LLC谐振变换器的分析方法及装置转让专利

申请号 : CN201810298744.4

文献号 : CN108566095B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赫文强张亮阮胜超沈定华

申请人 : 深圳市英能达电子有限公司

摘要 :

本发明公开了一种LLC谐振变换器的分析方法和装置,方法包括:当LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,并构造第一时间段和第二时间段;获取谐振电容在第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)、激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t)、谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t);获取谐振电容在第一时间段和第二时间段内的约束条件;根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系,从而能够获取LLC谐振变换器的工作频率和输入电压的数学关系。

权利要求 :

1.一种LLC谐振变换器的分析方法,其特征在于,所述LLC谐振变换器包括谐振电容、谐振电感和激磁电感,所述方法包括以下步骤:当所述LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,其中,以所述第一时间点和所述第二时间点构造第一时间段,以所述第二时间点和所述第三时间点构造第二时间段,其中,将所述LLC谐振变换器的上桥开关管开启且下桥开关管关闭的时间点定位为所述第一时间点,将所述谐振电容的电流与所述激磁电感的电流相等的时间点作为所述第二时间点,将一个工作周期的中点作为所述第三时间点;

获取所述谐振电容在所述第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、所述谐振电感在所述第一时间段内的电压函数ULr0(t)以及所述激磁电感在所述第一时间段内的电压函数ULm0(t)和电流函数ILm0(t);

获取所述谐振电容在所述第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及所述激磁电感在所述第二时间段内的电流函数ILm1(t);

获取所述谐振电容在所述第一时间段和所述第二时间段内的约束条件;

根据所述Icr0(t)、所述Ucr0(t)、所述ULr0(t)、所述ULm0(t)、所述ILm0(t)、所述Icr1(t)、所述Ucr1(t)、所述ILm1(t)以及所述约束条件计算所述LLC谐振变换器的工作频率与输入电压的关系;

其中,所述约束条件包括:

其中,Icr0(0)为所述电流函数Icr0(t)在所述第一时间点的电流值,Icr0(t1)为所述电流函数Icr0(t)在所述第二时间点t1的电流值,Vin为所述LLC谐振变换器的输入电压,Ucr0(0)为所述谐振电容在所述第一时间段内的电压函数Ucr0(t)在所述第一时间点的电压值, 为所述电压函数Ucr1(t)在第三时间点的电压值,Cr为所述谐振电容的电容值,Io为所述LLC谐振变换器的输出电流值,n为变压器原副边的匝比,fs为所述LLC谐振变换器的工作频率,Ucr0(t1)为所述电压函数Ucr0(t)在所述第二时间点t1的电压值。

2.根据权利要求1所述的LLC谐振变换器的分析方法,其特征在于,所述LLC谐振变换器为半桥LLC谐振变换器,所述LLC谐振变换器包括上桥开关管和下桥开关管,所述上桥开关管的第一端与输入电源的正向端相连,所述上桥开关管的第二端与所述下桥开关管的第一端相连并具有第一节点,所述下桥开关管的第二端与所述输入电源的负向端相连,所述第一节点与所述谐振电容的一端相连,所述谐振电感的一端与所述谐振电容的另一端相连,所述激磁电感的一端与所述谐振电感的另一端相连,所述激磁电感的另一端所述下桥开关管的第二端相连。

3.根据权利要求1所述的LLC谐振变换器的分析方法,其特征在于,获取所述Icr0(t)、所述Ucr0(t)、所述ULr0(t)、所述ULm0(t)以及所述ILm0(t),包括:根据所述谐振电容的电容值和所述谐振电容在所述第一时间段内的电压函数Ucr0(t)获取所述谐振电容在所述第一时间段内的电流函数Icr0(t);

根据所述LLC谐振变换器的输入电压、所述谐振电容在所述第一时间段内的电压函数Ucr0(t)以及与所述激磁电感并联的负载模块的电压获取所述谐振电感在所述第一时间段内的电压函数ULr0(t);

根据与所述激磁电感并联的负载模块的电压获取所述激磁电感在所述第一时间段内的电压函数ULm0(t);

根据与所述激磁电感并联的负载模块的电压、所述激磁电感的电感值和所述电流函数Icr0(t)在所述第一时间点的电流值获取所述激磁电感在所述第一时间段内的电流函数ILm0(t)。

4.根据权利要求3所述的LLC谐振变换器的分析方法,其特征在于,还根据所述谐振电感的电感值和所述谐振电容在所述第一时间段内的电流函数Icr0(t)获取所述谐振电感在所述第一时间段内的电压函数ULr0(t),还根据所述激磁电感的电感值和所述激磁电感在所述第一时间段内的电流函数ILm0(t)获取所述激磁电感在所述第一时间段内的电压函数ULm0(t)。

5.根据权利要求1所述的LLC谐振变换器的分析方法,其特征在于,获取所述Icr1(t)和Ucr1(t)以及所述ILm1(t)包括:根据所述电流函数Icr0(t)在所述第二时间点的电流值获取所述谐振电容在所述第二时间段内的电流函数Icr1(t);

根据所述电流函数ILm0(t)在所述第二时间点的电流值获取所述激磁电感在所述第二时间段内的电流函数ILm1(t);

根据所述谐振电容在所述第一时间段内的电压函数Ucr0(t)在所述第二时间点的电压值、所述电流函数Icr0(t)在所述第二时间点的电流值、所述第二时间点和所述谐振电容的电容值获取所述谐振电容在所述第二时间段内的电压函数Ucr1(t)。

6.根据权利要求5所述的LLC谐振变换器的分析方法,其特征在于,所述电流函数Icr0(t)在所述第二时间点的电流值与所述电流函数ILm0(t)在所述第二时间点的电流值相等。

7.一种LLC谐振变换器的分析装置,其特征在于,所述LLC谐振变换器包括谐振电容、谐振电感和激磁电感,所述装置包括:确定模块,用于在所述LLC谐振变换器的工作频率小于所述的谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,其中,以所述第一时间点和所述第二时间点构造第一时间段,以所述第二时间点和所述第三时间点构造第二时间段,其中,将所述LLC谐振变换器的上桥开关管开启且下桥开关管关闭的时间点定位为所述第一时间点,将所述谐振电容的电流与所述激磁电感的电流相等的时间点作为所述第二时间点,将一个工作周期的中点作为所述第三时间点;

第一获取模块,用于获取所述谐振电容在所述第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、所述谐振电感在所述第一时间段内的电压函数ULr0(t)以及所述激磁电感在所述第一时间段内的电压函数ULm0(t)和电流函数ILm0(t);

第二获取模块,用于获取所述谐振电容在所述第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及所述激磁电感在所述第二时间段内的电流函数ILm1(t);

第三获取模块,用于获取所述谐振电容在所述第一时间段和所述第二时间段内的约束条件;

计算模块,用于根据所述Icr0(t)、所述ULr0(t)、所述ULm0(t)、所述ILm0(t)、所述Icr1(t)、所述Ucr1(t)、所述ILm1(t)以及所述约束条件计算所述LLC谐振变换器的工作频率与输入电压的关系;

其中,所述约束条件包括:

其中,Icr0(0)为所述电流函数Icr0(t)在所述第一时间点的电流值,Icr0(t1)为所述电流函数Icr0(t)在所述第二时间点t1的电流值,Vin为所述LLC谐振变换器的输入电压,Ucr0(0)为所述谐振电容在所述第一时间段内的电压函数Ucr0(t)在所述第一时间点的电压值, 为所述电压函数Ucr1(t)在第三时间点的电压值,Cr为所述谐振电容的电容值,Io为所述LLC谐振变换器的输出电流值,n为变压器原副边的匝比,fs为所述LLC谐振变换器的工作频率,Ucr0(t1)为所述电压函数Ucr0(t)在所述第二时间点t1的电压值。

说明书 :

LLC谐振变换器的分析方法及装置

技术领域

[0001] 本发明涉及电力电子技术领域,特别涉及一种LLC谐振变换器的分析方法和一种LLC谐振变换器的分析装置。

背景技术

[0002] 由于LLC谐振变换器具有高效、高功率密度和低干扰等显著的优点,使得LLC谐振变换器在开关电源的开发设计中得到广泛应用。
[0003] 相关技术中通常使用方波电压的基波分量代替输入方波电压,再对LLC谐振变换器进行分析与设计,得到LLC谐振变换器的增益函数,进而画出增益函数的增益曲线。但是,相关技术存在的问题是,无法精确得到LLC谐振变换器与输入电压相对应的工作频率,进而影响LLC谐振变换器中的元器件选型。

发明内容

[0004] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种LLC谐振变换器的分析方法,能够获得工作频率和输入电压的数学关系。
[0005] 本发明的另一个目的在于提出一种LLC谐振变换器的分析装置。
[0006] 为达到上述目的,本发明一方面实施例提出的一种LLC谐振变换器的分析方法,所述LLC谐振变换器包括谐振电容、谐振电感和激磁电感,所述方法包括以下步骤:当所述LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,其中,以所述第一时间点和所述第二时间点构造第一时间段,以所述第二时间点和所述第三时间点构造第二时间段;获取所述谐振电容在所述第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、所述谐振电感在所述第一时间段内的电压函数ULr0(t)以及所述激磁电感在所述第一时间段内的电压函数ULm0(t)和电流函数ILm0(t);获取所述谐振电容在所述第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及所述激磁电感在所述第二时间段内的电流函数ILm1(t);获取所述谐振电容在所述第一时间段和所述第二时间段内的约束条件;根据所述Icr0(t)、所述ULr0(t)、所述ULm0(t)、所述ILm0(t)、所述Icr1(t)、所述Ucr1(t)、所述ILm1(t)以及所述约束条件计算所述LLC谐振变换器的工作频率与输入电压的关系。
[0007] 根据本发明实施例提出的LLC谐振变换器的分析方法,当LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,并以第一时间点和第二时间点构造第一时间段,以第二时间点和第三时间点构造第二时间段,然后获取谐振电容在第一时间段的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t),并获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t),获取谐振电容在第一时间段和第二时间段内的约束条件,根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。由此,本发明实施例的分析方法能够在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,通过对LLC谐振变换器各个时段进行分析获得工作频率与输入电压的数学关系,进而在LLC谐振变换器设计过程中合理的进行元器件选型,节约产品的设计生产制造成本。
[0008] 根据本发明的一个实施例,所述LLC谐振变换器为半桥LLC谐振变换器,所述LLC谐振变换器包括上桥开关管和下桥开关管,所述上桥开关管的第一端与输入电源的正向端相连,所述上桥开关管的第二端与所述下桥开关管的第一端相连并具有第一节点,所述下桥开关管的第二端与所述输入电源的负向端相连,所述第一节点与所述谐振电容的一端相连,所述谐振电感的一端与所述谐振电容的另一端相连,所述激磁电感的一端与所述谐振电感的另一端相连,所述激磁电感的另一端所述下桥开关管的第二端相连。
[0009] 根据本发明的一个实施例,将所述上桥开关管开启且所述下桥开关管关闭的时间点定位为所述第一时间点,将所述谐振电容的电流与所述激磁电感的电流相等的时间点作为所述第二时间点,将一个工作周期的中间点作为所述第三时间点。
[0010] 根据本发明的一个实施例,获取所述Icr0(t)、所述Ucr0(t)、所述ULr0(t)、所述ULm0(t)以及所述ILm0(t),包括:根据所述谐振电容的电容值和所述谐振电容在所述第一时间段内的电压函数Ucr0(t)获取所述谐振电容在所述第一时间段内的电流函数Icr0(t);根据所述LLC谐振变换器的输入电压、所述谐振电容在所述第一时间段内的电压函数Ucr0(t)以及与所述激磁电感并联的负载模块的电压获取所述谐振电感在所述第一时间段内的电压函数ULr0(t);根据与所述激磁电感并联的负载模块的电压获取所述激磁电感在所述第一时间段内的电压函数ULm0(t);根据与所述激磁电感并联的负载模块的电压、所述激磁电感的电感值和所述电流函数Icr0(t)在所述第一时间点的电流值获取所述激磁电感在所述第一时间段内的电流函数ILm0(t)。
[0011] 根据本发明的一个实施例,所述的LLC谐振变换器的分析方法还根据所述谐振电感的电感值和所述谐振电容在所述第一时间段内的电流函数Icr0(t)获取所述谐振电感在所述第一时间段内的电压函数ULr0(t),还根据所述激磁电感的电感值和所述激磁电感在所述第一时间段内的电流函数ILm0(t)获取所述激磁电感在所述第一时间段内的电压函数ULm0(t)。
[0012] 根据本发明的一个实施例,获取所述Icr1(t)和Ucr1(t)以及所述ILm1(t)包括:根据所述电流函数Icr0(t)在所述第二时间点的电流值获取所述谐振电容在所述第二时间段内的电流函数Icr1(t);根据所述电流函数ILm0(t)在所述第二时间点的电流值获取所述激磁电感在所述第二时间段内的电流函数ILm1(t);根据所述谐振电容在所述第一时间段内的电压函数Ucr0(t)在所述第二时间点的电压值、所述电流函数Icr0(t)在所述第二时间点的电流值、所述第二时间点和所述谐振电容的电容值获取所述谐振电容在所述第二时间段内的电压函数Ucr1(t)。
[0013] 根据本发明的一个实施例,所述电流函数Icr0(t)在所述第二时间点的电流值与所述电流函数ILm0(t)在所述第二时间点的电流值相等。
[0014] 根据本发明的一个实施例,所述约束条件包括:
[0015]
[0016] 其中,Icr0(0)为所述电流函数Icr0(t)在所述第一时间点的电流值,Icr0(t1)为所述电流函数Icr0(t)在所述第二时间点t1的电流值,Vin为所述LLC谐振变换器的输入电压,Ucr0(0)为所述谐振电容在所述第一时间段内的电压函数Ucr0(t)在所述第一时间点的电压值, 为所述电压函数Ucr1(t)在所述第三时间点的电压值,Cr为所述谐振电容的电容值,Io为所述LLC谐振变换器的输出电流值,n为所述变压器原副边的匝比,fs为所述LLC谐振变换器的工作频率,Ucr0(t1)为所述电压函数Ucr0(t)在所述第二时间点t1的电压值,Ucr0(0)为所述电压函数Ucr0(t)在所述第一时间点的电压值。
[0017] 为达到上述目的,本发明另一方面实施例提出的一种LLC谐振变换器的分析装置,所述LLC谐振变换器包括谐振电容、谐振电感和激磁电感,所述装置包括:确定模块,用于在所述LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,其中,以所述第一时间点和所述第二时间点构造第一时间段,以所述第二时间点和所述第三时间点构造第二时间段;第一获取模块,用于获取所述谐振电容在所述第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、所述谐振电感在所述第一时间段内的电压函数ULr0(t)以及所述激磁电感在所述第一时间段内的电压函数ULm0(t)和电流函数ILm0(t);第二获取模块,用于获取所述谐振电容在所述第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及所述激磁电感在所述第二时间段内的电流函数ILm1(t);第三获取模块,用于获取所述谐振电容在所述第一时间段和所述第二时间段内的约束条件;计算模块,用于根据所述Icr0(t)、所述ULr0(t)、所述ULm0(t)、所述ILm0(t)、所述Icr1(t)、所述Ucr1(t)、所述ILm1(t)以及所述约束条件计算所述LLC谐振变换器的工作频率与输入电压的关系。
[0018] 根据本发明实施例提出的LLC谐振变换器的分析装置,通过确定模块在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,并以第一时间点和第二时间点构造第一时间段,以第二时间点和第三时间点构造第二时间段,然后通过第一获取模块获取谐振电容在第一时间段的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t),并通过第二获取模块获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t),第三获取模块获取谐振电容在第一时间段和第二时间段内的约束条件,计算模块根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。由此,本发明实施例的分析装置能够在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,通过对LLC谐振变换器各个时段进行分析获得工作频率与输入电压的数学关系,进而在LLC谐振变换器设计过程中进行元器件的精确选型,节约产品的设计生产制造成本。

附图说明

[0019] 图1为根据发明实施例的LLC谐振变换器的分析方法的流程图;
[0020] 图2为根据本发明一个实施例的LLC谐振变换器的电路结构图;
[0021] 图3为根据本发明一个实施例的LLC谐振变换器在第一时间段的电路简化图,其中,LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率;
[0022] 图4为根据本发明一个实施例的LLC谐振变换器的分析方法的流程图;
[0023] 图5为根据本发明一个实施例的LLC谐振变换器在第二时间段的电路简化图,其中,LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率;
[0024] 图6为根据本发明另一个实施例的LLC谐振变换器的分析方法的流程图;
[0025] 图7为根据本发明一个具体实施例的LLC谐振变换器的分析方法的计算结果图,其中,LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率;
[0026] 图8为根据本发明一个具体实施例的LLC谐振变换器的分析方法的实际测试波形图,其中,LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率;
[0027] 图9为根据本发明实施例的LLC谐振变换器的分析装置的方框示意图。

具体实施方式

[0028] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
[0029] 下面参考附图来描述本发明实施例的LLC谐振变换器的分析方法和LLC谐振变换器的分析装置。
[0030] 图1为根据本发明实施例的LLC谐振变换器的分析方法。其中,如图2所示,LLC谐振变换器包括谐振电容Cr、谐振电感Lr和激磁电感Lm,其中,激磁电感Lm为变压器T的一部分。
[0031] 根据本发明的一个实施例,如图2所示,LLC谐振变换器为半桥LLC谐振变换器,LLC谐振变换器包括上桥开关管Q1和下桥开关管Q2,上桥开关管Q1的第一端与输入电源Uin的正向端相连,上桥开关管Q1的第二端与下桥开关管Q2的第一端相连并具有第一节点J1,下桥开关管Q2的第二端与输入电源Uin的负向端相连,第一节点J1与谐振电容Cr的一端相连,谐振电感Lr的一端与谐振电容Cr的另一端相连,激磁电感Lm的一端与谐振电感Lr的另一端相连,激磁电感Lm的另一端下桥开关管Q2的第二端相连。
[0032] 如图1所示,本发明实施例的LLC谐振变换器的分析方法,包括以下步骤:
[0033] S101:当LLC谐振变换器的工作频率fs小于谐振电感和谐振电容的谐振频率fr时,确定第一时间点0、第二时间点t1和第三时间点 其中,以第一时间点0和第二时间点t1构造第一时间段(0,t1),以第二时间点t1和第三时间点 构造第二时间段
[0034] 根据本发明的一个实施例,将上桥开关管开启且下桥开关管关闭的时间点定位为第一时间点,将谐振电容的电流与激磁电感的电流相等的时间点作为第二时间点,将一个工作周期的中点作为第三时间点,即第三时间点的数值为两倍的工作频率的倒数。
[0035] S102:获取谐振电容在第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t)。
[0036] 根据本发明的一个实施例,如图3-4所示,获取Icr0(t)、ULr0(t)、ULm0(t)以及ILm0(t),包括:
[0037] S111:根据谐振电容的电容值和谐振电容在第一时间段内的电压函数Ucr0(t)获取谐振电容在第一时间段内的电流函数Icr0(t)。
[0038] 具体地,可采用公式: 其中,Ucr0(t)为谐振电容在第一时间段内的电压函数,Cr为谐振电容的电容值,t为时间变量。
[0039] S112:根据LLC谐振变换器的输入电压、谐振电容在第一时间段内的电压函数Ucr0(t)以及与激磁电感并联的负载模块的电压获取谐振电感在第一时间段内的电压函数ULr0(t)。
[0040] 具体地,可采用公式:ULr0(t)=Vin-Ucr0(t)-nVo,其中,Vin为LLC谐振变换器的输入电压,Ucr0(t)为谐振电容在第一时间段内的电压函数,nVo为激磁电感并联的负载模块的电压。
[0041] S113:根据与激磁电感并联的负载模块的电压获取激磁电感在第一时间段内的电压函数ULm0(t)。
[0042] 具体地,可采用公式:ULm0(t)=nVo,其中,nVo为激磁电感并联的负载模块的电压。
[0043] S114:根据与激磁电感并联的负载模块的电压、激磁电感的电感值和电流函数Icr0(t)在第一时间点的电流值获取激磁电感在第一时间段内的电流函数ILm0(t)。
[0044] 具体地,可采用公式: 其中,t为第一时间段的时间变量,nVo为激磁电感并联的负载模块的电压,Lm为激磁电感的电感值,Icr0(t)为谐振电容在第一时间点的电流函数。
[0045] 根据本发明的一个实施例,还根据谐振电感的电感值Lr和谐振电容在第一时间段内的电流函数Icr0(t)获取谐振电感在第一时间段内的电压函数ULr0(t),即还根据激磁电感的电感值Lm和激磁电感在第一时间段内的电流函
数ILm0(t)获取激磁电感在第一时间段内的电 压函数ULm0(t) ,即
[0046] S103:获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t)。
[0047] 根据本发明的一个实施例,如图5-6所示,获取Icr1(t)和Ucr1(t)以及ILm1(t)包括:
[0048] S121:根据电流函数Icr0(t)在第二时间点的电流值获取谐振电容在第二时间段内的电流函数Icr1(t)。
[0049] 具体地,可采用公式:Icr1(t)=Icr0(t1),其中,Icr0(t1)为电流函数Icr0(t)在第二时间点的电流值。
[0050] S122:根据电流函数ILm0(t)在第二时间点的电流值获取激磁电感在第二时间段内的电流函数ILm1(t)。
[0051] 具体地,可采用公式:ILm1(t)=ILm0(t1),其中,ILm0(t1)为电流函数ILm0(t)在第二时间点的电流值。
[0052] S123:根据谐振电容在第一时间段内的电压函数Ucr0(t)在第二时间点的电压值、电流函数Icr0(t)在第二时间点的电流值、第二时间点和谐振电容的电容值获取谐振电容在第二时间段内的电压函数Ucr1(t)。
[0053] 具体地,可采用公式: 其中,Ucr0(t1)为谐振电容在第一时间段内的电压函数Ucr0(t)在第二时间点的电压值,Icr0(t1)为谐振电容在第一时间段内的电流函数Icr0(t)在第二时间点的电流值,t为时间变量,t1为第二时间点,Cr为谐振电容的电容值。
[0054] 根据本发明的一个实施例,电流函数Icr0(t)在第二时间点的电流值与电流函数ILm0(t)在第二时间点的电流值相等,即Icr0(t1)=ILm0(t1)‘.。
[0055] S104:获取谐振电容在第一时间段和第二时间段内的约束条件。
[0056] 根据本发明的一个实施例,约束条件包括:
[0057]
[0058] 其中,Icr0(0)为电流函数Icr0(t)在第一时间点的电流值,Icr0(t1)为电流函数Icr0(t)在第二时间点t1的电流值,Vin为LLC谐振变换器的输入电压,Ucr0(0)为谐振电容在第一时间段内的电压函数Ucr0(t)在第一时间点的电压值, 为电压函数Ucr1(t)在第三时间点的电压值,Cr为谐振电容的电容值,Io为LLC谐振变换器的输出电流值,n为变压器原副边的匝比,fs为LLC谐振变换器的工作频率,Ucr0(t1)为电压函数Ucr0(t)在第二时间点t1的电压值,Ucr0(0)为电压函数Ucr0(t)在第一时间点的电压值。
[0059] S105:根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。
[0060] 基于上述过程,可获取LLC谐振变换器的工作频率与输入电压的关系为:
[0061]
[0062] 其中,fr为谐振电感和谐振电容的谐振频率,Cr为谐振电容的电容值,Vin为LLC谐振变换器的输入电压,nVo为激磁电感并联的负载模块的电压,Lm为激磁电感的电感值。
[0063] 由此,根据本发明实施例的LLC谐振变换器的分析方法能够在LLC谐振变换器的工作频率fs小于谐振电感和谐振电容的谐振频率fr时,能够计算出工作频率fs与输入电压之间的数学关系,以便于对LLC谐振变换器的分析与设计。
[0064] 下面对本发明实施例提出的LLC谐振变换器的分析方法进行验证。
[0065] 根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件还可获得第二时间点t1的函数、谐振电容在第一时间段内的电流函数Icr0(t)在第一时间点的电流值Icr0(0)、谐振电容在第一时间段内的电压函数Ucr0(t)在第一时间点的电压值Ucr0(0)以及谐振电容在第一时间段内的电压函数Ucr0(t)在第二时间点的电压值Ucr0(t1),具体公式如下:
[0066]
[0067] 进一步地,可根据上述公式计算得到谐振电容的电压函数Ucr(t)和电流函数Icr(t):
[0068]
[0069]
[0070] 还可计算获得激磁电感的电流函数ILm(t):
[0071]
[0072] 验证过程中,给出LLC谐振变换器的相关参数:输入电压Vin=530V、谐振电感的电感值Lr=9.6uH、谐振电容的电容值Cr=200nF、激磁电感的电感值Lm=123uH、负载模块的变压器的匝数比n=19、输出电压Vo=14.5V和输出电流Io=100A。
[0073] 根据上述参数计算LLC谐振变换器的工作频率fs、谐振电容的电流Icr(t)、激磁电感的电流ILm(t),并利用MathCAD画出计算结果图,如图7所示,可知根据上述参数计算LLC谐振变换器的工作频率为95.88K,谐振电流峰值为11.1A。
[0074] 对上述参数的LLC谐振变换器进行实际测试,利用示波器画出实际测试结果的波形图,如图8所示,获取LLC谐振变换器的工作频率fs,结果显示出上述参数的LLC谐振变换器的工作频率为91.814K,谐振电流峰值为11.05A。
[0075] 由此,通过在相同参数下对比LLC谐振变换器的理论结果和实际测试结果可知,根据本发明实施例的LLC谐振变换器的分析方法能够精确获得输入电压和工作频率的关系,进而可在LLC谐振变换器的设计过程中进行元器件的精确选型。
[0076] 综上所述,根据本发明实施例提出的LLC谐振变换器的分析方法,当LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,并以第一时间点和第二时间点构造第一时间段,以第二时间点和第三时间点构造第二时间段,然后获取谐振电容在第一时间段的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t),并获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t),获取谐振电容在第一时间段和第二时间段内的约束条件,根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。由此,本发明实施例的分析方法能够在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,通过对LLC谐振变换器各个时段进行分析获得工作频率与输入电压的数学关系,进而在LLC谐振变换器设计过程中进行元器件的精确选型,节约产品的设计生产制造成本。
[0077] 本发明实施例还提出了一种LLC谐振变换器的分析装置。
[0078] 图9为根据本发明实施例的LLC谐振变换器的分析装置的方框示意图。如图9所示,本发明实施例的LLC谐振变换器包括:确定模块10、第一获取模块20、第二获取模块30、第三获取模块40和计算模块50。
[0079] 其中,确定模块10用于在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,其中,以第一时间点和第二时间点构造第一时间段,以第二时间点和第三时间点构造第二时间段;第一获取模块20用于获取谐振电容在第一时间段内的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t);第二获取模块30用于获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t);第三获取模块40用于获取谐振电容在第一时间段和第二时间段内的约束条件;计算模块50用于根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。
[0080] 根据本发明实施例提出的LLC谐振变换器的分析装置,通过确定模块在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,确定第一时间点、第二时间点和第三时间点,并以第一时间点和第二时间点构造第一时间段,以第二时间点和第三时间点构造第二时间段,然后通过第一获取模块获取谐振电容在第一时间段的电流函数Icr0(t)和电压函数Ucr0(t)、谐振电感在第一时间段内的电压函数ULr0(t)以及激磁电感在第一时间段内的电压函数ULm0(t)和电流函数ILm0(t),并通过第二获取模块获取谐振电容在第二时间段内的电流函数Icr1(t)和电压函数Ucr1(t)以及激磁电感在第二时间段内的电流函数ILm1(t),第三获取模块获取谐振电容在第一时间段和第二时间段内的约束条件,计算模块根据Icr0(t)、ULr0(t)、ULm0(t)、ILm0(t)、Icr1(t)、Ucr1(t)、ILm1(t)以及约束条件计算LLC谐振变换器的工作频率与输入电压的关系。由此,本发明实施例的分析方法能够在LLC谐振变换器的工作频率小于谐振电感和谐振电容的谐振频率时,通过对LLC谐振变换器各个时段进行分析精确获得工作频率与输入电压的关系,进而在LLC谐振变换器设计过程中进行元器件的精确选型,节约产品的设计生产制造成本。
[0081] 在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
[0082] 在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
[0083] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0084] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。