方向性电磁钢板的制造方法转让专利

申请号 : CN201780011803.9

文献号 : CN108699619B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 早川康之江桥有衣子竹中雅纪

申请人 : 杰富意钢铁株式会社

摘要 :

本发明实现磁特性的提高和稳定化。本发明提供一种方向性电磁钢板的制造方法,其中,在最终冷轧前的退火中,在1000℃~1120℃的温度区域均热200秒以下,然后,在650℃~1000℃的温度区域均热200秒以下,使上述最终冷轧前的退火后的析出物中的Al量为钢坯中含有的总Al量的50%以上。

权利要求 :

1.一种方向性电磁钢板的制造方法,其特征在于,

将具有如下成分组成的钢坯在1300℃以下加热,所述成分组成以质量%计,含有C:

0.002%~0.08%、Si:2.0%~8.0%、Mn:0.02%~1.00%、合计超过0.0015%且为0.010%以下的S和/或Se,将N抑制为小于60质量ppm,将酸可溶性Al抑制为小于100质量ppm,剩余部分由Fe和不可避免的杂质构成,对该钢坯实施热轧制成热轧钢板,

对该热轧钢板实施或不实施热轧板退火,实施仅1次冷轧或隔着中间退火的2次以上的冷轧制成冷轧钢板,对该冷轧钢板实施一次再结晶退火,

在该一次再结晶退火后的冷轧钢板的表面涂布退火分离剂后实施二次再结晶退火,在实施仅1次冷轧的情况下,必须实施所述热轧板退火,在实施所述仅1次冷轧的情况下,在所述热轧板退火中,在1000℃~1120℃的温度区域均热200秒以下,然后,在650℃~900℃的温度区域均热200秒以下,在实施所述隔着中间退火的2次以上的冷轧的情况下,在最后的中间退火中,在1000℃~1120℃的温度区域均热

200秒以下,然后,在650℃~900℃的温度区域均热200秒以下,在实施所述仅1次冷轧的情况下,使热轧板退火后的析出物中的Al量为所述钢坯中含有的总Al量的50%以上,在实施所述隔着中间退火的2次以上的冷轧的情况下,使最后的中间退火后的析出物中的Al量为所述钢坯中含有的总Al量的50%以上。

2.根据权利要求1所述的方向性电磁钢板的制造方法,其中,所述成分组成以质量%计,进一步含有选自Sn:0.001%~0.20%、Sb:0.001%~0.20%、Ni:0.001%~1.50%、Cu:

0.001%~1.50%、Cr:0.001%~0.50%、P:0.001%~0.50%、Mo:0.001%~0.50%、Ti:

0.001%~0.10%、Nb:0.001%~0.10%、V:0.001%~0.10%、B:0.0002%~0.0025%、Bi:

0.001%~0.10%、Te:0.001%~0.10%和Ta:0.001%~0.10%中的1种或2种以上。

3.根据权利要求1或2所述的方向性电磁钢板的制造方法,其中,对所述冷轧钢板实施氮化处理。

4.根据权利要求1或2所述的方向性电磁钢板的制造方法,其中,在所述退火分离剂中添加硫化物、硫酸盐、硒化物和硒酸盐中的1种或2种以上。

说明书 :

方向性电磁钢板的制造方法

技术领域

[0001] 本发明涉及方向性电磁钢板的制造方法,特别是涉及不进行高温下的板坯加热、抑制线圈内的磁特性变动的方向性电磁钢板的制造方法。

背景技术

[0002] 方向性电磁钢板是用作变压器、发电机的铁芯材料的软磁性材料,具有铁的易磁化轴即<001>方位与钢板的轧制方向高度一致的晶体组织。这样的集合组织在方向性电磁钢板的制造工序中通过二次再结晶形成,该二次再结晶在二次再结晶退火时优先使所谓的被称为高斯(Goss)方位的(110)[001]方位的晶粒巨大地成长。
[0003] 以往,在这样的方向性电磁钢板的制造中,采用了如下工序:在板坯阶段含有MnS、MnSe、AlN等析出物(抑制剂成分),利用在超过1300℃的高温下的板坯加热暂时使这些抑制剂成分固溶,在后工序中使其微细析出,从而出现二次再结晶。
[0004] 但是,在以往的方向性电磁钢板的制造工序中,由于需要超过1300℃的高温下的板坯加热,因此其制造成本不可避免地非常高,在不能满足近年的降低制造成本的要求方面仍是问题。
[0005] 为了解决这样的问题,例如,专利文献1中提出了通过含有0.010~0.060%的酸可溶性Al(sol.Al),将板坯加热抑制为低温,在脱碳退火工序中在适当的氮气氛下进行氮化,在二次再结晶时使(Al,Si)N析出而作为抑制剂使用的方法。
[0006] 专利文献1中,(Al,Si)N在钢中微细分散而作为有效的抑制剂发挥功能,在氮化处理后的钢板中,以氮化硅为主体的析出物(Si3N4或者(Si,Mn)N)仅在表层形成。随后,在继续进行的二次再结晶退火中,以氮化硅为主体的析出物变化为热力学稳定的含Al氮化物((Al,Si)N或者AlN)。此时,根据非专利文献1,存在于表层附近的Si3N4在二次再结晶退火的升温中固溶,另一方面氮向钢中扩散,达到超过900℃的温度时,在板厚方向以几乎均匀的含Al氮化物的形式析出,认为在整个板厚都能够得到晶粒生长抑制力(抑制效果)。应予说明,该方法与使用高温下的板坯加热的析出物的分散控制相比,具有比较容易在板厚方向得到相同的析出物量和析出物粒径的优点。
[0007] 另一方面,对于最初开始板坯不含有抑制剂成分而出现二次再结晶的技术进行研究。例如,专利文献2中公开了不含有抑制剂成分而形成二次再结晶的技术(无抑制剂法)。
[0008] 无抑制剂法是利用更高纯度的钢,利用织构(集合组织的控制)使二次再结晶出现的技术。另外,无抑制剂法不需要高温的板坯加热,不经过氮化等特殊工序就能够制造,因此能够以更低成本制造方向性电磁钢板。
[0009] 现有技术文献
[0010] 专利文献
[0011] 专利文献1:日本专利第2782086号公报
[0012] 专利文献2:日本特开2000-129356号公报
[0013] 非专利文献
[0014] 非专利文献1:Y.Ushigami et al."Precipitation Behaviors of Injected Nitride Inhibitors during Secondary Recrystallization Annealing in Grain Oriented Silicon Steel"Materials Science Forum Vols.204-206(1996)pp.593-598。

发明内容

[0015] 但是,无抑制剂法中,存在随着S、N等微量杂质量的变动、热轧温度、热轧板退火温度、一次再结晶退火温度等条件变动,钢板的磁特性会大幅变动的问题点。这样的磁特性的变动主要引起抑制剂成分微量残留。但是,完全除去微量抑制剂成分在现实中存在技术、经济问题,实质上是不可能的。另外,虽然这些微量抑制剂成分在热轧中析出,但是由于在线圈轧制中不可避地产生宽度方向、长度方向的温度变动,因此也不可避地产生线圈内的磁特性的不均匀。
[0016] 本发明鉴于上述课题,目的在于提供不需要高温板坯加热,低成本且具有高生产率,且抑制钢板的铁损变动的方向性电磁钢板的方法。
[0017] 发明人等为了解决上述课题进行了深入研究。
[0018] 其结果新发现了如下见解:通过在钢坯成分中,含有合计超过0.0015%且为0.010%以下的S和/或Se,在最终冷轧前的退火中,在1000℃~1120℃的温度区域(第1段均热温度)均热200秒以下,然后,在650℃~1000℃的温度区域(第2段均热温度)均热200秒以下,将上述最终冷轧前的退火后的析出物中的Al量设为钢坯中含有的总Al量(整体的Al量)的50%以上,从而即便是1300℃以下的低温区域的板坯加热,磁特性也稳定地提高。
[0019] 以下,对于完成导出本发明的实验结果进行说明。
[0020] (实验)
[0021] 将C:0.03质量%、Si:3.2质量%、Mn:0.08质量%、P:0.05质量%、Cu:0.10质量%、Sb:0.03质量%、sol.Al:60质量ppm、N:40质量ppm、S:5质量ppm、Se:1质量ppm、剩余部分由Fe和不可避免的杂质的组成构成的钢A的板坯、和C:0.03质量%、Si:3.2质量%、Mn:0.08质量%、P:0.05质量%、Cu:0.10质量%、Sb:0.03质量%、sol.Al:60质量ppm、N:40质量ppm、S:75质量ppm、Se:1质量ppm、剩余部分由Fe和不可避免的杂质的组成构成的钢B的板坯加热至
1220℃后,进行热轧,制成板厚:2.5mm的热轧板后,通过图1所示的模式实施热轧板退火。提取热轧板退火后析出物,进行析出物中的Al量的分析。析出Al量的分析利用千野等“铁和钢”,日本钢铁协会,1988年12月,第74卷,p.2041-2046公开的方法进行。热轧板退火后通过冷轧加工成0.22mm。
[0022] 冷轧后,在氢分压55%、氮分压45%和露点55℃的气氛中进行850℃下均热120秒的兼作脱碳的一次再结晶退火。然后,将以MgO为主剂的退火分离剂以两面平均15g/m2涂布于一次再结晶板并干燥。然后,在氮气氛中以15℃/h升温至800℃,将800~870℃间的升温速度设为5℃/h,在870℃保持50小时后,切换为氢气氛,在1180℃保持10小时的条件下,实施二次再结晶退火。最终成品退火后,涂布由50%的胶体二氧化硅和磷酸镁构成的药剂并进行干燥,利用氮和氢的混合气氛,在850℃进行20秒的平坦化退火,进行形状矫正。对于钢A和钢B,将表示热轧板退火的第2段的均热温度(图1的T℃)和平坦化退火后的磁通密度(B8)的关系的图示于图2。根据图2,与含有合计6ppm的S和Se的钢A相比,在含有合计76ppm的S和Se的钢B中,在第2段的均热温度650~1000℃的范围,特别是在700~900℃的范围得到了高的磁通密度。
[0023] 图3中示出上述钢B的热轧板退火的第2段的均热温度和析出物中的Al量相对于整体的Al量的比例。整体的Al量是指钢坯中含有的总Al量。根据图3可知在第2段的均热温度650~1000℃的范围析出Al量增加,特别是在700~900℃的范围几乎总量析出。图4示出析出物中的Al量相对于整体的Al量的比例与平坦化退火后的磁通密度的关系。析出物中的Al量越高磁通密度越是提高,在析出Al量的范围为整体的Al量的50%以上,特别是90%以上时,得到了良好的磁通密度的值。
[0024] 这里,对于像上述钢B那样使用将S和Se的合计量提高至76ppm的原材料,以2段均热的模式进行最终冷轧前退火,在第2段的均热温度为650~1000℃的范围析出Al量增加,磁通密度提高的理由,并不是很清楚,但是本发明人等如下考虑。首先,通过第2段的均热处理使作为杂质的Al析出,从而保持晶粒生长的抑制力恒定,二次再结晶的出现稳定化。此外,添加的S除了形成MnS或者Cu2S之类的析出物,还发挥由固溶S成分引起的晶界偏析效果。而且,推测在第2段的均热处理中,因为由固溶S引起的晶界偏析效果提高,所以磁通密度提高。认为在S量低的情况下,在第2段的均热中,因析出Al量的增加而使二次再结晶的出现稳定化,但是不发挥由固溶S成分引起的晶界偏析效果,因此磁通密度提高变得不充分。即认为对添加微量S的原材料,通过以2段均热的模式实施最终冷轧前退火,保持晶粒生长抑制力恒定,最大限度地发挥S的晶界偏析效果,从而磁通密度提高。Se也与S同样地在形成MnSe或者Cu2Se这样的析出物的同时,作为固溶Se发挥晶界偏析效果,使磁通密度提高。
[0025] 本技术是应称为精细(Subtle)抑制力(Inhibition)控制(Control)(SIC法)的方法。该SIC法是能够同时实现低温板坯加热和抑制线圈内的铁损变动的、与以往的使用抑制剂的技术、无抑制剂技术相比更优异的方法。
[0026] 本发明是基于上述见解并进一步研究后完成的发明。即,本发明的主旨构成如下。
[0027] 1.一种方向性电磁钢板的制造方法,
[0028] 将具有如下成分组成的钢坯在1300℃以下加热,所述成分组成以质量%计,含有C:0.002%~0.08%、Si:2.0%~8.0%、Mn:0.02%~1.00%、合计超过0.0015%且为0.010%以下的S和/或Se,将N抑制为小于60质量ppm,将酸可溶性Al抑制为小于100质量ppm,剩余部分由Fe和不可避免的杂质构成,
[0029] 对该钢坯实施热轧制成热轧钢板,
[0030] 对该热轧钢板实施或不实施热轧板退火,实施1次或隔着中间退火的2次以上的冷轧制成冷轧钢板,
[0031] 对该冷轧钢板实施一次再结晶退火,
[0032] 在该一次再结晶退火后的冷轧钢板的表面涂布退火分离剂后实施二次再结晶退火,
[0033] 在不实施所述中间退火的情况下,在所述热轧板退火中,在1000℃~1120℃的温度区域均热200秒以下,然后,在650℃~1000℃的温度区域均热200秒以下,在实施所述中间退火的情况下,在最后的中间退火中,在1000℃~1120℃的温度区域均热200秒以下,然后,在650℃~1000℃的温度区域均热200秒以下,
[0034] 在不实施所述中间退火的情况下,使热轧板退火后的析出物中的Al量为所述钢坯中含有的总Al量的50%以上,在实施所述中间退火的情况下,使最后的中间退火后的析出物中的Al量为所述钢坯中含有的总Al量的50%以上。
[0035] 2.根据上述1所述的方向性电磁钢板的制造方法,其中,
[0036] 上述成分组成以质量%计,进一步含有选自Sn:0.001%~0.20%、Sb:0.001%~0.20%、Ni:0.001%~1.50%、Cu:0.001%~1.50%、Cr:0.001%~0.50%、P:0.001%~
0.50%、Mo:0.001%~0.50%、Ti:0.001%~0.10%、Nb:0.001%~0.10%、V:0.001%~
0.10%、B:0.0002%~0.0025%、Bi:0.001%~0.10%、Te:0.001%~0.10%和Ta:0.001%~0.10%中的1种或2种以上。
[0037] 3.根据上述1或2所述的方向性电磁钢板的制造方法,其中,对上述冷轧钢板实施氮化处理。
[0038] 4.根据上述1或2所述的方向性电磁钢板的制造方法,其中,在上述退火分离剂中添加硫化物、硫酸塩、硒化物和硒酸盐中的1种或2种以上。
[0039] 根据本发明,通过并用微量析出物和晶界偏析元素的精细(Subtle)抑制力(Inhibition)控制(Control)(SIC法)法,不需要高温板坯加热,低成本且具有高生产率,且能够抑制钢板的铁损变动。

附图说明

[0040] 图1是表示最终冷轧前的退火的模式的图。
[0041] 图2是表示最终冷轧前的退火的第2段的均热温度与磁通密度(B8)的关系的图。
[0042] 图3是表示最终冷轧前的退火的第2段的均热温度与析出物中的Al量相对于整体的Al量的比例的关系的图。
[0043] 图4是表示析出物中的Al量相对于整体的Al量的比例与磁通密度的关系的图。

具体实施方式

[0044] 以下,对于基于本发明的一个实施方式的方向性电磁钢板的制造方法进行说明。首先,对于钢的成分组成的限定理由进行阐述。应予说明,本说明书中,表示各成分元素的含量的“%”只要没有特别说明就是指“质量%”,ppm只要没有特别说明就是指“质量ppm”。
[0045] C:0.002%~0.08%
[0046] C是在改善一次再结晶集合组织方面有用的元素,但是如果含量超过0.08%则反而导致一次再结晶集合组织的劣化,因此在本发明中限定为0.08%以下。从磁特性的观点出发,优选的添加量为0.002%~0.06%的范围。
[0047] Si:2.0%~8.0%
[0048] Si是通过提高电阻而改善铁损的有用元素,但是如果含量超过8.0%则二次加工性显著劣化,因此Si限定为8.0%以下。从铁损的观点出发、添加量设为2.0%~8.0%的范围。
[0049] Mn:0.02%~1.00%
[0050] Mn具有提高制造时的热加工性的效果,但是含量超过1.00%时,一次再结晶集合组织恶化而导致磁特性的劣化,因此Mn限定为1.00%以下。从磁特性的观点出发,添加量设为0.02%~1.00%的范围。
[0051] N:小于60ppm
[0052] N如果过量存在,则难以进行二次再结晶。特别是,如果N量变为60ppm以上,则使二次再结晶变得困难,磁特性劣化。因此,N抑制为小于60ppm。
[0053] 酸可溶性Al(sol.Al):小于100ppm
[0054] Al也是如果过量存在则使二次再结晶变得困难。特别是,如果sol.Al量变为100ppm以上,则在低温板坯加热的条件下很难二次再结晶,磁特性劣化。因此,Al以sol.Al量计抑制为小于100ppm。
[0055] S和/或Se:合计超过0.0015%且为0.010%以下
[0056] 本发明中,含有合计超过0.0015%且为0.010%以下的S和/或Se是最重要的。Se和S在形成Mn化合物、Cu化合物这样的析出物的同时以固溶Se和固溶S的形式抑制晶粒生长,发挥磁特性稳定化效果。
[0057] 如果S和/或Se合计为0.0015%以下,则固溶S和/或Se量不足,磁特性变得不稳定,如果超过0.010%,则热轧前的板坯加热的析出物的固溶变得不充分,磁特性变得不稳定。因此,S和/或Se设为合计超过0.0015%且为0.010%以下的范围。
[0058] 以上对本发明的基本成分进行了说明。上述成分以外的剩余部分为Fe和不可避免的杂质,但是此外也可以根据需要,作为工业上更稳定地改善磁特性的成分,适当含有以下元素。
[0059] Sn:0.001%~0.20%
[0060] Sn具有抑制二次再结晶退火中的钢板的氮化、氧化,促进具有良好的晶体方位的晶粒的二次再结晶而有效提高磁特性,特别是铁损的作用,因此优选含有0.001%以上。但是,如果超过0.20%,则导致冷轧性的劣化。因此,Sn优选在0.001%~0.20%的范围含有。
[0061] Sb:0.001%~0.20%
[0062] Sb为抑制二次再结晶退火中的钢板的氮化、氧化,促进具有良好的晶体方位的晶粒的二次再结晶而有效提高磁特性的有用的元素,为实现该目的优选含有0.001%以上。但是,如果超过0.20%,则引起冷轧性的降低。因此,Sb优选在0.001%~0.20%的范围含有。
[0063] Ni:0.001%~1.50%
[0064] Ni具有通过提供热轧板组织的均匀性而改善磁特性的作用,因此优选含有0.001%以上。但是,如果含量超过1.50%,则二次再结晶变得困难,引起磁特性的降低。因此,Ni优选在0.001%~1.50%的范围含有。
[0065] Cu:0.001%~1.50%
[0066] Cu具有抑制二次再结晶退火中的钢板的氧化,促进具有良好的晶体方位的晶粒的二次再结晶而有效提高磁特性的作用,因此优选含有0.001%以上。但是,如果Cu含量超过1.50%,则引起热轧性的降低。因此,Cu优选在0.001%~1.50%的范围含有。
[0067] Cr:0.001%~0.50%
[0068] Cr具有使镁橄榄石被膜的形成稳定化的作用,优选含有0.001%以上。但是,如果含量超过0.50%,则二次再结晶变得困难,磁特性劣化。因此,Cr优选在0.001%~0.50%的范围含有。
[0069] P:0.001%~0.50%
[0070] P是改善一次再结晶集合组织,促进具有良好的晶体方位的晶粒的二次再结晶而有效提高磁特性的有用元素,为实现该目的,优选含有0.001%以上。但是,如果含量超过0.50%,则导致冷轧性的降低。因此,P优选在0.001%~0.50%的范围含有。
[0071] Mo:0.001%~0.50%
[0072] Mo具有抑制高温氧化,减少被称为结疤的表面缺陷的发生的作用,因此优选含有0.001%以上。但是,如果含量超过0.50%则导致冷轧性的降低。因此,Mo优选在0.001%~
0.50%的范围含有。
[0073] Ti:0.001%~0.10%
[0074] Ti是抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,Ti优选在0.001%~0.10%的范围含有。
[0075] Nb:0.001%~0.10%
[0076] Nb是抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,Nb优选在0.001%~0.10%的范围含有。
[0077] V:0.001%~0.10%
[0078] V是抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,V优选在0.001%~0.10%的范围含有。
[0079] B:0.0002%~0.0025%
[0080] B是抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.0002%以上。但是,如果含量超过0.0025%,则在基体铁中残留而导致铁损的增加。因此,B优选在0.0002%~0.0025%的范围含有。
[0081] Bi:0.001%~0.10%
[0082] Bi是在晶界偏析,抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,Bi优选在0.001%~0.10%的范围含有。
[0083] Te:0.001%~0.10%
[0084] Te为在晶界偏析,抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,Te优选在0.001%~0.10%的范围含有。
[0085] Ta:0.001%~0.10%
[0086] Ta为抑制一次再结晶粒的成长,促进具有良好的晶体方位的晶粒的二次再结晶而提高磁特性的有用元素,因此优选含有0.001%以上。但是,如果含量超过0.10%,则在基体铁中残留而导致铁损的增加。因此,Ta优选在0.001%~0.10%的范围含有。
[0087] 接着,对本发明涉及的方向性电磁钢板的制造条件进行说明。
[0088] [加热]
[0089] 将调整为上述的成分组成的钢坯在1300℃以下加热。将加热温度控制在1300℃以下是因为在减少热轧时生成的氧化皮量方面特别有效。另外,通过将加热温度控制在1300℃以下,能够实现晶体组织的微细化和均匀的整粒一次再结晶组织。
[0090] [热轧]
[0091] 上述加热后进行热轧。对于热轧温度,为了使晶体组织微细化,优选将开始温度设为1100℃以上,将结束温度设为800℃以上。但是,为了使晶体组织均匀化,结束温度优选设为1000℃以下。
[0092] [最终冷轧前的退火]
[0093] 接着,根据需要实施热轧板退火。然后在不进行中间退火的情况下,该热轧板退火成为最终冷轧前的退火。
[0094] 然后,实施1次或隔着中间退火的2次以上的冷轧而制成冷轧板。在不进行热轧板退火的情况下必须进行中间退火,将该中间退火作为最终冷轧前的退火。
[0095] 为了使高斯组织在产品板中高度发达,最终冷轧前的退火通过由在1000℃~1120℃的温度区域的第1段的均热处理和在比第1段低的650℃~1000℃的温度区域的第2段的均热处理构成的2段的加热模式进行。这里的第1段和第2段的均热处理不需要温度是恒定的,在上述各温度区间滞留规定时间即可。
[0096] 如果第1段的均热温度小于1000℃,则再结晶不充分且磁特性劣化,如果超过1120℃,则冷轧前粒径过于粗大化而磁特性劣化。因此,第1段的均热温度设为1000℃~1120℃。如果均热时间超过200秒,则进行硫化物的粗大化,抑制力降低而磁特性劣化。因此,第1段的均热时间设为200秒以下。
[0097] 如果第2段的均热温度小于650℃,则最终冷轧前的退火后的析出Al量降低,固溶S和/或Se的晶界偏析量降低,因此磁特性降低。如果第2段的均热温度超过1000℃,则上述退火后的析出Al量降低而二次再结晶变得不稳定,磁特性降低。因此,第2段的均热温度设为650℃~1000℃的范围。如果第2段的均热时间超过200秒,则炭化物的晶界析出进行,固溶C减少而磁特性降低。因此,第2段的均热时间设为200秒以下。
[0098] 在上述冷轧中,对使高斯组织发达有效的是使轧制温度上升至100℃~250℃进行轧制;或在冷轧的中途进行1次或多次在100℃~250℃的范围的时效处理。
[0099] [一次再结晶退火]
[0100] 对得到的冷轧板实施一次再结晶退火。该一次再结晶退火的目的是使具有轧制组织的冷轧板一次再结晶,调整为最适合于二次再结晶的一次再结晶粒径。因此,一次再结晶退火的退火温度优选设为800℃以上且小于950℃左右。此时的退火气氛,通过设为湿氢氮或者湿氢氩气氛,可以兼作脱碳退火。
[0101] 另外,在一次再结晶退火中,优选将500℃~700℃的温度区域的平均升温速度设为50℃/s以上。由于上述的温度区域位于相当于冷轧后的组织的恢复的温度区域,因此以上述平均升温速度快速升温,抑制恢复现象而使其再结晶,从而提高Goss方位晶粒的存在量,降低二次再结晶后的晶体粒径,由此,改善铁损特性。
[0102] [氮化处理]
[0103] 一次再结晶退火中或退火后涂布退火分离剂之前,可以进一步进行氮化处理。通过进行氮化处理,能够使二次再结晶稳定化。
[0104] 关于氮化处理方法,没有特别限定,例如,可以直接在线圈形态下使用NH3气氛或气体进行气体氮化,也可以针对行进的带钢进行连续的气体氮化。另外,也可以利用氮化能力比气体氮化高的盐浴氮化。这里,作为利用盐浴氮化时的盐浴,以氰酸盐为主成分的盐浴是合适的。应予说明,对于氮化温度和氮化时间,在气体氮化的情况下,设为500℃~1000℃下20~600秒左右是合适的,在盐浴氮化的的情况下,设为300℃~600℃下20~600秒左右是合适的。
[0105] [退火分离剂的涂布]
[0106] 在一次再结晶退火后且二次再结晶退火前的钢板表面涂布退火分离剂。
[0107] 在退火分离剂中添加选自硫化物、硫酸塩、硒化物和硒酸盐中1种或2种以上时,由于在700℃左右分解,且能够提高晶粒生长抑制力,因此能够提高磁特性。即使以较少的量也能够得到该效果,但是如果相对于MgO:100质量份小于1质量份则效果小。另一方面,在添加超过30质量份时,由于氧化性变得过高,镁橄榄石被膜变得过厚,因此,形成的镁橄榄石被膜的弯曲剥离特性降低。因此,退火分离剂中添加的选自硫化物、硫酸塩、硒化物和硒酸盐中的1种或2种以上的化合物,相对于MgO:100质量份优选为1质量份~30质量份。
[0108] [二次再结晶退火]
[0109] 然后,进行兼作纯化退火的二次再结晶退火。
[0110] 二次再结晶退火的纯化温度为超过1180℃的温度,通过将纯化时的气体气氛设为H2气气氛,具体而言,通过使H2为10体积%以上,即使是极微量也能够将对磁特性产生有害作用的C、N还有Al、S和Se之类的成分彻底纯化。应予说明,纯化时间没有特别限制,但是通常为2~20小时左右。
[0111] [绝缘涂层]
[0112] 上述的二次再结晶退火后,可以在钢板表面进一步涂布绝缘涂层,烧结而形成绝缘被膜。对于上述绝缘被膜的种类,没有特别限定,以往公知的所有的绝缘被膜是合适的。例如,将含有磷酸盐-铬酸盐-胶体二氧化硅的涂布液涂布于钢板,在800℃左右烧结的方法是合适的。
[0113] [平坦化退火]
[0114] 然后,可以通过平坦化退火调整钢板的形状,进而也可以使该平坦化退火兼作绝缘被膜的烧结处理。平坦化退火的退火温度优选为800~900℃,退火时间优选为10秒~120秒。
[0115] 其他制造条件可以按照方向性电磁钢板的通常的制造方法。
[0116] 实施例
[0117] (实施例1)
[0118] 将成为C:0.03%、Si:3.4%、Mn:0.10%、Cu:0.06%、Sb:0.06%、P:0.06%、Mo:0.06%、sol.Al:60ppm、N:45ppm、S:50ppm、Se:1ppm、剩余部分为Fe和不可避免的杂质的组成的钢坯加热至1250℃后,进行热轧,制成板厚:2.4mm的热轧板后,在表1所示的条件下实施热轧板退火。热轧板退火后测定析出物中的Al量。
[0119] [表1]
[0120] 表1
[0121]
[0122] 然后,利用在200℃的冷轧制成板厚:0.23mm后,将500~700℃间的升温速度设为150℃/s,在850℃实施120秒在气氛H2:55%、N2:45%、露点55℃下的兼作脱碳的一次再结晶退火。
[0123] 一次再结晶退火后,将以MgO为主剂的退火分离剂以两面平均12.5g/m2涂布于一次再结晶板并进行干燥后,在以升温速度:15℃/h升温至800℃,从800℃到850℃以2.0℃/h升温后,在850℃保持50小时,以5.0℃/h升温至1160℃,均热5小时的条件下实施二次再结晶退火。气氛气体在850℃以下使用N2气,在850℃以上使用H2气。
[0124] 在按上述条件得到的二次再结晶退火板的表面涂布以质量比3:1:3的比例含有磷酸盐-铬酸盐-胶体二氧化硅的处理液,实施平坦化退火。同时,测定平坦化退火后的磁通密度。
[0125] 由表1可知,通过使钢坯中含有合计超过0.0015%且为0.010%以下的S和/或Se,以规定的加热模式进行最终冷轧前的退火,能够提高析出Al量,促进固溶S和/或Se的晶界偏析而得到良好的磁特性。
[0126] (实施例2)
[0127] 将成为表2所示的成分且剩余部分为Fe和不可避免的杂质的组成的钢坯加热至1250℃后,进行热轧,制成板厚:2.6mm的热轧板后,以2段的加热模式实施热轧板退火。第1段的均热在1075℃为30s、第2段的均热在850℃为60s。
[0128] 热轧板退火后测定析出物中的Al量。
[0129] [表2]
[0130] 表2
[0131]
[0132] 接着,利用在180℃的冷轧制成板厚:0.27mm后,将500~700℃间的升温速度设为100℃/s,在840℃实施150秒在气氛H2:55%、N2:45%、露点58℃下的兼作脱碳的一次再结晶退火。
[0133] 一次再结晶退火后,将以MgO为主剂的退火分离剂以两面平均12.5g/m2涂布于一次再结晶板并进行干燥后,在以升温速度:5℃/h升温至800℃,从800℃到840℃以2.0℃/h升温后,在840℃保持50小时,以5.0℃/h升温至1160℃,均热5小时的条件下,实施二次再结晶退火。气氛气体在840℃以下使用N2气,840℃以上使用H2气。
[0134] 在以上述条件得到的二次再结晶退火板的表面涂布以质量比3:1:3的比例含有磷酸盐-铬酸盐-胶体二氧化硅的处理液,实施平坦化退火。测定平坦化退火后的磁通密度(B8)和铁损(W17/50),将得到的结果示于表2。
[0135] 由表2可知,通过使钢坯中含有合计超过0.0015%且为0.010%以下的S和/或Se,并以规定的加热模式进行最终冷轧前的退火,能够提高析出Al量,促进固溶S和/或Se的晶界偏析而得到良好的磁特性。
[0136] (实施例3)
[0137] 将成为表3所示的成分且剩余部分为Fe和不可避免的杂质的组成的钢坯加热至1260℃,进行热轧,制成板厚:2.8mm的热轧板后,在1025℃实施30秒的热轧板退火。接着,通过在120℃的冷轧制成1.8mm。然后,通过2段的加热模式实施中间退火。第1段的均热在1050℃为30s,第2段的均热在800℃为90s。中间退火后测定析出物中的Al量。
[0138] [表3]
[0139]
[0140] 然后,利用在180℃的冷轧将板厚制成0.20mm后,将500~700℃间的升温速度设为50℃/s,在840℃实施100秒在气氛H2:55%、N2:45%、露点53℃下的兼作脱碳的一次再结晶退火。
[0141] 一次再结晶退火后,将向MgO添加了重量比10%的MgSO4而得的退火分离剂以两面平均12.5g/m2涂布于一次再结晶板并进行干燥后,在以升温速度:5℃/h升温至800℃,从800℃到880℃以2.0℃/h升温后,在880℃保持50小时,以5.0℃/h升温至1160℃,均热5小时的条件下,实施二次再结晶退火。气氛气体在840℃以下使用N2气,在840℃以上使用H2气。
[0142] 在以上述条件得到的二次再结晶退火板的表面涂布以质量比3:1:3的比例含有磷酸盐-铬酸盐-胶体二氧化硅的处理液,实施平坦化退火。测定平坦化退火后的磁通密度(B8)和铁损(W17/50),将得到的结果示于表3。
[0143] 由表3可知,通过使钢坯中含有合计超过0.0015%且为0.010%以下的S和/或Se,以规定的加热模式进行最终冷轧前的退火,能够提高析出Al量,促进固溶S和/或Se的晶界偏析而得到良好的磁特性。
[0144] (实施例4)
[0145] 将成为含有C:0.02%、Si:3.1%、Mn:0.10%、Cu:0.06%、Sb:0.06%、P:0.06%、Mo:0.06%、Cr:0.06%、sol.Al:50ppm、N:45ppm、S:70ppm、Se:10ppm,剩余部分为Fe和不可避免的杂质的组成的钢坯,加热至1240℃,进行热轧,制成板厚:2.4mm的热轧板后,实施热轧板退火。以2段的加热模式实施热轧板退火。第1段的均热在1100℃为20s,第2段的均热在800℃为60s。热轧板退火后测定析出物中的Al量。
[0146] 接着,利用在180℃的冷轧制成板厚:0.22mm后,将500~700℃间的升温速度设为100℃/s,在840℃实施150秒在气氛H2:55%、N2:45%、露点55℃下的兼作脱碳的一次再结晶退火。然后,在表4所示的条件下进行氮化处理。
[0147] [表4]
[0148] 表4
[0149]
[0150] 一次再结晶退火后,将添加了表4所示的药剂的以MgO为主剂的退火分离剂以两面平均12.5g/m2涂布于一次再结晶板并进行干燥后,在以升温速度:5℃/h升温至800℃,从800℃到880℃以2.0℃/h升温后,在880℃保持50小时,以5.0℃/h升温至1160℃,均热5小时的条件下,实施二次再结晶退火。气氛气体在在880℃以下使用N2气,在880℃以上使用H2气。
[0151] 由表4可知,除了使钢坯中含有合计超过0.0015%且为0.010%以下的S和/或Se,以规定的加热模式进行最终冷轧前的退火以外,通过实施氮化处理和/或在二次再结晶退火前涂布于钢板的退火分离剂中添加选自硫化物、硫酸塩、硒化物和硒酸盐中的1种或2种以上,能够进一步稳定地提高磁特性。