一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用转让专利

申请号 : CN201810305022.7

文献号 : CN108682562B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 朱脉勇陈齐申小娟吴述平张侃李松军

申请人 : 江苏大学

摘要 :

本发明属于超级电容器领域,具体涉及C掺杂的γ–Fe2O3纳米材料及其制备方法和应用。本发明制备C掺杂的γ–Fe2O3纳米材料的方法具体如下:首先将六水合氯化铁和尿素加入到丙三醇水溶液中混匀,水热反应得到甘油酸铁的前驱体;然后将甘油酸铁前驱体洗涤、离心、真空干燥,得到甘油酸铁;最后将甘油酸铁在管式炉的氮气氛围中进行热处理,得到C掺杂的γ–Fe2O3纳米材料。本发明制备的C掺杂的γ–Fe2O3纳米材料粒径小,比表面积大,将其应用于超级电容器中时,具有较大的放电比容量及良好的循环稳定性。本发明的制备方法成本低,简单易行、流程较短、操作易控,有望用于生产中。

权利要求 :

1.一种C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,包括以下步骤:(1)合成甘油酸铁的前驱体:

将丙三醇和水两种溶剂混合均匀,依次加入六水合氯化铁、尿素,搅拌均匀后,将得到的混合液转移至反应釜中,在水热条件下反应,得到甘油酸铁的前驱体;

(2)制备甘油酸铁:

将步骤(1)中的甘油酸铁前驱体用去离子水、乙醇进行洗涤,离心、真空干燥,得到绿色粉末,即为甘油酸铁;

(3)制备C掺杂的γ–Fe2O3纳米复合材料:

将步骤(2)中的甘油酸铁在管式炉的氮气氛围中进行热处理,得到C掺杂的γ–Fe2O3纳米复合材料。

2.根据权利要求1所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,丙三醇和水的体积比为11~12:0~1。

3.根据权利要求1所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,六水合氯化铁和尿素的摩尔比为1~5:1~5。

4.根据权利要求1所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,所述水热反应温度为200℃~250℃,反应时间是10h~20h。

5.根据权利要求1所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(3)中,热处理的温度为400℃~500℃,升温速率为1℃/min~10℃/min。

6.根据权利要求1所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(3)中,热处理时间为2h~6h。

7.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,丙三醇和水的体积比为11:1。

8.根据权利要求3所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,六水合氯化铁和尿素的摩尔比为1:1。

9.根据权利要求1-8任意一项所述的制备方法制备的C掺杂的γ–Fe2O3纳米复合材料,其特征在于,所述C掺杂的γ–Fe2O3纳米复合材料呈颗粒状,应用于超级电容器中。

说明书 :

一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用

技术领域

[0001] 本发明属于超级电容器领域,具体涉及一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用,特别涉及一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和在超级电容器中的应用。

背景技术

[0002] 电化学电容器又称超级电容器,是一种兼具化学电源高能量密度与传统电容器良好循环稳定性的储能装置。其作为一种绿色环保的储能设备,未来可大规模应用于航空航天、电动汽车等方面。超级电容器根据其存储电荷的方式不同,主要分为两类:一类是类似于传统电容器,过程仅发生物理变化的双电层电容器。其工作原理主要是在电极材料两端接通电压后,依靠静电吸引电解液中的正负离子,使正负离子分别向两个电极移动,从而形成双电层;当移去电压后,吸附在电极材料两端的电子又恢复到杂乱无规则状态,能量得以释放,从而完成一次充放电过程,这种双电层之间存在一个位垒使两个电层上的相反电荷不能够相互中和,从而达到存储电荷的目的;另一类则是电极材料通过发生化学变化进行存储能量的赝电容器,其主要是依靠在电极材料表面或近表面发生快速可逆的法拉第氧化还原反应,进而使电荷得以存储并释放,完成一次充放电过程。
[0003] 电容器的类型主要由电极材料来决定,双电层电容器电极材料主要为碳材料,包括:碳纳米管、碳球、石墨烯、碳纤维以及无定型碳等。由于并未涉及化学反应,因此其电容比容量比较小;而赝电容器电极材料主要包括金属氧化物和导电聚合物两类,导电聚合物主要包括:聚吡咯、聚苯胺、聚噻吩等;而金属氧化物主要包括:铁类氧化物(Fe2O3、Fe3O4、FeO等)、锰类氧化物(Mn2O3、Mn3O4、MnO等)、钴、镍类氧化物(Co2O3、Co3O4、CoO、NiO等)以及贵金属氧化物氧化钌(RuO2)等。而氧化钌(RuO2)价格昂贵且具有毒性,不适合大规模使用,因此研究人员都在探讨其它金属氧化物作为超级电容器的电极材料;铁类金属氧化物相对于其它金属氧化物(Mn、Co、Ni、Ti等)而言,价格更加低廉、来源更加丰富,在地壳中为仅次于铝的含量第二高的金属元素,因此铁的氧化物具有成本低,资源丰富,环境友好等特点,被广泛用作赝电容器的替代电极材料。
[0004] 单一的金属氧化物作为电极材料时,虽然具有较高的放电比容量,但其由于在反应过程中发生化学变化,因此其循环稳定性不足;而单一的碳材料作为电极材料时,由于在反应过程中并未发生化学变化,因此具有较低的放电比容量,但具有良好的循环稳定性。综合两种材料的优势,将碳材料与金属氧化物材料进行复合,既可提高材料的放电比容量,亦可提高材料的循环稳定性,因此金属氧化物@碳材料可作为超级电容器的优异材料。

发明内容

[0005] 本发明的目的在于克服现有技术中存在的缺陷,如:合成工艺复杂,原材料昂贵,所制得样品形貌不均一等,本发明提供了一种棒状甘油酸铁转化成的C掺杂γ–Fe2O3纳米复合材料的制备方法。
[0006] 具体的,本发明采用如下的技术方案:
[0007] (1)合成甘油酸铁的前驱体:
[0008] 将丙三醇和水两种溶剂混合均匀,依次加入六水合氯化铁和尿素,搅拌均匀后转移至高温高压反应釜中,在水热条件下反应,得到甘油酸铁的前驱体;
[0009] (2)制备甘油酸铁:
[0010] 将甘油酸铁前驱体用去离子水和乙醇进行洗涤,离心、真空干燥,得到绿色粉末,即为甘油酸铁;
[0011] (3)制备C掺杂γ–Fe2O3纳米复合材料:
[0012] 将步骤(2)中的甘油酸铁分别在管式炉的氮气氛围中进行热处理,得到C掺杂γ–Fe2O3纳米复合材料。
[0013] 步骤1中,丙三醇和水的体积比为11 12: 0 1。~ ~
[0014] 步骤1中,六水合氯化铁和尿素的摩尔比为1 5:1 5。~ ~
[0015] 步骤1中,所述水热反应温度为200℃ 250℃,反应时间是10h 20h。~ ~
[0016] 步骤3中,热处理的温度为400℃ 500℃,热处理时间为2h 6h,升温速率为1℃/min~ ~10℃/min。
~
[0017] 本发明还提供了C掺杂的γ–Fe2O3纳米复合材料,呈颗粒状,大小在10nm左右。
[0018] 本发明还提供了C掺杂的γ–Fe2O3纳米复合材料的用途,所制备的C掺杂的γ–Fe2O3纳米复合材料用于超级电容器中。
[0019] 与现有技术相比较,本发明的有益效果体现如下:
[0020] (1)本发明所用前驱体元素为铁元素,来源丰富,价格低廉。所制备的前驱体为短棒状的甘油酸铁,是一种甘油与铁离子形成的金属有机配位化合物,合成工艺简单,形貌均一。
[0021] (2)本发明所制备的C掺杂的γ–Fe2O3纳米复合材料具有纯度高、粒径小、比表面积大等特点,可与电解液中的电子充分接触,因此具有高的放电比容量,循环稳定性好等优点。
[0022] (3)本发明的制备方法简单易行、流程较短、操作易控,成本低,适于推广使用。本发明为降低成本,以六水合氯化铁提供铁源首先制备出纳米级短棒状的甘油酸铁金属有机配合物,并以此为前驱体,通过在氮气气氛下进一步的热处理得到了C掺杂的γ–Fe2O3纳米复合材料,呈颗粒状,大小在10nm左右。此种颗粒状的材料在电化学测试中均表现出较高的比容量及循环稳定性,在电流密度为1A/g下,比容量可达322 F/g,比容量较大,是一种具有良好应用前景的赝电容电极材料。

附图说明

[0023] 图1(a)为本发明制备的甘油酸铁的X射线衍射(XRD)图谱;图1(b)为本发明制备的C掺杂的γ–Fe2O3纳米复合材料;图1(c)为本发明制备的C掺杂的γ–Fe2O3纳米复合材料的实物图;
[0024] 图2为γ–Fe2O3纳米材料和本发明制备的C掺杂的γ–Fe2O3纳米复合材料的热重曲线图;
[0025] 图3为本发明制备的甘油酸铁的扫描电镜图(a)和透射电镜图(b);
[0026] 图4为本发明制备的C掺杂的γ–Fe2O3纳米复合材料透射电镜图;
[0027] 图5为本发明制备的C掺杂的γ–Fe2O3纳米复合材料CV曲线(a)、GCD曲线(b)和循环曲线图(c)。

具体实施方式

[0028] 下面结合附图对本发明作进一步描述:
[0029] 实施例1:
[0030] 制备C掺杂的γ–Fe2O3纳米复合材料:
[0031] (1)合成甘油酸铁的前驱体:
[0032] 称取55mL的丙三醇和5mL的去离子水,混合均匀;再依次加入6 mmol的六水合氯化铁,6mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在200℃下,反应10 h,得到甘油酸铁的前驱体。
[0033] (2)制备甘油酸铁:
[0034] 将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
[0035] (3)制备C掺杂γ–Fe2O3纳米复合材料:
[0036] 将0.2g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为450℃,热处理时间为3h,升温速率为1℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
[0037] 实施例2:
[0038] 制备C掺杂的γ–Fe2O3纳米复合材料:
[0039] (1)合成甘油酸铁的前驱体:
[0040] 称取60mL的丙三醇和5mL的去离子水,混合均匀;再依次加入1mmol的六水合氯化铁,5mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在250℃下,反应15h,得到甘油酸铁的前驱体。
[0041] (2)制备甘油酸铁:
[0042] 将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
[0043] (3)制备C掺杂的γ–Fe2O3纳米复合材料:
[0044] 将2.5g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为400℃,热处理时间为6h,升温速率为5℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
[0045] 实施例3:
[0046] 制备C掺杂的γ–Fe2O3纳米复合材料:
[0047] (1)合成甘油酸铁的前驱体:
[0048] 称取55mL的丙三醇,依次加入5 mmol的六水合氯化铁,1mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在225℃下,反应20h,得到甘油酸铁的前驱体。
[0049] (2)制备甘油酸铁:
[0050] 将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
[0051] (3)制备C掺杂γ–Fe2O3纳米复合材料:
[0052] 将5.0g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为500℃,热处理时间为2h,升温速率为10℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
[0053] 图1中可以看出,(a)为所合成绿色粉末的XRD图谱,合成前驱体的X射线衍射图显示,只有一个明显的衍射峰位于11°左右,这种衍射峰位置可归因于甘油中的铁甘油相,这是一种典型的以甘油为原料的铁基烷氧化合物,即证明这种合成的绿色粉末为甘油酸铁;(b)为甘油酸铁在氮气氛围下经过热处理之后,合成的黑色磁性粉末的XRD图谱,这些样品粉末具有良好的衍射峰,分别对应于γ-Fe2O3的(220)、(311)、(222)、(400)、(422)、(511)、(440)面,证明了此种材料属于γ–Fe2O3类材料;(c)本发明制备的C掺杂的γ–Fe2O3纳米复合材料的实物图,由图可知,此纳米材料为黑色粉末。
[0054] 图2中可以看出,合成的黑色磁性粉末材料在300℃ 500℃范围内曲线出现了明显~的下降,这主要是由于碳的分解所致;再结合该黑色磁性粉末的XRD图可以得出黑色磁性粉末为C掺杂的γ-Fe2O3的纳米复合材料;对比γ-Fe2O3的纳米材料与C掺杂的γ-Fe2O3的纳米复合材料二者的热重曲线可以算出C掺杂γ–Fe2O3中碳的含量在13.46% 左右。
[0055] 图3中可以看出,甘油酸铁的形貌清晰可见,制备的甘油酸铁为短棒状结构,长度在150nm 400nm之间,宽度在50nm左右。~
[0056] 图4中可以看出,所合成的C掺杂γ–Fe2O3纳米复合材料呈颗粒状,大小在10nm左右。
[0057] 由实施例1-3所述的方法制得的C掺杂的γ–Fe2O3纳米复合材料进行如下实验:
[0058] 电化学性能测试:
[0059] (1)电极浆料的制备:
[0060] 将电极材料、导电剂(乙炔黑)和粘结剂(聚偏氟乙烯)按照75:15:10的比例分散于分散剂1-甲基-2-吡咯烷酮(NMP)中,混合均匀,即得到电极浆料。
[0061] (2)泡沫镍电极片的制备:
[0062] 将泡沫镍切割成5cm×1cm的长方形小片,并在4cm处标记,得到1cm×1cm的预涂覆电浆材料表面。之后对泡沫镍进行洗涤,首先将泡沫镍浸泡在丙酮中,超声振荡15min,再将泡沫镍浸入1mol/L的盐酸溶液中,超声振荡15min;之后再将泡沫镍浸入去离子水中,超声振荡15min;最后再将泡沫镍浸入无水乙醇中,超声振荡15min。再将泡沫镍转移至真空干燥箱中,60℃下干燥12h,得到电极片。
[0063] (3)电极材料的制备:
[0064] 将电浆材料均匀涂覆于泡沫镍电极片上,转移至真空干燥箱中,60℃下干燥12h,得到电极材料。
[0065] 图5中可以看出,(a)为C掺杂γ–Fe2O3纳米复合材料的CV曲线图,可以看出有明显的氧化还原峰,表明其属于赝电容材料;(b)为C掺杂γ–Fe2O3纳米复合材料的恒定电流充放电曲线图(GCD),在电流密度为1A/g下,比容量可达322 F/g;(c)为C掺杂γ–Fe2O3纳米复合材料的循环性能图,在循环3500次后,仍有62.5%的比容量保持率。