一种Cu-Ni-Mn-Fe合金室温快速热处理方法转让专利

申请号 : CN201810530946.7

文献号 : CN108715984B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 邹军涛石浩梁淑华肖鹏翟瑞锋董运涛

申请人 : 西安理工大学

摘要 :

本发明公开了一种Cu‑Ni‑Mn‑Fe合金室温快速热处理方法,首先将真空感应熔炼后的Cu‑Ni‑Mn‑Fe合金加工成板材并对合金板材进行室温冷变形处理,然后采用电脉冲处理技术在室温下对冷变形后的Cu‑Ni‑Mn‑Fe合金板材进行短时固溶处理,再通过调整电脉冲参数对经过短时固溶处理后的合金板材进行室温电脉冲时效处理,最终得到经快速热处理的Cu‑Ni‑Mn‑Fe合金。本发明的一种Cu‑Ni‑Mn‑Fe合金室温快速热处理方法,解决了现有Cu‑Ni‑Mn‑Fe合金热处理周期长,能耗高,沉淀析出不充分,析出相分布不均匀的问题。

权利要求 :

1.一种Cu-Ni-Mn-Fe合金室温快速热处理方法,其特征在于,首先将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成板材并对合金板材进行室温冷变形处理,然后采用电脉冲处理技术在室温下对冷变形后的Cu-Ni-Mn-Fe合金板材进行短时固溶处理,再通过调整电脉冲参数对经过短时固溶处理后的合金板材进行室温电脉冲时效处理,最终得到经快速热处理的Cu-Ni-Mn-Fe合金;

所述短时固溶处理的具体方法为:在室温下对冷变形后的合金板材进行电脉冲处理,设定脉冲设备充电电压为50~70V,脉冲频率为325~400Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为180~300s,水冷至室温;

所述室温电脉冲时效处理过程具体为:在室温下对经过短时固溶处理后的合金板材施加充电电压为40~50V,脉冲频率为275~350Hz,利用表面测温设备监测温度区间为410~

440℃,处理时间为1~3h,空冷。

2.根据权利要求1所述的一种Cu-Ni-Mn-Fe合金室温快速热处理方法,其特征在于,所述将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成板材并对合金板材进行室温冷变形处理的具体方法为:将Cu-Ni-Mn-Fe合金铸锭采用电火花线切割的方式加工成板材,利用双辊轧机对合金板材进行室温冷变形处理。

3.根据权利要求2所述的一种Cu-Ni-Mn-Fe合金室温快速热处理方法,其特征在于,所述利用双辊轧机对合金板材进行室温冷变形处理的控制变形量为20%~50%,变形沿板材长度方向。

说明书 :

一种Cu-Ni-Mn-Fe合金室温快速热处理方法

技术领域

[0001] 本发明属于多元Cu合金新型热处理工艺开发领域,具体涉及一种Cu-Ni-Mn-Fe合金室温快速热处理方法。

背景技术

[0002] Cu-Ni-Mn-Fe合金是一种典型的沉淀强化型多元Cu合金材料,该合金高温性能好,同时具有高弹性、高强度、无磁、无毒且成本较为低廉等优点,可以作为铍青铜替代材料,因而广泛应用于交通、电力、通讯、工业控制等领域。作为沉淀强化型合金材料,热处理工艺在溶质原子迁移及沉淀析出过程中至关重要。目前,Cu-Ni-Mn-Fe合金沉淀强化效应主要通过传统的固溶时效处理实现,通过固溶处理使合金组织形成过饱和固溶体,进而在后期时效处理过程中溶质原子从基体中析出产生沉淀相。但这一工艺时效周期长(需520℃下1h固溶处理与430℃下72h时效处理),需耗费大量能源,因此不利于实现工业化生产。同时单一热效应作用下,溶质原子析出驱动力有限,沉淀析出过程不能充分进行,析出相分布不均匀。

发明内容

[0003] 本发明的目的是提供一种Cu-Ni-Mn-Fe合金室温快速热处理方法,解决了现有Cu-Ni-Mn-Fe合金热处理周期长,能耗高,沉淀析出不充分,析出相分布不均匀的问题。
[0004] 本发明所采用的技术方案是,一种Cu-Ni-Mn-Fe合金室温快速热处理方法,首先将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成板材并对合金板材进行室温冷变形处理,然后采用电脉冲处理技术在室温下对冷变形后的Cu-Ni-Mn-Fe合金板材进行短时固溶处理,再通过调整电脉冲参数对经过短时固溶处理后的合金板材进行室温电脉冲时效处理,最终得到经快速热处理的Cu-Ni-Mn-Fe合金。
[0005] 本发明的特征还在于,
[0006] 将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成板材并对合金板材进行室温冷变形处理的具体方法为:将Cu-Ni-Mn-Fe合金铸锭采用电火花线线切割的方式加工成板材,利用双辊轧机对合金板材进行室温冷变形处理。
[0007] 利用双辊轧机对合金板材进行室温冷变形处理的控制变形量为20%~50%,变形沿板材长度方向。
[0008] 采用电脉冲处理技术在室温下对冷变形后的Cu-Ni-Mn-Fe合金板材进行短时固溶处理的具体方法为:在室温下对冷变形后的合金板材进行电脉冲处理,设定脉冲设备充电电压为50~70V,脉冲频率为325~400Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为180~300s,水冷至室温。
[0009] 通过调整电脉冲参数对经过短时固溶处理后的合金板材进行室温电脉冲时效处理过程具体为:在室温下对经过短时固溶处理后的合金板材施加充电电压为40~50V,脉冲频率为275~350Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为1~3h,空冷。
[0010] 本发明的有益效果是,本发明的一种Cu-Ni-Mn-Fe合金室温快速热处理方法,通过室温下冷变形加工在合金组织中引入大量位错和空位等缺陷,结合电脉冲处理工艺,在短时间内对合金通入高密度脉冲电流,利用脉冲电流在合金中同时产生焦耳热效应与电迁移效应,促进了合金中溶质原子的迁移与沉淀相的析出,极大地缩短了传统热处理周期,降低了Cu-Ni-Mn-Fe合金热处理过程能耗,并且使沉淀析出过程更加充分,其次,电脉冲处理后合金晶界处发生回复与再结晶,产生细小的再结晶晶粒,有助于提高合金塑韧性。电脉冲处理后的Cu-Ni-Mn-Fe合金在180~300s内即可完成固溶处理过程,时效处理过程在1~3h内即可完成,并且经过电脉冲处理后的Cu-Ni-Mn-Fe合金硬度可达HB320以上,抗拉强度可达850MPa以上。

附图说明

[0011] 图1是传统固溶时效处理后的Cu-Ni-Mn-Fe合金组织;
[0012] 图2是本发明实施例3电脉冲处理后的Cu-Ni-Mn-Fe合金组织;
[0013] 图3是本发明实施例3电脉冲处理后的Cu-Ni-Mn-Fe合金与传统热处理强化方式强度、硬度统计结果对比图。

具体实施方式

[0014] 下面结合附图和具体实施方式对本发明进行详细说明。
[0015] 本发明一种Cu-Ni-Mn-Fe合金室温快速热处理方法,首先将真空感应熔炼后的Cu-Ni-Mn-Fe合金铸锭采用电火花线线切割的方式加工成板材,利用双辊轧机对合金板材进行室温冷变形处理,其中冷变形处理的控制变形量为20%~50%,变形沿板材长度方向,然后采用电脉冲处理技术在室温下对冷变形后的Cu-Ni-Mn-Fe合金板材进行短时固溶处理,其中,设定脉冲设备充电电压为50~70V,脉冲频率为325~400Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为180~300s,水冷至室温,再通过调整电脉冲参数对经过短时固溶处理后的合金板材进行室温电脉冲时效处理,其中,施加充电电压为40~50V,脉冲频率为275~350Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为1~3h,空冷,最终得到经快速热处理的Cu-Ni-Mn-Fe合金。
[0016] Cu-Ni-Mn-Fe合金在室温电脉冲处理条件下,在短时间内对合金通入高密度脉冲电流,利用脉冲电流在合金中同时产生焦耳热效应与电迁移效应,促进了合金中溶质原子的迁移与沉淀相的析出,极大地缩短了传统热处理周期,降低了Cu-Ni-Mn-Fe合金热处理过程能耗。同时,由于前期冷变形处理积累的大量位错和空位等缺陷,为合金沉淀析出过程提供了大量形核质点,保证沉淀析出更加充分。
[0017] 本发明一种Cu-Ni-Mn-Fe合金室温快速热处理方法,经过电脉冲处理后的Cu-Ni-Mn-Fe合金在180~300s内即可完成固溶处理过程,时效处理过程在1~3h内即可完成,相比于传统热处理强化方式(需520℃下1h固溶处理与430℃下72h时效处理),极大地缩短了热处理周期,并且处理过程在室温下进行,操作简便,绿色环保,热处强化效果显著,经过电脉冲处理后的Cu-Ni-Mn-Fe合金硬度可达HB320以上,抗拉强度可达850MPa以上,为合金材料热处理强化工艺改进提供了新的思路。
[0018] 实施例1
[0019] Cu-Ni-Mn-Fe合金室温快速热处理,将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成尺寸为60mm×10mm×3mm板材并用砂纸对合金表面打磨,然后在双辊轧机上对加工后的Cu-Ni-Mn-Fe合金进行室温冷变形处理,控制变形量为20%,变形沿板材长度方向。
[0020] 结合传统热处理强化工艺温度,将冷变形后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,设定充电电压为70V,脉冲频率为400Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为300s,水冷至室温。
[0021] 将电脉冲固溶处理后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,施加充电电压为50V,脉冲频率为350Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为3h,空冷,得到高硬度、高强度Cu-Ni-Mn-Fe合金,其硬度可达HB280,抗拉强度可达780MPa。
[0022] 实施例2
[0023] Cu-Ni-Mn-Fe合金室温快速热处理,将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成尺寸为60mm×10mm×3mm板材并用砂纸对合金表面打磨,然后在双辊轧机上对加工后的Cu-Ni-Mn-Fe合金进行室温冷变形处理,控制变形量为38%,变形沿板材长度方向。
[0024] 将冷变形后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,设定充电电压为50V,脉冲频率为350Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为210s,水冷至室温。
[0025] 结合传统热处理强化工艺温度,将电脉冲固溶处理后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,施加充电电压为40V,脉冲频率为275Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为1.5h,空冷,得到高硬度、高强度Cu-Ni-Mn-Fe合金,其硬度可达HB300,抗拉强度可达800MPa。
[0026] 实施例3
[0027] Cu-Ni-Mn-Fe合金室温快速热处理,将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成尺寸为60mm×10mm×3mm板材并用砂纸对合金表面打磨,然后在双辊轧机上对加工后的Cu-Ni-Mn-Fe合金进行室温冷变形处理,控制变形量为38%,变形沿板材长度方向。
[0028] 结合传统热处理强化工艺温度,将冷变形后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,设定充电电压为60V,脉冲频率为375Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为240s,水冷至室温。
[0029] 将电脉冲固溶处理后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,施加充电电压为45V,脉冲频率为325Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为2h,空冷,得到高硬度、高强度Cu-Ni-Mn-Fe合金,其硬度可达HB320,抗拉强度可达850MPa。
[0030] 图1是传统热处理强化Cu-Ni-Mn-Fe合金组织,呈现树枝晶方式生长。
[0031] 图2为本实施例电脉冲处理下的Cu-Ni-Mn-Fe合金组织,呈现树枝晶方式生长,晶界处有细小的再结晶晶粒产生,相比于传统固溶时效处理后的合金组织,消除了晶界处部分缺陷,能够改善合金热处理强化后塑韧性差的问题。由于脉冲电流所产生的电迁移效应与热效应,Cu-Ni-Mn-Fe合金在短时间内就实现了热处理强化。
[0032] 图3为本实施例电脉冲处理后的Cu-Ni-Mn-Fe合金与传统热处理强化方式强度、硬度统计结果对比图。经过240s电脉冲固溶处理与2h电脉冲时效处理后的Cu-Ni-Mn-Fe合金强度硬度与传统热处理相差不大,表明室温快速电脉冲处理方式可替代传统长周期热处理工艺,并且后期测试发现电脉冲处理后合金塑韧性较传统热处理工艺下有所提高。
[0033] 实施例4
[0034] Cu-Ni-Mn-Fe合金室温快速热处理,将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成尺寸为60mm×10mm×3mm板材并用砂纸对合金表面打磨,然后在双辊轧机上对加工后的Cu-Ni-Mn-Fe合金进行室温冷变形处理,控制变形量为50%,变形沿板材长度方向。
[0035] 将冷变形后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,设定充电电压为50V,脉冲频率为325Hz,,利用表面测温设备监测温度区间为510~540℃,处理时间为180s,水冷至室温。
[0036] 结合传统热处理强化工艺温度,将电脉冲固溶处理后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,施加充电电压为45V,脉冲频率为300Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为1h,空冷,得到高硬度、高强度Cu-Ni-Mn-Fe合金,其硬度可达HB310,抗拉强度可达820MPa。
[0037] 实施例5
[0038] Cu-Ni-Mn-Fe合金室温快速热处理,将真空感应熔炼后的Cu-Ni-Mn-Fe合金加工成尺寸为60mm×10mm×3mm板材并用砂纸对合金表面打磨,然后在双辊轧机上对加工后的Cu-Ni-Mn-Fe合金进行室温冷变形处理,控制变形量为50%,变形沿板材长度方向。
[0039] 将冷变形后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,设定充电电压为50V,脉冲频率为325Hz,利用表面测温设备监测温度区间为510~540℃,处理时间为210s,水冷至室温。
[0040] 结合传统热处理强化工艺温度,将电脉冲固溶处理后的Cu-Ni-Mn-Fe合金夹持在TDHM-2型电脉冲处理设备电极两端,施加充电电压为40V,脉冲频率为275Hz,利用表面测温设备监测温度区间为410~440℃,处理时间为1.5h,空冷,得到高硬度、高强度Cu-Ni-Mn-Fe合金,其硬度可达HB260,抗拉强度可达750MPa。