一种制备具有高热电性能的SnSe多晶块体的方法转让专利

申请号 : CN201810246139.2

文献号 : CN108588838B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘呈燕苗蕾王潇漾

申请人 : 桂林电子科技大学

摘要 :

本发明公开了一种制备具有高热电性能的SnSe多晶块体的方法,利用冷凝回流法合成的SnSe2纳米粉体为前驱物,在高温下随着Se的升华转变为多晶SnSe,且在此过程中调控其织构化及Sn缺陷浓度,优化其热电性能,再经过热压烧结工艺来制得具有高热电性能的SnSe多晶块体材料,合成工艺简单,原材料资源丰富,产品中高温性能稳定。具有高功率因子及低导热系数从而其最大ZT可达1.0‑1.1之间,是具有高热电性能的温差发电材料的理想候选者,可以和太阳能集热器、锅炉等中高温热源结合起来发电。

权利要求 :

1.一种制备具有高热电性能的SnSe多晶块体的方法,其特征在于,该方法包括以下步骤:

(1)将Sn的前驱物含锡离子盐固体与Se的前驱物SeO2或Se粉体组成的固体原料加入乙二醇溶剂中,Sn的前驱物与Se的前驱物摩尔比为1:2,每250ml乙二醇溶剂配比2.238-

13.428g固体原料,搅拌后加入还原剂N2H4·H2O,每2.238g固体原料配比1-3ml还原剂N2H4·H2O,然后加热至110-182℃,冷凝回流反应12~48小时;反应结束后得到的黑色沉淀物,用蒸馏水清洗,然后用无水乙醇浸泡2~4小时,在真空干燥箱中40-80℃下干燥得到SnSe2纳米粉体;

(2)步骤(1)得到的SnSe2纳米粉体冷压成块体后在气氛管式炉中于600-800℃下热处理

12-24小时,其中冷压的压强不低于318千克力/平方厘米,气氛管式炉所用气氛为氩气与氢气的混合气,氢气所占体积比为1%-8%,热处理所得块体经研磨成粉末后再经过热压炉或等离子体放电烧结炉中350-600℃范围内任意温度热压成型得到高热电性能的SnSe多晶块体材料。

2.根据权利要求1所述的制备具有高热电性能的SnSe多晶块体的方法,其特征在于,含锡离子盐固体选自SnCl2·2H2O、SnCl2、SnCl4·5H2O中的任意一种。

3.根据权利要求1或2所述的制备具有高热电性能的SnSe多晶块体的方法,其特征在于,步骤(2)通过样品的气流速率可处于0.01L/min至1L/min之间。

说明书 :

一种制备具有高热电性能的SnSe多晶块体的方法

技术领域:

[0001] 本发明涉及中高温半导体温差发电技术领域,具体涉及一种制备具有高热电性能的SnSe多晶块体的方法。背景技术:
[0002] 一直以来,如何高效率而且安全环保地利用我们身边的热能始终吸引着科技工作者的注意力。作为一种安全环保的热能利用方式,半导体温差发电技术利用半导体内部载流子的运动即可把热能直接转换为电能,与目前热电厂或核电厂中进行的热与电之间的转换相比,具有设备结构紧凑、性能可靠、运行时无噪声、无磨损、无泄漏、移动灵活等等优点,而且半导体热电器件可以方便地和太阳能集热器、地热及锅炉等热源组合成发电系统,具有很好的应用前景。
[0003] 因热电块体材料及其对应的器件易于制备的缘故,对热电材料的研究正是始于块体材料。研究人员最先关注的是金属和合金的热电性能,其最直接的成果是目前常用的测温热电偶的产生,但因其制冷和温差发电的性能较低,热电材料在制冷与温差发电领域进步缓慢。直到上世纪中期,高热电性能半导体的出现,掀起了热电块体材料研究的一股热潮,目前投入应用的热电块体材料,如Bi2Te3、PbTe、SiGe合金等就是这一时期的研究成果。根据热电转换原理,热电材料的能量转换效率一般由无量纲优值(ZT)来衡量,ZT由公式ZT=S2σT/κ算出,其中S、σ、T、κ分别为Seebeck系数、电导率、绝对温度、热导率。对于传统块体材料,S、σ、κ三个参数之间紧密关联,当σ随着载流子浓度(n)增加而增加时,S明显下降(主要因费米能级EF的移动);由于κ一般由电子热导率(κe)和声子热导率(κl)两部分组成,κe通过Wiedemann-Franz定律与σ相联系,即κe=LσT,其中L为Lorenz数,所以当σ增加时κ也会增加。正是由于三个参数之间的紧密关联导致传统块体材料的最大ZT在很长一段时间里维持在1附近,而且Te在地壳中的含量只有黄金的1/4,上述因素极大地限制了热电器件的应用规模。近年来,SnSe基热电材料吸引了研究人员的极大关注,比如单晶SnSe块体材料的最高ZT可破记录地达到2.6左右(923K),且进行空穴掺杂优化后的Na掺杂单晶SnSe块体材料的平均ZTavg可达1.34,其最大的贡献就是来源于非简谐性的化学结合键导致的其极低的热导率(0.23W/mK),上述研究结果不仅为热电块体材料的大范围应用增强了信心,也为寻找具有低晶格热导率的热电材料指明了一个重要方向。但是单晶SnSe的机械性能较差,极易脆裂,而且合成困难,因此如何制备具有高热电性能的多晶SnSe块体材料成为了研究热点。
发明内容:
[0004] 本发明的目的是提供一种制备具有高热电性能的SnSe多晶块体的方法,利用冷凝回流法合成的SnSe2纳米粉体为前驱物,在高温下随着Se的升华转变为多晶SnSe,且在此过程中调控其织构化及Sn缺陷浓度,优化其热电性能,再经过热压烧结工艺来制得具有高热电性能的SnSe多晶块体材料。
[0005] 本发明是通过以下技术方案予以实现的:
[0006] 一种制备具有高热电性能的SnSe多晶块体的方法,该方法包括以下步骤:
[0007] (1)将Sn的前驱物含锡离子盐固体与Se的前驱物SeO2或Se粉体组成的固体原料加入乙二醇溶剂中,Sn的前驱物与Se的前驱物摩尔比为nSn:nSe=1:2,每250ml乙二醇溶剂配比2.238-13.428g固体原料,搅拌后加入还原剂N2H4·H2O,每2.238g固体原料配比1-3ml还原剂N2H4·H2O,然后加热至110-182℃,冷凝回流反应12~48小时;反应结束后得到的黑色沉淀物,用蒸馏水清洗,然后用无水乙醇浸泡2~4小时,在真空干燥箱中40-80℃下干燥得到SnSe2纳米粉体;
[0008] (2)步骤(1)得到的SnSe2纳米粉体冷压成块体后在气氛管式炉中于600-800℃下热处理12-24小时,其中冷压的压强不低于318千克力/平方厘米,气氛管式炉所用气氛为氩气与氢气的混合气,氢气所占体积比为1%-8%,热处理所得块体经研磨成粉末后再经过热压炉或等离子体放电烧结炉中350-600℃范围内任意温度热压成型得到高热电性能的SnSe多晶块体材料。
[0009] Sn的前驱物含锡离子盐固体选自SnCl2·2H2O、SnCl2、SnCl4·5H2O中的任意一种,Se的前驱物为SeO2或Se粉体中的任意一种。
[0010] 优选地,步骤(2)通过样品的气流速率可处于0.01L/min至1L/min之间。
[0011] SnSe具有层状各向异性结构,常温下属于正交晶系,其热电性能在b轴方向最高,在a轴方向最低。SnSe2具有层状各向异性结构,但属于六方晶系。发明人发现,在高温惰性气氛中,SnSe2随着Se的升华可以转变为SnSe。
[0012] 基于上述发现,本发明通过采用冷凝回流法合成SnSe2纳米粉体为前驱物,利用SnSe2纳米粉体本身的各向异性结构在高温下随着Se的升华转变为多晶SnSe的过程中调控SnSe多晶块体材料的织构化,同时利用Se在高温下的升华调控Sn缺陷浓度,从而优化其热电性能。冷压成块后在惰性气氛中于600℃以上热处理,再经热压成型后成功制备了SnSe的多晶块体材料。
[0013] SnSe具有层状各向异性结构,常温下属于正交晶系,其热电性能在b轴方向最高,在a轴方向最低,因此对于多晶SnSe块体材料,调控其织构化程度是优化其热电性能的重要途径。另外,其自身缺陷(Sn缺陷)的调控也是优化载流子浓度的关键方法。
[0014] 本发明的跟现有技术相比,具有以下优势:
[0015] 1)本发明创新性地采用冷凝回流法制备SnSe2纳米粉体,此法易于大批量合成SnSe2纳米粉体,同时相对于已报道过的SnSe热电材料,本发明中创新性地采用上述合成的SnSe2纳米粉体为前驱物,因SnSe2本身结构的各向异性,在热处理过程中将使SnSe多晶体更高地保持各向异性,且Se的升华过程可用于Sn缺陷浓度的调控,因此优化SnSe多晶块体材料的热电性能。
[0016] 2)本发明合成工艺简单,原材料资源丰富,产品中高温性能稳定。
[0017] 3)本发明合成的SnSe多晶块体材料具有高功率因子(8.09×10-4W/mK2)及低导热系数(0.66W/mK),从而其最大ZT可达1.0-1.1之间,是具有高热电性能的温差发电材料的理想候选者,可以和太阳能集热器、锅炉等中高温热源结合起来发电。附图说明:
[0018] 图1是本发明实施例冷凝回流法合成的SnSe2纳米粉体的显微镜照片,其中(a)透射电子显微镜,(b)扫描电子显微镜相片;
[0019] 图2中(a)是本发明实施例制备的SnSe多晶块体材料的电阻率和塞贝克系数随温度的变化曲线图,(b)是本发明实施例制备的SnSe多晶块体材料的热导率和ZT随温度的变化曲线图。具体实施方式:
[0020] 以下是对本发明的进一步说明,而不是对本发明的限制。
[0021] 实施例1:
[0022] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(2.256g)和SeO2(2.220g)加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为4.476g),搅拌10分钟以后缓慢加入6ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应24小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于60℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于800℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为0.1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于500℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。图1为合成的SnSe2黑色粉体的(a)透射电子显微镜和(b)扫描电子显微镜相片。图2是制备的SnSe多晶块体材料在垂直于SPS压力方向的电阻率、塞贝克系数、热导率和ZT随温度的变化曲线。
[0023] 实施例2
[0024] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(1.128g)和SeO2(1.11g)粉体加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为2.238g),搅拌10分钟以后缓慢加入3mlN2H4·H2O,再升温至182℃下反应24小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于60℃下干燥15小时得到SnSe2黑色粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(3吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于800℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(99%,体积分数)和H2(1%,体积分数)的混合气,气流速率为0.1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于500℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0025] 实施例3
[0026] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(6.678g)和SeO2(6.660g)加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为13.428g),搅拌10分钟以后缓慢加入18ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应24小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于60℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于850℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为0.1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于600℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0027] 实施例4
[0028] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(1.128g)和SeO2(1.11g)粉体加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为2.238g),搅拌10分钟以后缓慢加入1mlN2H4·H2O,再升温至182℃下反应24小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于80℃下干燥15小时得到SnSe2黑色粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(3吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于600℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(99%,体积分数)和H2(1%,体积分数)的混合气,气流速率为0.01L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于500℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0029] 实施例5
[0030] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(1.128g)和SeO2(1.11g)粉体加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为2.238g),搅拌10分钟以后缓慢加入3mlN2H4·H2O,再升温至110℃下反应48小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡4小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于40℃下干燥24小时得到SnSe2黑色粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(3吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于700℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于350℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0031] 实施例6
[0032] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(6.678g)和SeO2(6.660g)加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为13.428g),搅拌10分钟以后缓慢加入18ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应12小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于80℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于850℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为0.01L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于600℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0033] 实施例7
[0034] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2(5.611g)和SeO2(6.660g)加入乙二醇中(SnCl2和SeO2粉体的总量为12.271g),搅拌10分钟以后缓慢加入16.45ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应12小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡4小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于80℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于800℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(95%,体积分数)和H2(5%,体积分数)的混合气,气流速率为0.01L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于600℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0035] 实施例8
[0036] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl4·5H2O(1.753g)和SeO2(1.110g)粉体加入乙二醇中(SnCl4·5H2O和SeO2粉体的总量为2.863g),搅拌10分钟以后缓慢加入3mlN2H4·H2O,再升温至182℃下反应48小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡4小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于40℃下干燥24小时得到SnSe2黑色粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(3吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于700℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于500℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0037] 实施例9
[0038] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl4·5H2O(1.753g)和Se(0.790g)粉体加入乙二醇中(SnCl4·5H2O和Se粉体的总量为2.543g),搅拌10分钟以后缓慢加入3mlN2H4·H2O,再升温至182℃下反应48小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡4小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于40℃下干燥24小时得到SnSe2黑色粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(3吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于700℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(99%,体积分数)和H2(1%,体积分数)的混合气,气流速率为1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于500℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0039] 实施例10
[0040] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2·2H2O(6.678g)和Se(4.739g)加入乙二醇中(SnCl2·2H2O和SeO2粉体的总量为11.417g),搅拌10分钟以后缓慢加入15ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应12小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于80℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于800℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为0.01L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于600℃下烧结为直径为2cm的圆柱体,烧结保温时间为6min。自然冷却后得到SnSe多晶块体材料。
[0041] 实施例11
[0042] 将250ml乙二醇加入500ml三口烧瓶中,再将SnCl2(5.611g)和Se(4.739g)加入乙二醇中(SnCl2和Se的总量为10.3g),搅拌10分钟以后缓慢加入13ml N2H4·H2O,再升温至182℃下(溶液已经沸腾)反应12小时。停止反应后自然冷却,倒掉上层清液,用蒸馏水清洗3次,每次蒸馏水为500ml,然后用无水乙醇(200ml)浸泡2小时,用循环水抽滤机抽滤后得到的黑色沉淀在真空干燥箱中于80℃下干燥15小时得到SnSe2黑色纳米粉体。上述黑色粉体经过压片机在不锈钢模具中冷压(1吨压力)成直径为2cm的圆柱后再置于气氛管式炉中于
800℃下热处理15小时,升温速率为5℃/min,所用气氛为Ar(92%,体积分数)和H2(8%,体积分数)的混合气,气流速率为1L/min。热处理后的样品经过研钵研磨成粉体后加入石墨模具中在放电等离子烧结炉(SPS)中于600℃下烧结为直径为2cm的圆柱体,烧结保温时间为
6min。自然冷却后得到SnSe多晶块体材料。
[0043] 实施例2-11制备的SnSe多晶块体材料经实验验证也具有高热电性能,其最大品质因子ZT可达1.0-1.1之间,是温差发电材料的理想候选者。