复合保护层和叶片转让专利

申请号 : CN201810410745.3

文献号 : CN108661852B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 贾智源李小明

申请人 : 江苏金风科技有限公司

摘要 :

本发明提供一种复合保护层和叶片。复合保护层包括涂层和预制弹性体层,涂层涂覆于预制弹性体层的上表面。根据本发明,能够提供一种具有可靠防护能力的复合保护层以及一种具有可靠防护能力并易于前缘维修保养的叶片。

权利要求 :

1.一种复合保护层(1),其特征在于,所述复合保护层(1)包括涂层(11)和预制弹性体层(12),所述涂层(11)涂覆于所述预制弹性体层(12)的上表面,在所述预制弹性体层(12)上设有孔(121),所述涂层(11)的材料填充于所述孔(121)内,所述孔(121)的孔径为0.5~

1mm。

2.根据权利要求1所述的复合保护层(1),其特征在于,所述预制弹性体层(12)与所述涂层(11)之间的拉拔强度为5MPa以上。

3.根据权利要求1所述的复合保护层(1),其特征在于,所述预制弹性体层(12)的材料为橡胶。

4.根据权利要求1所述的复合保护层(1),其特征在于,所述预制弹性体层(12)为厚度均匀的薄膜或厚度不均匀的薄膜。

5.根据权利要求4所述的复合保护层(1),其特征在于,所述预制弹性体层(12)为中间厚且边缘薄的薄膜,或者所述预制弹性体层(12)为边缘厚且中间薄的薄膜。

6.根据权利要求1所述的复合保护层(1),其特征在于,多个所述孔(121)的孔间距为10~20mm。

7.根据权利要求1所述的复合保护层(1),其特征在于,所述复合保护层(1)包括多个预制弹性体层(12),相邻的所述预制弹性体层(12)彼此对接。

8.根据权利要求3所述的复合保护层(1),其特征在于,所述预制弹性体层(12)的材料为聚氨酯、聚脲或乙丙橡胶。

9.根据权利要求1~8中任一项所述的复合保护层(1),其特征在于,所述预制弹性体层(12)的厚度为6000微米以下,所述涂层(11)的厚度小于500微米。

10.一种叶片,其特征在于,在所述叶片的前缘表面设置有权利要求1~9中任一项所述的复合保护层(1),所述预制弹性体层(12)的下表面固定于所述叶片的前缘表面。

11.根据权利要求10所述的叶片,其特征在于,所述涂层(11)完全覆盖所述预制弹性体层(12),所述涂层(11)的材料平滑地填充并覆盖所述预制弹性体层(12)的边缘与所述叶片的前缘表面形成的台阶(122)。

12.根据权利要求10或11所述的叶片,其特征在于,所述叶片为风力发电机组的叶片。

说明书 :

复合保护层和叶片

技术领域

[0001] 本发明涉及叶片技术,具体来说,涉及一种叶片前缘保护结构。

背景技术

[0002] 风电叶片作为捕获风能的核心构件,其体型巨大,造价高昂。如果风电叶片的前缘被侵蚀,则不仅影响到机组的发电量,同时对机组安全运行带来隐患。已有研究表明,中等程度的前缘侵蚀,就会造成年发电量超过10%的损失。若这些前缘侵蚀不能及时维修,叶片前缘的损坏程度会在2-3年内进一步加重,最终导致叶片结构性损伤,带来更大的风险和损失。随着大型风机叶片不断的大型化,导致叶尖速不断提升,增加了叶片前缘承受的雨蚀强度,对前缘保护层的能力要求不断的提高。
[0003] 贴膜保护是一项有效的风电叶片前缘的防护技术。所使用的防护膜以3M公司的W8607应用量最大,它是一种透明聚氨酯橡胶薄膜,单侧涂覆了高耐候丙烯酸压敏胶,质地柔软,柔韧性和延展性优异,能够紧密地贴在经过处理的叶片表面涂层上。其良好的回弹特性能够将运动颗粒对叶片防护膜的冲击力分散到附近区域,从而具备优异的抗侵蚀能力。贴膜是在叶片完成涂装工序,油漆充分固化之后进行粘贴施工。具体来说,首先使用细砂纸对叶片前缘的贴膜区域的表面进行打磨,随后进行清洁,再使用湿法粘贴防护膜,用软刮刀赶出气泡,最后使用聚氨酯密封剂对防护膜和叶片涂层搭接部位进行封边处理。整个施工过程必须小心谨慎,确保能够正确地建立最终的防护能力。这种防护膜的厚度通常为300μm,不使用更厚的薄膜的一个原因是厚膜导致的台阶效应会严重的影响叶片的气动效率。而且,在使用贴膜保护的情况下,在维修时非常困难,需要完全清除掉贴膜,重新构筑涂层表面,再次贴膜。
[0004] 除此之外,涂层技术是另一项有效的风电叶片前缘的防护技术。与防护膜技术相比,涂层技术的优势在于良好的耐候性,大幅度提高了保护层的使用寿命。但是,涂层技术的问题主要在于,通常不易构筑厚保护层,容易开裂和固化不良,此外可能需要多次施工严重影响效率。
[0005] 综上所述,保护膜技术的优点是薄膜预制,厚度及厚度的均匀性都有保障,但是耐候性较差,且施工时易夹杂气泡;涂层技术的优点是耐候性好,但不容易控制厚度均匀,因此,这两者各有优缺点。

发明内容

[0006] 为了解决上述问题中的一个或多个,本发明提供一种复合保护层,复合保护层包括涂层和预制弹性体层,涂层涂覆于预制弹性体层的上表面。
[0007] 其中,预制弹性体层与涂层之间的拉拔强度可以为5MPa以上。
[0008] 其中,预制弹性体层的材料可以为橡胶。
[0009] 其中,预制弹性体层可以为厚度均匀的薄膜或厚度不均匀的薄膜。
[0010] 其中,预制弹性体层可以为中间厚且边缘薄的薄膜,或者预制弹性体层可以为边缘厚且中间薄的薄膜。
[0011] 其中,在预制弹性体层上可以设有孔,涂层的材料可以填充于孔内。
[0012] 其中,孔的孔径可以为0.5~1mm,多个孔的孔间距可以为10~20mm。
[0013] 其中,复合保护层可以包括多个预制弹性体层,相邻的预制弹性体层可以彼此对接。
[0014] 其中,预制弹性体层的材料可以为聚氨酯、聚脲或乙丙橡胶。
[0015] 其中,预制弹性体层的厚度可以为6000微米以下,涂层的厚度可以小于500微米。
[0016] 本发明还提供一种叶片,在叶片的前缘表面设置有上述的复合保护层,预制弹性体层的下表面固定于叶片的前缘表面。
[0017] 其中,涂层可以完全覆盖预制弹性体层,涂层的材料可以平滑地填充并覆盖预制弹性体层的边缘与叶片的前缘表面形成的台阶。
[0018] 其中,叶片可以为风力发电机组的叶片。
[0019] 通过本发明,通过将防护膜技术与涂层技术协同应用,兼具两者的优点而规避两者的缺点,共同构筑厚的复合保护层,实现具有可靠防护能力并易于前缘维修保养的叶片。

附图说明

[0020] 图1为本发明的实施例1的复合保护层1的示意图;
[0021] 图2为本发明的实施例2的复合保护层1的示意图;
[0022] 图3为本发明的实施例3的复合保护层1的示意图;
[0023] 图4为在前缘粘贴有本发明的复合保护层1的叶片20的示意图。
[0024] 符号说明
[0025] 1   复合保护层
[0026] 11  涂层
[0027] 12  预制弹性体层
[0028] 121 孔
[0029] 122 台阶
[0030] 2   玻璃钢
[0031] 20  叶片

具体实施方式

[0032] 本发明的叶片不限于风力发电机组的叶片,还可适用于其他场合使用的叶片,例如直升机螺旋桨叶片。
[0033] 以下,以风力发电机组的叶片为例,结合附图对本发明的复合保护层的具体实施例进行说明。
[0034] 实施例1
[0035] 图1为本发明的实施例1的复合保护层1的示意图。由图1可知,复合保护层1包括涂层11和预制弹性体层12,涂层11涂覆于预制弹性体层12的上表面。另外,图4为在前缘粘贴有本发明的复合保护层1的叶片20的示意图。结合图1和图4可知,叶片20的前缘表面设置有复合保护层1,预制弹性体层12的下表面固定于叶片20的前缘表面。在图1中,2表示玻璃钢,为构成叶片20的前缘表面的材质。下面结合工艺流程,更具体地说明本实施例的复合保护层1的各项优选参数。
[0036] 首先,在经过修形处理后的叶片20的前缘表面的玻璃钢2上,使用胶黏剂直接粘接预制弹性体层12。在此过程中,弹性体层12可以是整体成型,也可以是两个以上的预制弹性体层12之间连接而成。具体的,采用对接的方式来处理两个以上预制弹性体层12间的连接。其中,所谓对接指的是两块预制弹性体层12的边缘完全贴合,又互相不覆盖对方。然后,在粘接好的预制弹性体层12的表面,涂刷涂料,热固化后,形成覆盖预制弹性体层12的上表面的涂层11,由于预制弹性体层12的上表面完全被涂层11包覆住,因此避免了太阳的直射,从而增强了耐候能力。另外,优选通过采用化学处理或等离子火焰等物理方式对预制弹性体层12的表面进行处理活化,以便使预制弹性体层12连接。由于涂层11与预制弹性体层12之间达到化学键级的强相互作用,确保了足够的界面强度。在本实施例中,涂层11与预制弹性体层12之间的拉拔强度为5MPa以上。
[0037] 如此,预制弹性体层12与涂层11共同构筑起复合保护层1,而且,可以通过选用不同厚度的预制弹性体层12来调节最终复合保护层1的厚度,使得复合保护层1的厚度超过1mm。
[0038] 由于在实际的生产应用中,前缘保护层的抗雨蚀能力受保护层厚度的影响很大,通过对雨滴冲击玻璃钢涂层的理论分析可以发现,厚度是影响防护层能力的关键因素,因此,较厚的保护层可以提供更好的防护能力。已有的雨滴冲击玻璃钢涂层理论已经表明,10%的厚度提升,可能带来超过30%的防护能力提升。此外,厚保护层也有助于抵抗大直径的雨滴。
[0039] 而根据本发明的技术方案,复合保护层1的厚度可以达到1000微米以上。
[0040] 而且,根据本发明的技术方案,由于复合保护层1包括预制弹性体层12和覆盖弹性体层12上表面的涂层11,因此,如果在叶片的使用过程中涂层11受到破坏而危及下方的预制弹性体层12时,可以启动维修,仅进行涂层11的重建,从而永久保留预制弹性体层12,与现有技术中需要完全清除贴膜并重新处理叶片表面相比,整个维修过程更加简易。
[0041] 另外,在本实施例中,预制弹性体层12通过胶黏剂直接贴合于前缘表面的玻璃钢2上,但本发明不限于此。预制弹性体层12还可以通过机械连接等方式固定于玻璃钢2上。
[0042] 另外,本实施例中,预制弹性体层12的材质为橡胶,具体来说,为均质的聚氨酯弹性体,但是,本发明的预制弹性体层12的材料不限于此,也可以是聚脲、乙丙橡胶等其他任何橡胶类材料。
[0043] 另外,在本实施例中,预制弹性体层12为厚度均匀的薄膜。但是,本发明不受此限定,预制弹性体层12也可以为厚度不均匀的薄膜(即,厚度可变的薄膜)。在实际的生产应用中,可以根据需要(例如,叶片20的前缘表面状况)来合理设定预制弹性体层12的不同部位的厚度,例如,预制弹性体层12可以为中间厚且边缘薄的薄膜,或者预制弹性体层12也可以为边缘厚且中间薄的薄膜。
[0044] 另外,预制弹性体层12的厚度不受限定,可以考虑加工需要、使用环境、减小台阶效应的影响或者提高气动性能等因素,来合理设定预制弹性体层12的厚度。例如,可以综合考虑使用地的降雨强度、气温、年均降雨量等来设定预制弹性体层12的厚度。具体来说,在我国西北部等降雨量小雨滴小的地区,可以将预制弹性体层12的厚度设定得相对较薄,而在泰国等降雨量大雨滴大的地区,可以将预制弹性体层12的厚度设定得相对较厚。由于预制弹性体层12的厚度还优选为与当地雨滴的直径相当,通常雨滴的直径为0~6000微米之间,因此,综合考虑各方面影响,预制弹性体层12的厚度可以为6000微米以下,优选预制弹性体层12的厚度为4000微米以下,更加优选预制弹性体层12的厚度为3000微米以下。
[0045] 在本实施例中,涂层11的材料为高弹性脂肪族聚氨酯面漆,但是,本发明的涂层11只要具有防护功能即可,其材料并不限定。例如,可以是其他聚氨酯、聚脲、环氧树脂、氟树脂等各种高分子材料,具体来说,可以是聚偏二氟乙烯-丙烯酸酯、三氟乙烯与烷基乙烯基醚交替共聚物、聚天门冬氨酸涂料等。而且,涂层11的材料也可以是金属涂料等其他无机类涂料。
[0046] 另外,涂层11的厚度不受限定,可以根据需要合理设定。通常可以将涂层11的厚度设定为100微米左右,如果涂层11的厚度过厚,则容易受到环境的影响。例如,过厚的涂层11在温度高、湿度大的环境下,因涂层11材料本身原因,容易发生开裂。因此,本发明的涂层11的厚度可以小于500微米,优选涂层11的厚度小于400微米,更加优选涂层11的厚度小于300微米。需要说明的是,预制弹性体层12与涂层11的弹性模量越接近,越有利于在预制弹性体层12与涂层11之间形成有效的化学连接,增强预制弹性体层12与涂层12之间的拉拔强度。
[0047] 实施例2
[0048] 图2为本发明的实施例2的复合保护层1的示意图。本实施例的复合保护层1与实施例1的复合保护层1的不同之处在于,预制弹性体层12上设置有均匀分布的多个孔121,涂层11的材料填充于孔121内。
[0049] 具体来说,将事先设置有多个孔121的预制弹性体层12粘贴于玻璃钢2上。在贴膜过程中产生的气泡可以通过孔121排出。然后,涂刷高分子材料,在涂刷的过程中,高分子材料会填充孔121,并在预制弹性体层12的表面形成覆盖预制弹性体层12的涂层11。
[0050] 在本实施例中,多个孔121为均匀分布于预制弹性体层12上,但是本发明不限于此,多个孔121也可以不均匀地分布于预制弹性体层12上。
[0051] 通过这样的构成,能够在粘贴预制弹性体层12时便于排气,防止产生气泡。而且,通过将涂层11的材料填充于孔121内,能够提高预制弹性体层12与涂层11之间的连接强度。
[0052] 另外,虽然通过在预制弹性体层12上设置孔121可以便于粘贴施工并且可以增加预制弹性体层12与涂层11之间的连接强度,但是,在预制弹性体层12进行开孔后,在开孔处有可能会变得较硬,使用过程中开孔位置可能会防护提前失效,导致防护性能不均匀。而且,在开孔的情况下,孔径过大可能会导致孔121难以被涂层11的材料填满,孔径过小又难以有效提高预制弹性体层12与涂层11之间的连接强度,因此,综合考虑上述因素,本发明的孔121的孔径可以为0.5~1mm,优选为0.7~0.9mm,进一步优选为0.8mm。另外,孔121的孔间距可以为10~20mm,优选为12~18mm,进一步优选为13~17mm。
[0053] 需要说明的是,在预制弹性体层12不开孔的情况下如果满足施工基本要求和层间界面连接就可以不开孔。在不开孔的情况下,可以对预制弹性体层12的表面进行表面处理,例如通过增加预制弹性体层12的表面粗糙度、设置纹理等来增大预制弹性体层12与涂层11界面间连接强度。
[0054] 实施例3
[0055] 图3为本发明的实施例3的复合保护层1的示意图。本实施例的复合保护层1与实施例2的复合保护层1的不同之处在于,针对预制弹性体层12的边缘与玻璃钢2的表面形成的台阶122,涂层11的材料平滑地填充并覆盖台阶122。
[0056] 通过这样的构成,预制弹性体层12的边缘处的台阶122被涂层11的材料填充覆盖,因此平滑过度,能够降低因台阶效应导致的对气动效率的影响。
[0057] 需要说明的是,虽然在本实施例中,涂层11的材料平滑地填充并覆盖预制弹性体层12的边缘与玻璃钢2的表面形成的台阶122,但是,本发明不限于此。涂层11的材料可以平滑地填充并覆盖预制弹性体层12边缘处形成的任何不平整部位(如缝隙等),以实现平滑过度,从而降低因台阶效应导致的对气动效率的影响。也就是说,为了避免台阶效应影响叶片20的气动效率,使涂层11完全覆盖预制弹性体层12。
[0058] 当然,本实施例中的复合保护层1并不限于在已经满足气动性能设计的叶片20前缘外表面固定形成,即在已经成型的叶片20表面固定形成。为了进一步的降低由于增加复合保护层1带来的可能的台阶效应,可以在叶片前缘表面加工出凹槽,该凹槽的尺寸与复合保护层1的尺寸基本相同。
[0059] 综上所述,根据本发明,通过将防护膜技术与涂层技术协同应用,综合两者的优点而规避两者的缺点,共同构筑厚保护层,实现防护能力的提升。其基本的思路是将开孔或未开孔后的预制弹性体层内置,然后在预制弹性体层表面涂上高分子涂料,从而形成一体的复合保护层。其中,用预制弹性体层来增加厚度,用涂层来抵抗自然老化的影响。这一技术有助于高效率地构筑厚度超过1mm的复合保护层。而且,在维修时更加简易。具体来说,根据本发明,降低了制作厚的保护层的难度,可以在确保材料性能稳定的前提下,制作出厚保护层;规避了预制薄膜耐候性差的缺点,提高了保护层的可靠性;增强了保护层的防护能力,提高了保护层的使用寿命,同时确保了施工效率;维修时仅重建涂层即可,使得整个维修过程更加简易。
[0060] 虽然结合上述实施例对本发明进行了描述,但本发明不限于所述实施例,在不脱离本发明范围的情况下,可以进行各种变形和修改。