开关电源装置转让专利

申请号 : CN201780009570.9

文献号 : CN108702093B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 石仓祐树

申请人 : 株式会社村田制作所

摘要 :

开关电源装置(1)具备开关电路(11、12)、变压器(T)、LLC谐振电路(10)、对开关电路(11、12)的开关频率进行设定的微型计算机(15)以及频率调整部(16)、以及对电流(Ir)进行检测的电流检测电路(17)。微型计算机(15)以及频率调整部(16)对开关频率进行扫描,基于开始开关元件(Q11、Q12)的死区时间的定时、电流检测电路(17)检测的电流(Ir)、以及阈值电流(Imin),对开关频率进行设定。

权利要求 :

1.一种开关电源装置,具备:

第一输入输出端口以及第二输入输出端口;

第一开关电路,具有高压侧开关元件以及低压侧开关元件,并与所述第一输入输出端口连接;

第二开关电路,具有高压侧开关元件以及低压侧开关元件,并与所述第二输入输出端口连接;

变压器,具有磁耦合的第一线圈以及第二线圈,所述第一线圈与所述第一开关电路连接,所述第二线圈与所述第二开关电路连接;

谐振电路,包含所述第一线圈或所述第二线圈而构成;

开关频率设定部,对所述第一开关电路以及所述第二开关电路的开关频率进行设定;

以及

电流检测部,对在所述第一输入输出端口或所述第二输入输出端口输入输出的电流进行检测,所述开关频率设定部对开关频率进行扫描,基于所述第一开关电路或所述第二开关电路的所述高压侧开关元件和所述低压侧开关元件的开关的死区时间开始的定时、所述电流检测部的检测结果以及阈值电流值,对开关频率进行设定。

2.根据权利要求1所述的开关电源装置,其中,在所述第一开关电路以及所述第二开关电路各自的所述高压侧开关元件以及所述低压侧开关元件的关断的定时与所述电流检测部检测的电流值低于所述阈值电流值的定时一致的情况下,所述开关频率设定部降低开关频率,在不一致的情况下,所述开关频率设定部提高开关频率。

3.根据权利要求1或2所述的开关电源装置,其中,所述开关频率设定部定期地对开关频率进行设定。

4.根据权利要求1或2所述的开关电源装置,其中,所述第一开关电路或所述第二开关电路是半桥电路或全桥电路。

5.根据权利要求3所述的开关电源装置,其中,所述第一开关电路或所述第二开关电路是半桥电路或全桥电路。

说明书 :

开关电源装置

技术领域

[0001] 本发明涉及包含LLC谐振电路的开关电源装置。

背景技术

[0002] 在家庭环境中使用由发电机例如太阳能电池板进行发电的电力的太阳光发电系统中,通过功率调节器进行功率控制。作为适合用于该功率调节器的功率变换装置,例如有在专利文献1记载的功率变换装置。在专利文献1记载的功率变换装置具备电流谐振变换器。而且,通过使开关频率变化并测定成为最大功率变换效率的开关频率,从而检测与电流谐振变换器的谐振频率一致的开关频率,并对其进行设定。由此,降低开关损耗以及噪声而实现了高效率化。
[0003] 在先技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2014-217199号公报

发明内容

[0006] 发明要解决的课题
[0007] 在专利文献1的功率变换装置中,即使变压器的漏电感、谐振电容器的电容偏离设计值,并由此谐振频率偏离设计值,也能够设定最佳的开关频率。然而,在专利文献1中,由于将开关频率设定为使功率变换效率最大化,因此如果不是进行了输入输出功率的限制的情况等满足给定的条件的情况,则不能对开关频率进行设定。
[0008] 因此,本发明的目的在于,提供一种搜索最佳的开关频率的开关电源装置。
[0009] 用于解决课题的技术方案
[0010] 本发明涉及的开关电源装置的特征在于,具备:第一输入输出端口以及第二输入输出端口;第一开关电路,具有高压侧开关元件以及低压侧开关元件,并与所述第一输入输出端口连接;第二开关电路,具有高压侧开关元件以及低压侧开关元件,并与所述第二输入输出端口连接;变压器,具有磁耦合的第一线圈以及第二线圈,所述第一线圈与所述第一开关电路连接,所述第二线圈与所述第二开关电路连接;谐振电路,包含所述第一线圈或所述第二线圈而构成;开关频率设定部,对所述第一开关电路以及所述第二开关电路的开关频率进行设定;以及电流检测部,对在所述第一输入输出端口或所述第二输入输出端口输入输出的电流进行检测,所述开关频率设定部对开关频率进行扫描,基于所述第一开关电路或所述第二开关电路的所述高压侧开关元件和所述低压侧开关元件的开关的死区时间开始的定时、所述电流检测部的检测结果以及阈值电流值,对开关频率进行设定。
[0011] 在该结构中,通过根据负载电流对开关频率进行修正,从而能够降低开关损耗。此外,即使在开关电源装置制造后,也能够搜索最佳的开关频率,因此能够减少量产时的检查工序。进而,即使谐振电路的谐振频率由于随时间劣化而变动,也能够搜索最佳的开关频率。
[0012] 也可以是如下结构,即,在所述第一开关电路以及所述第二开关电路各自的所述高压侧开关元件以及所述低压侧开关元件的关断的定时与所述电流检测部检测的电流值低于所述阈值电流值的定时一致的情况下,所述开关频率设定部降低开关频率,在不一致的情况下,所述开关频率设定部提高开关频率。
[0013] 在该结构中,如果能够获取开关元件的死区时间和电流检测结果,则能够适当地对开关频率进行扫描,因此无需高速的处理。
[0014] 也可以是如下结构,即,所述开关频率设定部定期地对开关频率进行设定。
[0015] 在该结构中,能够维持高的功率变换效率。
[0016] 所述第一开关电路或所述第二开关电路也可以是半桥电路或全桥电路。
[0017] 发明效果
[0018] 根据本发明,通过根据负载电流对开关频率进行修正,从而能够降低开关损耗。此外,即使在开关电源装置制造后,也能够设定最佳的开关频率,因此能够减少量产时的检查工序。进而,即使谐振电路的谐振频率由于随时间劣化而变动,也能够设定最佳的开关频率。

附图说明

[0019] 图1是实施方式1涉及的开关电源装置的电路图。
[0020] 图2是示出开关频率比谐振频率高的情况下的频率调整部的各元件的动作波形的图。
[0021] 图3是示出开关频率比谐振频率低的情况下的频率调整部的各元件的动作波形的图。
[0022] 图4是示出最佳的开关频率的情况下的频率调整部的各元件的动作波形的图。
[0023] 图5是另一个例子的开关电源装置的电路图。
[0024] 图6是另一个例子的开关电源装置的电路图。
[0025] 图7是实施方式2涉及的开关电源装置的电路图。
[0026] 图8是另一个例子的开关电源装置的电路图。

具体实施方式

[0027] (实施方式1)
[0028] 图1是实施方式1涉及的开关电源装置1的电路图。
[0029] 开关电源装置1是电流谐振型DC-DC变换器,例如用于太阳光发电系统。以下,设电流谐振型DC-DC变换器为绝缘型且在一次侧以及二次侧分别具有全桥电路来进行说明。
[0030] 开关电源装置1具备一对输入输出端子IO1和输入输出端子IO2、以及一对输入输出端子IO3和输入输出端子IO4。输入输出端子IO1以及输入输出端子IO2与对由太阳能电池板发电的电力进行蓄电的蓄电池连接。输入输出端子IO3以及输入输出端子IO4与太阳能电池板以及电力系统连接。
[0031] 一对输入输出端子IO1以及输入输出端子IO2是本发明涉及的“第一输入输出端口”的一个例子。一对输入输出端子IO3以及输入输出端子IO4是本发明涉及的“第二输入输出端口”的一个例子。
[0032] 开关电源装置1是双向DC-DC变换器,将从输入输出端子IO3、IO4输入的直流电压变压为给定值,并输出到与输入输出端子IO1、IO2连接的蓄电池,对蓄电池进行充电。此外,若从输入输出端子IO1、IO2输入蓄电池的充电电压,则开关电源装置1将其变压为给定值,并供给到与输入输出端子IO3、IO4连接的电力系统。
[0033] 在输入输出端子IO1、IO2连接有电容器C1以及开关电路11。开关电路11是开关元件Q11与开关元件Q12的串联电路和开关元件Q13与开关元件Q14的串联电路被并联连接而成的全桥电路。开关元件Q11~Q14例如是MOS-FET,其栅极与驱动器13连接。
[0034] 开关电路11是本发明涉及的“第一开关电路”的一个例子。开关元件Q11以及开关元件Q13是本发明涉及的“高压侧开关元件”的一个例子。开关元件Q12以及开关元件Q14是本发明涉及的“低压侧开关元件”的一个例子。
[0035] 开关元件Q11与开关元件Q12的连接点经由电感器L1与变压器T的一次绕组N1连接。一次绕组N1是本发明涉及的“第一线圈”的一个例子。此外,开关元件Q13与开关元件Q14的连接点经由电容器C3与变压器T的一次绕组N1连接。图1所示的电感器Lm是变压器T的励磁电感。另外,电感器Lm也可以是外设的实际部件。电感器L1、电容器C3以及电感器Lm构成LLC谐振电路10。
[0036] 另外,电感器L1也可以不是外设的实际部件,而是变压器T的漏电感。在该情况下,能够削减部件件数,因此能够降低成本、小型化。
[0037] 在输入输出端子IO3、IO4连接有电容器C2以及开关电路12。开关电路12是开关元件Q21与开关元件Q22的串联电路和开关元件Q23与开关元件Q24的串联电路被并联连接而成的全桥电路。开关元件Q21~Q24例如是MOS-FET,其栅极与驱动器14连接。
[0038] 开关电路12是本发明涉及的“第二开关电路”的一个例子。开关元件Q21以及开关元件Q23是本发明涉及的“高压侧开关元件”的一个例子。开关元件Q22以及开关元件Q24是本发明涉及的“低压侧开关元件”的一个例子。
[0039] 开关元件Q21与开关元件Q22的连接点与变压器T的二次绕组N2连接。此外,开关元件Q23与开关元件Q24的连接点与变压器T的二次绕组N2连接。二次绕组N2是本发明涉及的“第二线圈”的一个例子。
[0040] 驱动器13对开关元件Q11~Q14的栅极输出控制信号,并以由微型计算机15设定的开关频率对各开关元件Q11~Q14进行开关控制。具体地,驱动器13设置死区时间(dead time)而使开关元件Q11以及开关元件Q14和开关元件Q12以及开关元件Q13交替地通断。
[0041] 驱动器14对开关元件Q21~Q24的栅极输出控制信号,并以由微型计算机15设定的开关频率对各开关元件Q21~Q24进行开关控制。具体地,驱动器14设置死区时间而使开关元件Q21以及开关元件Q24和开关元件Q22以及开关元件Q23交替地通断。
[0042] 微型计算机15输出控制信号,使得对开关电路11以及开关电路12以给定的开关频率进行开关。驱动器13和驱动器14基于该控制信号对各开关元件进行驱动。此外,微型计算机15对开关频率进行扫描,搜索与LLC谐振电路10的谐振频率一致的开关频率。通过以与LLC谐振电路10的谐振频率一致的开关频率对开关电路11、12进行开关控制,从而开关电源装置1的功率变换效率变高。微型计算机15是本发明涉及的“开关频率设定部”的一个例子。
[0043] 若在对开关频率进行扫描时从频率调整部16接收到H电平的信号,则微型计算机15使开关频率下降,若接收到L电平的信号,则微型计算机15使开关频率上升,从而搜索最佳的开关频率。频率调整部16是本发明涉及的“开关频率设定部”的一个例子。
[0044] 频率调整部16具有单冲多谐振荡器(one shot multivibrator)16A、比较器16B、“与”门16C、“与”门16D、“与非”门16E、以及“或”门16F。
[0045] 单冲多谐振荡器16A将电流Ir的下降作为触发,输出一定时间的H电平。电流Ir是对输入输出端子IO1输入和从输入输出端子IO1输出的谐振电流。在电流Ir下降时,单冲多谐振荡器16A的输出信号(a)为H电平。电流Ir由与输入输出端子IO1连接的电流检测电路17来检测。电流检测电路17例如由电流互感器(current transformer)或电阻等构成。电流检测电路17是本发明涉及的“电流检测部”的一个例子。
[0046] 另外,单冲多谐振荡器16A能够适当地变更为微分电路等,只要能够检测电流的下降的即可。
[0047] 比较器16B对由电流检测电路17检测的电流Ir和阈值电流Imin进行比较。在电流Ir低于阈值电流Imin时,比较器16B的输出信号(b)为H电平。在电流Ir高于阈值电流Imin时,比较器16B的输出信号(b)为L电平。该阈值电流Imin例如是变压器T的励磁电流的最大值,可根据变压器的设计而适当地进行设定。
[0048] “或”门16F输出向开关元件Q11输入的栅极信号和向开关元件Q12输入的栅极信号的逻辑或。如前所述,开关元件Q11以及开关元件Q14和开关元件Q12以及开关元件Q13隔着死区时间交替地通断。也就是说,“或”门16F的输出信号(f)在死区时间成为L电平,除此以外成为H电平。
[0049] 另外,“或”门16F也可以是输出向开关元件Q13输入的栅极信号和向开关元件Q14输入的栅极信号的逻辑或的结构。
[0050] “与”门16C输出单冲多谐振荡器16A的输出和“或”门16F的输出的逻辑与。在电流Ir下降且开关元件Q11或开关元件Q12中的一者为导通的情况下,“与”门16C的输出信号(c)为H电平。
[0051] “与”门16D输出比较器16B的输出信号(b)和“与”门16C的输出信号(c)的逻辑与。在开关元件Q11或开关元件Q12中的一者为导通时电流Ir下降且电流Ir低于阈值电流Imin的情况下,“与”门16D的输出信号(d)为H电平。
[0052] “与非”门16E输出“与”门16D的输出信号(d)和“或”门16F的输出信号(f)的逻辑与非。关于“与非”门16E,在开关元件Q11或开关元件Q12导通、电流Ir下降且电流Ir低于阈值电流Imin的情况下,“与非”门16E的输出信号(e)为L电平。
[0053] 以下,对以与LLC谐振电路10的谐振频率一致的最佳的开关频率对开关电路11以及开关电路12进行开关控制的情况进行说明。优选以开关损耗少的ZVS方式对开关电路11以及开关电路12进行控制。
[0054] 例如,在开关元件Q11、Q14导通时,从输入输出端子IO1朝向开关电路11侧流过谐振电流。将此时的电流方向设为正方向。在该状态下,在谐振电流低于阈值电流Imin后将开关元件Q11、Q14关断。在此后紧接着的死区时间中,电流通过开关元件Q12、Q13的体二极管进行回流。在回流期间,若开关元件Q12、Q13接通,则进行ZVS接通,开始在开关元件Q12、Q13流过谐振电流。
[0055] 像这样,在是最佳的开关频率且抑制开关损耗而对开关电路11以及开关电路12进行开关控制的情况下,优选不在谐振的中途使开关元件关断。
[0056] 图2是示出开关频率比谐振频率高的情况下的频率调整部16的各元件的动作波形的图。
[0057] 在该例子中,开关元件Q11、Q12未在电流Ir低于阈值电流Imin的期间被关断。即,在谐振的中途,开关元件Q11、Q12被关断。因此,开关元件Q11、Q12的开关频率比最佳的开关频率高。
[0058] 此时,频率调整部16的输出信号(“与非”门16E的输出信号(e))始终为H电平。微型计算机15在接收到来自频率调整部16的H电平的输出信号的情况下,使扫描的开关频率下降。
[0059] 图3是示出开关频率比谐振频率低的情况下的频率调整部16的各元件的动作波形的图。
[0060] 在该例子中,开关元件Q11、Q12在电流Ir低于阈值电流Imin的期间被关断。然而,流过回流电流的期间(电流Ir的值变得大致平坦的期间)长,开关元件Q11、Q12的开关频率比最佳的开关频率低。
[0061] 在该状态下,频率调整部16的输出信号(e)成为L电平的时间长。在微型计算机15接收该L电平的信号的期间长的情况下(或者,每当成为L电平时),微型计算机15提高扫描的开关频率。
[0062] 像这样,微型计算机15根据“或”门16F的输出信号(f)使开关频率升降,使扫描的开关频率接近最佳的开关频率。
[0063] 图4是示出最佳的开关频率的情况下的频率调整部16的各元件的动作波形的图。
[0064] 在该例子中,开关元件Q11、Q12在电流Ir低于阈值电流Imin的期间被关断。而且,开关元件Q11、Q12在谐振周期的中途不被关断。因此,在该情况下,开关元件Q11、Q12的开关频率是最佳的开关频率。也就是说,通过对频率进行扫描,使得将频率调整部16的输出信号(e)成为L电平的期间最佳化,从而能够搜索最佳的开关频率。
[0065] 像以上那样,开关电源装置1通过根据电流Ir对开关频率进行修正,从而能够降低开关损耗。该搜索能够使用逻辑电路来进行,因此无需进行高速的处理的微型计算机等。由此,可实现成本的降低。此外,即使在开关电源装置1制造后,也能够搜索最佳的开关频率,因此可减少量产时的检查工序。进而,即使随时间劣化从而LLC谐振电路10的谐振频率变动,也能够搜索最佳的开关频率。
[0066] 该最佳的开关频率的搜索优选定期地进行。通过这样,从而开关电源装置1能够维持高的功率变换效率。
[0067] 另外,虽然在本实施方式中示出了在变压器T的一次侧设置了LLC谐振电路10的例子,但是也可以在二次侧设置LLC谐振电路10。即使在该情况下,各开关元件的开关控制也相同。
[0068] 在本实施方式中,开关电路11以及开关电路12作为全桥电路而进行了说明,但是并不限定于此。
[0069] 图5是另一个例子的开关电源装置1A的电路图。在该例子中,与输入输出端子IO1、IO2连接的开关电路11A和与输入输出端子IO3、IO4连接的开关电路12A分别是半桥电路。
[0070] 开关电路11A是开关元件Q11与开关元件Q12的串联电路和电容器C41与电容器C42的串联电路被并联连接而成的半桥电路。
[0071] 开关电路12A是开关元件Q23与开关元件Q24的串联电路和电容器C51与电容器C52的串联电路被并联连接而成的半桥电路。
[0072] 图6是另一个例子的开关电源装置1B的电路图。在该例子中,在输入输出端子IO1、IO2连接作为半桥电路的开关电路11A,在输入输出端子IO3、IO4连接作为全桥电路的开关电路12。
[0073] 即使是开关电源装置1A、1B的电路结构,也能够搜索最佳的开关频率。
[0074] 另外,电流检测电路17也可以设置在输入输出端子IO3侧。在该情况下,频率调整部16的“或”门16F构成为,输出向开关元件Q21(或开关元件Q23)输入的栅极信号和向开关元件Q22(或开关元件Q24)输入的栅极信号的逻辑或。进而,电流检测电路17也可以设置在输入输出端子IO2、IO4侧。
[0075] (实施方式2)
[0076] 实施方式1涉及的开关电源装置为双向的电流谐振型DC-DC变换器,相对于此,实施方式2涉及的开关电源装置是单向的电流谐振型DC-DC变换器,这一点与实施方式1不同。以下,仅针对与实施方式1的不同点进行说明。
[0077] 图7是实施方式2涉及的开关电源装置2的电路图。
[0078] 开关电源装置2具有包含一次绕组N1和二次绕组N3的变压器T1。一次绕组N1与开关电路11连接。二次绕组N3的第一端经由二极管D1与输入输出端子IO3连接。此外,二次绕组N3的第二端经由二极管D2与输入输出端子IO3连接。二次绕组N3具有中间抽头,该中间抽头与输入输出端子IO4连接。
[0079] 开关电源装置2具备的频率调整部16的结构以及动作与实施方式1相同。
[0080] 图8是另一个例子的开关电源装置2A的电路图。在该例子中,与输入输出端子IO1、IO2连接的开关电路11B是半桥电路。
[0081] 开关电路11B是电容器C43与电容器C44的串联电路和开关元件Q13与开关元件Q14的串联电路被并联连接而成的半桥电路。
[0082] 即使是该开关电源装置2、2A的结构,通过根据电流Ir对开关频率进行修正,从而也能够降低开关损耗。该搜索能够使用逻辑电路来进行,因此无需进行高速的处理的微型计算机等。由此,可实现成本的降低。此外,即使在开关电源装置2、2A制造后,也能够搜索最佳的开关频率,因此可减少量产时的检查工序。进而,即使随时间劣化从而LLC谐振电路10的谐振频率变动,也能够搜索最佳的开关频率。
[0083] 附图标记说明
[0084] C1、C2、C3:电容器;
[0085] C41、C42、C43、C44:电容器;
[0086] C51、C52:电容器;
[0087] D1、D2:二极管;
[0088] IO1、IO2:输入输出端子(第一输入输出端口);
[0089] IO3、IO4:输入输出端子(第二输入输出端口);
[0090] L1、Lm:电感器;
[0091] N1:一次绕组(第一线圈);
[0092] N2、N3:二次绕组(第二线圈);
[0093] Q11、Q14:开关元件(高压侧开关元件);
[0094] Q12、Q13:开关元件(低压侧开关元件);
[0095] Q21、Q23:开关元件(高压侧开关元件);
[0096] Q22、Q24:开关元件(低压侧开关元件);
[0097] T、T1:变压器;
[0098] 1、1A、1B、2、2A:开关电源装置;
[0099] 10:LLC谐振电路;
[0100] 11、11A、11B:开关电路(第一开关电路);
[0101] 12、12A:开关电路(第二开关电路);
[0102] 13、14:驱动器;
[0103] 15:微型计算机(开关频率设定部);
[0104] 16:频率调整部(开关频率设定部);
[0105] 16A:单冲多谐振荡器;
[0106] 16B:比较器;
[0107] 16C:“与”门;
[0108] 16D:“与”门;
[0109] 16E:“与非”门;
[0110] 16F:“或”门;
[0111] 17:电流检测电路(电流检测部)。