 野生酶InuAGN25DVS表达载体的构建和转化
[0036] 1)根据GenBank记录的外切菊粉酶核苷酸序列JQ863108(SEQ ID No.4),设计引物5'TGGAAGTTCTGTTCCAGGGGCCCCAGACGGGACAGCATAAACAAG 3'和5'GGTGGTGGTGTTATCTCTTAAATGCAGAAATACCGAT 3',以质粒pEASY-E1-Z2-5为模板进行PCR扩增,获得外切菊粉酶成熟肽编码序列Z2-5,并在Z2-5的5'端加入了HRV 3C蛋白酶酶切位点编码序列,同时在Z2-5的5'端和3'端还形成了重组区域,该重组区域与(2)中获得的线性化载体两端的重组区域相匹配。Z2-5也可以通过基因合成得到。
[0037] 2)另设计引物5'AGAGATAACACCACCACCACCACCACTG 3'和5'CCTGGAACAGAACTTCCAGGAATTCGGATCCGCGACC 3',以pET-28a(+)质粒为模板进行PCR扩增,获得线性化的pET-28a(+)载体,同时在线性化pET-28a(+)载体的5'端和3'端形成了重组区域,该重组区域与Z2-5两端的重组区域相匹配。
[0038] 3)PCR反应参数为:95℃变性30sec;然后95℃变性15sec,60℃退火15sec,72℃延伸3min 30sec,30个循环后72℃保温5min。
[0039] 4)在50μL线性化pET-28a(+)载体的PCR产物中,加入1μL DpnI,于37℃消化1h。
[0040] 5)根据 II试剂盒的说明书,将(4)中的消化产物和Z2-5在37℃下重组连接30min,即可获得野生酶InuAGN25DVS的表达载体。
[0041] 6)将野生酶表达载体通过热激方式转化到大肠杆菌BL21(DE3)中,获得包含Z2-5的重组菌株。
[0042] 实施例2突变酶Mut8S表达载体的构建和转化
[0043] 1)合成Mut8S编码基因序列,合成时在编码基因的5'端补加HRV 3C蛋白酶酶切位点编码序列和EcoRI限制性酶切位点序列(5'GAATTCctggaagttctgttccag3'),并在编码基因的3'端补加XhoI限制性酶切位点序列(5'CTCGAG 3')。
[0044] 2)将(1)中合成的序列进行EcoRI和XhoI双酶切;同时将表达载体pET-28a(+)进行EcoRI和XhoI双酶切。
[0045] 3)用DNA连接酶将(2)中的酶切产物进行连接,即可获得突变酶Mut8S的表达载体。
[0046] 4)将连接产物转化大肠杆菌BL21(DE3),获得包含Mut8S编码基因的重组菌株。
[0047] 实施例3野生酶InuAGN25DVS和突变酶Mut8S的制备
[0048] 将含Z2-5和Mut8S编码基因的重组菌株以0.1%的接种量分别接种于LB(含50μg mL-1卡那霉素)培养液中,37℃快速振荡16h。
[0049] 然后将此活化的菌液以1%接种量接种到新鲜的LB(含50μg mL-1卡那霉素)培养液中,快速振荡培养约2–3h(OD600达到0.6-1.0)后,加入终浓度0.25mM的IPTG进行诱导,于20℃继续振荡培养约20h。12000rpm离心5min,收集菌体。用适量的pH=7.0McIlvaine buffer悬浮菌体后,于低温水浴下超声波破碎菌体。以上胞内浓缩的粗酶液经13,000rpm离心10min后,吸取上清并用Nickel-NTA Agarose和0–500mM的咪唑分别亲和和纯化目的蛋白。将含Z2-5的重组菌株表达并纯化的重组蛋白命名为InuAGN25DVSHis,将含mut8S的重组菌株表达并纯化的重组蛋白命名为Mut8SHis。
[0050] SDS-PAGE结果(图1)表明,InuAGN25DVSHis和Mut8SHis都获得了纯化,产物为单一条带。InuAGN25DVSHis的氨基酸序列如SEQ ID NO.5所示。Mut8S His的氨基酸序列如SEQ ID NO.6所示。
[0051] 根据HRV 3C蛋白酶说明书,用HRV 3C蛋白酶分别酶切InuAGN25DVSHis和Mut8SHis,去除位于InuAGN25DVSHis和Mut8SHis N端的组氨酸标签和pET-28a(+)载体自带氨基酸序列,酶切产物经Nickel-NTA Agarose纯化后,获得InuAGN25DVS和Mut8S。SDS-PAGE结果(图1)表明,N端的组氨酸标签和pET-28a(+)载体自带氨基酸序列被成功切除,并且,InuAGN25DVS和Mut8S都获得了纯化,产物为单一条带。InuAGN25DVS的氨基酸序列如SEQ ID NO.7所示。
[0052] 实施例4纯化的野生酶InuAGN25DVS和突变酶Mut8S的性质测定
[0053] 1)纯化的野生酶InuAGN25DVS和突变酶Mut8S的活性分析
[0054] 活性测定方法采用3,5-二硝基水杨酸(DNS)法:将底物菊粉溶于缓冲液中,使其终浓度为0.5%(w/v);反应体系含50μL适量酶液,450μL底物;底物在反应温度下预热5min后,加入酶液后再反应10min,然后加750μL DNS终止反应,沸水煮5min,冷却至室温后在540nm波长下测定OD值;1个酶活单位(U)定义为在给定的条件下每分钟分解底物产生1μmol还原糖(以果糖计)所需的酶量。
[0055] 2)纯化的野生酶InuAGN25DVS和突变酶Mut8S的pH活性和pH稳定性测定[0056] 酶的pH活性测定:将酶液置于37℃下和pH=5.0–8.0的缓冲液中进行酶促反应。酶的pH稳定性测定:将酶液置于pH=3.0–11.0的缓冲液中,在20℃下处理1h,然后在pH=6.0及37℃下进行酶促反应。缓冲液为:McIlvaine buffer(pH=3.0–8.0)和0.1M glycine–NaOH(pH=9.0–12.0)。以菊粉为底物,反应10min,测定野生酶InuAGN25DVS和突变酶Mut8S的酶学性质。
[0057] 结果表明:野生酶InuAGN25DVS的最适pH为6.0,而突变酶Mut8S的最适pH为6.5(图2);经pH5.0–10.0的缓冲液处理1h,野生酶InuAGN25DVS和突变酶Mut8S的酶活剩余在80%以上(图3)。
[0058] 3)纯化的野生酶InuAGN25DVS和突变酶Mut8S的热活性及热稳定性测定[0059] 酶的热活性测定:在pH=6.0的缓冲液中,于0–60℃下进行酶促反应。酶的热稳定性测定:将同样酶量的酶液置于50℃处理0–60min后,在pH=6.0及37℃下进行酶促反应,以未处理的酶液作为对照。以菊粉为底物,反应10min,测定野生酶InuAGN25DVS和突变酶Mut8S的酶学性质。
[0060] 结果表明:野生酶InuAGN25DVS的最适温度为45℃,在0℃、10℃、20℃、30℃和50℃时分别具有11%、21%、36%、68%和89%的酶活,而突变酶Mut8S的最适温度为40℃,在0℃、10℃、20℃、30℃和50℃时分别具有16%、27%、51%、76%和78%的酶活(图4);50℃处理60min后,野生酶InuAGN25DVS剩余64%的酶活,而突变酶Mut8S仍然保持100%的酶活(图5)。
[0061] 4)纯化的野生酶InuAGN25DVS和突变酶Mut8S水解菊粉的产物分析
[0062] 产物分析反应体系含450μL 0.5%(w/v)的菊粉,50μL适当稀释酶液(共0.1U酶液)。在pH6.0及37℃下,酶促反应4h后终止反应。产物分析采用薄层层析法(使用青岛海洋化工有限公司的高效薄层层析硅胶板G型)。
[0063] 薄层层析步骤如下所示:
[0064] ①配制展开剂(冰醋酸20mL,双蒸水20mL,正丁醇40mL,混匀),取适量倒入展开槽,静置30min左右;
[0065] ②将硅胶板放在110℃烘箱中活化30min,冷却后划线,点样(每次0.5μL,吹干,共点3次);
[0066] ③将点样的一端硅胶板朝下放入展开槽中,点样点不要没入展开剂;
[0067] ④待展开剂到距硅胶板上沿1.5cm时,取出硅胶板,吹干,再展开一次;
[0068] ⑤第二次展开结束后,硅胶板直接浸入适量显色剂(1g二苯胺溶于50mL丙酮中,溶解后加入1mL苯胺及5mL 85%的磷酸,混匀,现用现配);
[0069] ⑥几秒钟后,立即取出硅胶板并放置于90℃烘箱中10–15min,使斑点显色。
[0070] 结果表明:野生酶InuAGN25DVS和突变酶Mut8S水解菊粉的产物几乎都为果糖(图6)。
[0071] 本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
[0072] 最后所应说明的是:以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应该理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。