一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法转让专利

申请号 : CN201711419314.5

文献号 : CN108588366B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李护林杨欢庆雷玥王琳彭东剑白静宋梦华

申请人 : 西安航天发动机有限公司

摘要 :

本发明公开一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,属于金属增材制造技术领域。所述热处理方法包括:激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10‑3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。本发明热处理后的06Cr19Ni10奥氏体不锈钢残余内应力得到消除;得到具有合适晶粒度的均匀组织;具有良好的耐蚀性,尤其是耐晶间腐蚀能力;室温时,Rm不低于520N/mm2,Rp0.2不低于205N/mm2,A不低于40%,KU2不低于100J。

权利要求 :

1.一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,包括:激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为850℃的条件下保温4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢,所述的激光选区熔化成形

06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,且由以下质量百分比组分组成:C:0.021%,Cr:19.09%,Ni:9.63%,Si:0.75%,Mn:0.98%,S:

0.016%,P:0.017%,其余为Fe。

2.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~

360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~

0.08mm。

3.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其-3特征在于,所述压强不大于10 Pa、温度为850℃的条件,包括:在压强不大于10-3Pa的条件下,以5℃/min的升温速率升温至850℃。

4.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述冷却,包括:回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa。

5.如权利要求1或4所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。

6.如权利要求5所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。

7.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。

说明书 :

一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理

方法

技术领域

[0001] 本发明涉及金属增材制造技术领域,尤其涉及一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢及其热处理方法。

背景技术

[0002] 激光选区熔化(Selective Laser Melting,简称SLM)是目前技术成熟度较高、应用领域最为广泛的金属增材制造技术,具有制造精度高、适合材料范围广、构件性能好、机械加工余量小、制造周期短和自动化程度高等特点,能满足几乎任意复杂形状的精密金属构件制造要求,大幅度降低了研制周期和研制成本。
[0003] 06Cr19Ni10(AISI304L)奥氏体不锈钢具有适宜的强度和良好的耐蚀性,尤其是耐晶间腐蚀能力,被广泛地应用于航空、航天、核工业、化工以及石化等行业中与腐蚀性介质接触的容器、管路等部件。其标准的热处理制度为1050℃~1100℃固溶处理,水冷后获得室温下稳定的奥氏体组织。
[0004] 采用激光选区熔化工艺成形的06Cr19Ni10奥氏体不锈钢,由于成形过程具有粉末熔合-冷却速度快、逆生长方向的温度梯度和多层堆叠熔合的特点,在大冷速条件下,初始熔区得到的组织为细小晶粒奥氏体;合金导热系数高,在逆生长方向上温度梯度小,对于远离熔区的初始熔区组织,反复的熔化-冷却过程相当于进行重复固溶处理,存在晶粒长大倾向;在沿成长方向上,组织呈现出明显的枝晶和定向凝固特征。基于上述因素,成形构件内部组织不均匀且存在很大的残余应力,须通过后续热处理工艺消除内应力和改善组织。

发明内容

[0005] 本发明提供一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,通过在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力,同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织。
[0006] 为实现上述发明目的,本发明提供如下技术方案:
[0007] 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,包括:
[0008] 激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。
[0009] 在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~0.08mm。
[0010] 在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm。
[0011] 在一可选实施例中,所述压强不大于10-3Pa、温度为800℃~950℃的条件,包括:
[0012] 在压强不大于10-3Pa的条件下,以5℃/min~10℃/min的升温速率升温至800℃~950℃。
[0013] 在一可选实施例中,所述冷却,包括:
[0014] 回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa。
[0015] 在一可选实施例中,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。
[0016] 在一可选实施例中,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。
[0017] 在一可选实施例中,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。
[0018] 本发明的有益效果是:
[0019] (1)、本发明实施例提供的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理-3方法,通过在压强不大于10 Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力;
[0020] (2)、同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织;
[0021] (3)、采用较低的热处理温度控制Cr元素的扩散,抑制Cr的碳化物沿晶界析出,使其具有良好的耐蚀性,尤其是耐晶间腐蚀能力;
[0022] (4)、激光选区熔化成形06Cr19Ni10奥氏体不锈钢经过上述热处理后,室温抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。

附图说明

[0023] 图1为本发明实施例1提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图;
[0024] 图2为本发明实施例2提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图;
[0025] 图3为本发明实施例3提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图。

具体实施方式

[0026] 以下结合具体实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
[0027] 本发明实施例提供了一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,包括:
[0028] 激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。
[0029] 具体地,本发明实施例优选在真空热处理炉中进行热处理;所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢由06Cr19Ni10奥氏体不锈钢粉通过激光选区熔化成形方法制得;
[0030] 本发明实施例提供的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,通过在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力;同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织;采用较低的热处理温度控制Cr元素的扩散,抑制Cr的碳化物沿晶界析出,使其具有良好的耐蚀性,尤其是耐晶间腐蚀能力;激光选区熔化成形06Cr19Ni10奥氏体不锈钢经过上述热处理后,室温抗拉强度不低于520N/mm,屈服强度不低于205N/mm,延伸率不低于40%,冲击韧性不低于100J。
[0031] 在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~0.08mm。在所述工艺参数窗口区间内,可以获得具有高致密度的成型构件和外延生长的具有细小亚结构的柱状晶,当在800℃~950℃的条件下进行热处理时,获得均匀细小的再结晶奥氏体组织,进一步确保构件具有较好的强塑性配合。
[0032] 在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm。所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm时,在一定的激光能量输入下,可以更好地使粉末熔化,避免因粉末未充分熔合而带来的产品内部缺陷。
[0033] 在一可选实施例中,所述压强不大于10-3Pa、温度为800℃~950℃的条件,包括:在压强不大于10-3Pa的条件下,以5℃/min~10℃/min的升温速率升温至800℃~950℃。该升温速率可以进一步确保产品均匀受热以便更好地释放内应力,从而减少热处理过程中可能产生的变形。
[0034] 在一可选实施例中,所述冷却,包括:回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa;具体地,所述惰性气体优选氩气;回充气体可以使材料获得足够的冷速,避免缓慢冷却可能带来的危害,譬如475℃脆性。
[0035] 在一可选实施例中,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。
[0036] 具体地,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。
[0037] 具体地,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,室温抗拉强度(Rm)不低于520N/mm2,屈服强度(Rp0.2)不低于205N/mm2,延伸率(A)不低于40%,冲击韧性(KU2)不低于100J。
[0038] 以下为本发明的具体实施例:
[0039] 实施例1
[0040] 以激光选区熔化成形某型号发动机涡轮泵排气管为例。
[0041] (1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.028%,Cr:18.51%,Ni:9.72%,Si:0.59%,Mn:1.22%,S:0.014%,P:0.019%,其余为Fe;
[0042] (2)成形激光功率为:320W,扫描速度为1100mm/s,扫描间距为0.10mm,分层厚度为:0.04mm。
[0043] (3)热处理:分离基板后的排气管在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以10℃/min的速率将真空热处理炉内温度升温至950℃保温2h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图1所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
[0044] (4)采用随炉试样测试的力学性能见表1;
[0045] 表1排气管力学性能参数表:
[0046]
[0047]
[0048] 实施例2
[0049] 以激光选区熔化成形某型号发动机涡轮泵壳体为例。
[0050] (1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.021%,Cr:19.09%,Ni:9.63%,Si:0.75%,Mn:0.98%,S:0.016%,P:0.017%,其余为Fe。
[0051] (2)成形激光功率为:320W,扫描速度为1000mm/s,扫描间距为0.12mm,分层厚度为:0.04mm。
[0052] (3)热处理:未分离基板的壳体在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以5℃/min的速率将真空热处理炉内温度升温至850℃保温
4h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~
60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图2所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
[0053] (4)采用随炉试样测试的力学性能见表2:
[0054] 表2壳体力学性能参数表
[0055]
[0056] 实施例3
[0057] 以激光选区熔化成形某型号发动机整流栅为例。
[0058] (1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.021%,Cr:19.09%,Ni:9.63%,Si:0.75%,Mn:0.98%,S:0.016%,P:0.017%,其余为Fe。
[0059] (2)成形激光功率为:300W,扫描速度为1000mm/s,扫描间距为0.10mm,分层厚度为:0.04mm。
[0060] (3)热处理:未分离基板的壳体在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以5℃/min的速率将真空热处理炉内温度升温至950℃保温
2h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~
60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图3所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
[0061] (4)采用随炉试样测试的力学性能见表3;
[0062] 表3整流栅力学性能参数表
[0063]
[0064] 本发明未详细说明部分属于本领域技术人员公知常识。所述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的人员可以对所述的具体实施例做不同的修改或补充或采用类似的方式代替,但不偏离本发明的精神或者超越所附权利要求书所定义的范围。