具有补偿的光源光通量的机动车车灯转让专利

申请号 : CN201810327076.3

文献号 : CN108738195B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 米盖尔-安吉尔·佩娜曼纽尔·卡尔美斯塔安东尼奥·多明戈·伊兰约安-乔瑟·圣提埃拉米盖尔·安吉尔·坎迪杜

申请人 : 法雷奥照明公司

摘要 :

一种机动车车灯(200),包括:由电流(301,401)驱动的光源(202,601‑603);和电子电路(204,800,850),所述电子电路(204,800,850)被配置为改变驱动所述光源(202,601‑603)的所述电流(301,401);电子电路(204,800,850)包括多个分立的模拟电子部件;电子电路被配置为:改变驱动光源的电流,从而以第一电流IL1(310)或以第二电流IL2(320)驱动光源;当光源的温度T增加并且超过第一温度水平TL1inc(330)时,从第一电流IL1切换到第二电流IL2;当温度T增加并且超过第二温度水平TL2inc(340)时,从第二电流IL2切换到第一电流IL1;第二电流IL2大于第一电流IL1;并且第二温度水平TL2inc大于第一温度水平TL1inc。此外,还提供了一种用于驱动机动车车灯的光源的方法。

权利要求 :

1.一种机动车车灯(200),包括:

由电流(301、401)驱动的光源(202、601-603);和电子电路(204、800、850),所述电子电路(204、800、850)被配置为改变驱动所述光源(202、601-603)的所述电流(301、401);

其特征在于:

所述电子电路(204、800、850)包括多个分立的模拟电子部件;

所述电子电路(204、800、850)被配置为:改变驱动光源(202、601-603)的电流(301、401),从而以第一电流IL1(310)或以第二电流IL2(320)驱动光源(202、601-603);

当光源(202、601-603)的温度T增加并且超过第一温度水平TL1inc(330)时,从第一电流IL1(310)切换到第二电流IL2(320);

当所述温度T增加并且超过第二温度水平TL2inc(340)时,从第二电流IL2(320)切换到第一电流IL1(310);

第二电流IL2(320)大于第一电流IL1(310);和第二温度水平TL2inc(340)大于第一温度水平TL1inc(330),所述电子电路(204、800、

850)进一步被配置为:

当所述温度T下降并且小于第三温度水平TL2dec(350)时,从第一电流IL1(310)切换到第二电流IL2(320);并且当所述温度T降低并且小于第四温度水平TL1dec(360)时,从第二电流IL2(320)切换到第一电流IL1(310);

其中第三温度水平TL2dec(350)大于第四温度水平TL1dec(360)。

2.根据权利要求1所述的机动车车灯(200),其中,第二温度水平TL2inc(340)大于第三温度水平TL2dec(350);

第三温度水平TL2dec(350)大于第一温度水平TL1inc(330);并且第一温度水平TL1inc(330)大于第四温度水平TL1dec(360)。

3.根据权利要求2所述的机动车车灯(200),其中,所述多个分立的模拟电子部件包括多个电阻器(841-844、891-894),所述多个电阻器被配置为调节所述第一温度水平TL1inc(330)、第二温度水平TL2inc(340)、第三温度水平TL2dec(350)和第四温度水平TL1dec(360)中的每一个的值。

4.根据前述权利要求中任一项所述的机动车车灯(200),其中,所述光源(202、601-603)包括由多个基于半导体的光源(601-603)形成的支路。

5.根据权利要求4所述的机动车车灯(200),进一步包括,热敏电阻器,所述热敏电阻器被配置为感测由多个基于半导体的光源(601-603)形成的所述支路的温度T或所述光源(202、601-603)的基板的温度T。

6.根据权利要求1-3中任一项所述的机动车车灯(200),其中,所述电子电路(204、800、850)不包括微控制器。

7.根据权利要求1-3中任一项所述的机动车车灯(200),其中,所述机动车车灯(200)是用于机动车辆的后雾灯。

8.一种机动车辆,该机动车辆包括后雾灯,所述后雾灯包括根据权利要求1至6中任一项所述的机动车车灯(200)。

9.一种用于驱动机动车车灯(200)的光源(202、601-603)的方法,所述方法在包括多个分立的模拟电子部件的电子电路(204、800、850)中实现,所述方法包括:以第一电流IL1(310)驱动光源(202、601-603);

当光源(202、601-603)的温度T增加并超过第一温度水平TL1inc(330)时,从第一电流IL1(310)切换到第二电流IL2(320);和当所述温度T增加并且超过第二温度水平TL2inc(340)时,从第二电流IL2(320)切换到第一电流IL1(310);

其中,第二电流IL2(320)大于第一电流IL1(310);并且其中,第二温度水平TL2inc(340)大于第一温度水平TL1inc(330),所述方法还包括:

当所述温度T降低并且小于第三温度水平TL2dec(350)时,从第一电流IL1(310)切换到第二电流IL2(320);以及当所述温度T下降并且小于第四温度水平TL1dec(360)时,从第二电流IL2(320)切换到第一电流IL1(310);

其中,第三温度水平TL2dec(350)大于第四温度水平TL1dec(360)。

10.根据权利要求9所述的方法,其中,

第二温度水平TL2inc(340)大于第三温度水平TL2dec(350);

第三温度水平TL2dec(350)大于第一温度水平TL1inc(330);并且第一温度水平TL1inc(330)大于第四温度水平TL1dec(360)。

11.根据权利要求10所述的方法,其中,

所述多个分立的模拟电子部件包括多个电阻器(841-844、891-894),并且所述方法进一步包括:为所述多个电阻器(841-844、891-894)中的每个电阻器选择电阻以调节第一温度水平TL1inc(330)、第二温度水平TL2inc(340)、第三温度水平TL2dec(350)和第四温度水平TL1dec(360)中的每一个的值。

12.根据权利要求9-11中任一项所述的方法,其中,所述光源(202、601-603)包括由多个基于半导体的光源(601-603)形成的支路,并且所述方法还包括:提供热敏电阻以用于感测由多个基于半导体的光源(601-603)形成的支路或光源(202、601-603)的基板中的一个的温度T。

13.一种用于制造机动车车灯(200)的方法,所述方法包括:提供光源(202、601-603);以及

连接电子电路(204、800、850),以根据权利要求9-12中任一项所述的方法驱动所述光源(202、601-603)。

说明书 :

具有补偿的光源光通量的机动车车灯

技术领域

[0001] 本发明涉及照明装置的领域。更具体地,本发明涉及补偿光源的热损耗并且能够防止光源过热的机动车车灯。

背景技术

[0002] 众所周知,LED驱动光源具有许多优点,其中一个重要的优点是它们比卤素光源或氙光源更高效:LED可以提供比卤素光源或氙气光源更高的每瓦流明度。这是LED在照明装置中普遍受欢迎的主要原因之一。出于类似的原因,汽车行业也在为机动车车灯使用LED而努力。
[0003] 与优点相反,LED的缺点是它们提供的光不是恒定的:由LED辐射的光通量根据LED的温度而变化,具体而言,光通量随着光源的温度增加而降低。在LED的制造商提供的数据表中说明了LED的这种行为,以便用户可以知道在给定温度下LED可以预期提供多少光通量。
[0004] 由于通常在能见度低的情况下(例如在黄昏时,在夜间时等)使用一些机动车车灯,所以这些灯可以长时间使用。在使用中,光源的LED的温度开始升高,并且因此LED所提供的光通量减小。因此,在机动车车灯的设计和生产过程中,LED的散热不能被忽视,因为它允许LED在长时间内提供足够的光。
[0005] 尽管如此,汽车安全法规规定,特定的机动车车灯在很长一段时间内提供光,强度略有变化,这可以通过在特定的一段时间内发生的最大光通量与最小光通量之比(在此称为通量比)来量化。因此,对机动车车灯可能施加非常严格的光度学要求,并且如果机动车车灯应该被认证使用,则必须满足这些要求。
[0006] 在机动车车灯中使用散热技术(当使用LED作为光源时)通常证明不足以确保通量比在汽车安全法规中规定的可接受范围内。因此,处理来自LED的可变光通量的问题的一种方法是通过调节驱动LED的电流:向LED提供更高的电流来辐射更多的光通量,但作为交换,光源的温度增加更快。现有技术中已经进行了几次尝试来补偿这种方法之后的光源的热损耗。
[0007] 国际申请WO2015/059675A1涉及一种具有电子电路的机动车车灯,该电子电路控制驱动灯的LED的电流以补偿由于温度引起的光通量的变化。该电路具有反馈回路,以用于根据补偿功能和LED的温度来调节驱动LED的电流,因此电流可以根据LED辐射的当前光通量连续改变,并且通量可以保持基本稳定。
[0008] 欧洲专利申请EP2355621A2公开了一种调节供应给机动车车灯的一个或多个LED的电流的电子电路。据称该电路调节电流以补偿由LED辐射的光通量相对于其温度的变化;该电路甚至可以通过将电流的强度改变为较低的强度来防止LED过热。然而,该欧洲专利申请并未公开该电路如何实际实施。
[0009] 对提供具有一个或多个基于半导体的光源的机动车车灯有兴趣,所述光源可以提供基本恒定的光通量,并且此外可以满足严格的通量比。因此,希望具有成本有效的电子电路,该电子电路可以补偿由于基于半导体的光源的温度升高引起的光通量损耗,并且可以保护基于半导体的光源免于过热。

发明内容

[0010] 本发明的第一方面涉及一种机动车车灯,包括:由电流驱动的光源;以及被配置为改变驱动光源的电流的电子电路;该电子电路包括多个分立的模拟电子部件;电子电路被配置为:改变驱动光源的电流以便以第一电流IL1或第二电流IL2驱动光源;当光源的温度T增加并且超过第一温度水平TL1inc时,从第一电流IL1切换到第二电流IL2;并且当温度T增加并且超过第二温度水平TL2inc时从第二电流IL2切换到第一电流IL1;第二电流IL2大于第一电流IL1;并且第二温度水平TL2inc大于第一温度水平TL1inc。
[0011] 电源以电流的形式向光源供应电力,电子电路根据光源的温度T改变电流。在一些实施例中,电源被提供为机动车车灯的一部分。它也可以被设置为汽车内的发电源,例如交流发电机或电池。
[0012] 电源向电子电路和光源都连接到的电流驱动电路提供电势。电流驱动电路产生用于驱动光源的电流。电子电路通过提供可以在两个值之间变化的阻抗来改变驱动光源的电流,并且因此以第一电流IL1或第二电流IL2驱动光源。温度传感器(例如但不限于热敏电阻)感测光源的温度,并向电子电路提供指示感测温度的电压或电流,该电子电路又将阻抗从第一值变为第二值或反之亦然,从而从第一电流IL1切换到第二电流IL2,反之亦然。
[0013] 电子电路被配置为当由温度传感器感测到的光源的温度增加并且超过第一温度水平TL1inc时,即当传感器提供的电压或电流(根据特定温度传感器的传递函数)指示另外地超过第一温度水平TL1inc的增加温度时,将阻抗从第一值改变为第二值。因此,电子电路将驱动光源的电流从第一电流IL1切换到第二电流IL2。例如但不限于,阻抗的第一值和第二值中的一个可以对应于开路。
[0014] 由于光源的温度通常升高,因此预期由光源提供的光通量减小,因此通过切换到较高强度的电流(第二电流IL2),光源的热损耗可以被补偿,从而提供基本恒定的光通量。例如,这可以减轻光源首次激活时光源提供的光通量(光源在最初的几秒或几分钟内例如
10秒,30秒,1分钟,2分钟等时是凉的)相对于几分钟后(例如10分钟,20分钟,30分钟,40分钟等)的光通量的差值,因为这是由于长时间的操作而光源已经是热的。在不改变电流的情况下,在例如1分钟之后和30分钟(用于一些机动车车灯的认证的时间值)之后用光通量计算的通量比可能超出允许的范围;这意味着第1分钟的光通量以超过规定的方式大于第30分钟的光通量。
[0015] 当光源处于工作状态时,热通常会在光源本身和/或安装它的基板上以一定的速率累积,该速率取决于所提供的散热装置。由于驱动光源的电流具有更高的强度,热也增加得更快,所以通过增加电流来简单地补偿光通量中的热损耗并不是长期的解决方案:光源最终会烧毁或甚至爆炸。在这方面,当光源的温度T过高时,电子电路还通过以较低强度的电流(第一电流IL1)驱动光源来防止光源过热。由于光源温度较高,而驱动它的电流较小,因此提供的光通量可能小于安全驾驶的最小值,但作为交换,光源的使用寿命可能会延长。
[0016] 电子电路被配置为当由温度传感器感测到的光源的温度增加并且超过第二温度水平TL2inc时,即当传感器提供的电压或电流(根据特定温度传感器的传递函数)指示另外地超过第二温度水平TL2inc的增加温度时,将阻抗从第二值改变到第一值。因此,电子电路将驱动光源的电流从第二电流IL2切换到第一电流IL1。
[0017] 在本发明的优选实施例中,电子电路还被配置为当温度T降低并且小于第三温度水平TL2dec时从第一电流IL1切换到第二电流IL2;并且当温度T降低并且小于第四温度水平TL1dec时,从第二电流IL2切换到第一电流IL1;其中第三温度水平TL2dec大于第四温度水平TL1dec。
[0018] 可能发生的情况是,在某些时候,光源太热以至于需要太大的电流来补偿光通量的损耗。在这种情况下,驱动光源的电流可能较低,以避免过热或节省电力。然而,当光源的温度T开始降低时,使得光源会烧坏或爆炸的风险降低,并且光源需要提供所需光通量的电流是可接受的(例如当温度T低于第三温度水平TL2dec时),电子电路可以将驱动光源的电流从第一电流IL1切换到第二电流IL2,从而增加由光源提供的光通量。
[0019] 类似地,当光源的温度T充分下降使得光源基本上为凉的时(例如,当温度T低于第四温度水平TL1dec时),电子电路可以将驱动光源的电流从第二电流IL2切换为第一电流IL1。以这种方式,由于不需要补偿热损耗,所以由光源提供的光通量可以保持基本恒定。
[0020] 优选地,在这些实施例中,第二温度水平TL2inc大于第三温度水平TL2dec;第三温度水平TL2dec大于第一温度水平TL1inc;并且第一温度水平TL1inc大于第四温度水平TL1dec。也就是说,遵循这个规则:
[0021] TL2inc>TL2dec>TL1inc>TL1dec
[0022] 电子电路配置有滞后作用,使得在任何温度水平周围的微小温度变化不会导致第一电流IL1和第二电流IL2之间的经常切换。
[0023] 在这些实施例中的一些中,多个分立的模拟电子部件包括多个电阻器,多个电阻器被配置为调节第一温度水平TL1inc,第二温度水平TL2inc,第三温度水平TL2dec和第四温度水平TL1dec中的每一个的值。一些分立的模拟电子部件可以是例如电阻器,其值可以被选择来调节电子电路切换驱动光源的电流时的温度水平。如果在已经制造机动车车灯时需要改变其中一个,一些或全部温度水平,则可以选择必要的分立的模拟电子部件,并且用户可以替换已经在位的部件(即拆焊以前的部件并焊接新的部件)。
[0024] 在一些实施例中,光源包括至少一个基于半导体的光源;所述至少一个基于半导体的光源包括以下之一:至少一个LED,至少一个OLED(即有机发光二极管)和至少一个激光器。在这些实施例中的一些中,光源包括多个基于半导体的光源的支路,多个基于半导体的光源包括两个或更多个LED或OLED芯片。在这个意义上,电子电路可以改变驱动所述两个或更多个LED或OLED的电流。
[0025] 在一些实施例中,机动车车灯还包括被配置为感测至少一个基于半导体的光源、多个基于半导体的光源的支路或者光源的基板中的一个的温度T的热敏电阻。也就是说,机动车车灯的温度传感器可以包括热敏电阻,热敏电阻直接从一个基于半导体的光源或者从安装有一个或多个基于半导体的光源的基板感测温度T。
[0026] 从基板感测温度可能是方便的,因为通常它是可安装的基于半导体的光源的共用基板(在光源包括多于一个基于半导体的光源的那些实施例中)并且因此它可以提供基于半导体的光源的平均温度。优选地,热敏电阻是NTC(即负温度系数)型热敏电阻,然而在不偏离本公开的范围的情况下,其他类型的热敏电阻也是可能的。
[0027] 在本发明的优选实施例中,电子电路不包括微控制器。电子电路能够改变驱动光源的电流,从而补偿光源的热损耗并防止光源过热而没有使用会增加电子电路本身的成本和机动车车灯的总体成本的任何微控制器。
[0028] 在一些实施例中,机动车车灯是用于机动车辆的后雾灯。
[0029] 就通量比而言,机动车辆的后雾灯通常具有特别苛刻的认证要求。后雾灯产生非常明亮的光线,非常明亮的光线有助于在有雾时识别前方其他车辆。因此,为了使后雾灯被认证用于机动车辆,要求其在某些特定时刻的通量比在(要求)范围内(否则在某些情况下由灯提供的光过于明亮,例如当灯为凉的时,或在某些其他情况下太暗,例如当灯很热时,这两种情况都不适合安全驾驶)。就这一点而言,本公开的电子电路允许用于机动车辆的后雾灯(其中灯包括一个或多个基于半导体的光源形式的光源)可满足通过所需认证的通量比。
[0030] 本发明的第二方面涉及一种包括后雾灯的机动车辆,其中后雾灯包括根据本发明的第一方面的机动车车灯。
[0031] 本发明的第三方面涉及一种用于驱动机动车车灯的光源的方法,所述方法在包括多个分立的模拟电子部件的电子电路中实现,所述方法包括:以第一电流IL1驱动所述光源;当光源的温度T增加并且超过第一温度水平TL1inc时,从第一电流IL1切换到第二电流IL2,并且当温度T增加并且超过第二温度水平TL2inc时,从第二电流IL2切换到第一电流IL1;其中第二电流IL2大于第一电流IL1;并且其中第二温度水平TL2inc大于第一温度水平TL1inc。
[0032] 电子电路具有在第一值和第二值之间变化的阻抗,并且通过调节该阻抗来执行该方法。电源向连接到电子电路和光源的电流驱动电路提供电压。电流驱动电路中的这个电压产生驱动光源的电流。在一些实施例中,电源被提供为机动车车灯的一部分。它也可以被设置为汽车内的发电源,例如交流发电机或电池。
[0033] 起初,驱动光源的电流是第一电流IL1(取决于由电子电路产生的阻抗的值)。
[0034] 用温度传感器感测光源的温度T,当温度T升高并且大于第一温度水平TL1inc时,(通过调节电子电路产生的阻抗)驱动光源的电流从第一电流IL1切换到第二电流IL2。通过以这种方式驱动光源,即在光源温度已经升高时利用较高强度的电流,因为由热增加引起的损耗通过附加电流补偿,所提供的光通量可以保持基本恒定。
[0035] 类似地,如果温度T保持增加并且变得大于第二温度水平TL2inc,则驱动光源的电流从第二电流IL2切换到第一电流IL1。通过以这种方式驱动光源,即当光源的温度已经进一步增加时(由于第二温度水平TL2inc大于第一温度水平TL1inc),利用较低强度的电流来驱动光源,所以光源被避免过热,从而延长其寿命。
[0036] 在本发明的优选实施例中,该方法还包括当温度T降低并且小于第三温度水平TL2dec时,从第一电流IL1切换到第二电流IL2;并且当温度T降低并且小于第四温度水平TL1dec时,从第二电流IL2切换到第一电流IL1;其中第三温度水平TL2dec大于第四温度水平TL1dec。
[0037] 用温度传感器感测光源的温度T,当温度T降低并低于第三温度水平TL2dec时,(通过调节电子电路产生的阻抗)驱动光源的电流从第一电流IL1切换到第二电流IL2。通过以这种方式驱动光源,即在光源温度已经降低时利用较高强度的电流,所提供的光通量可以被增加,因为先前的第一电流IL1可以正在驱动光源以避免光源过热(因此提供较低的光通量)。
[0038] 类似地,如果温度T持续下降并且变得小于第四温度水平TL1dec,则驱动光源的电流从第二电流IL2切换到第一电流IL1。通过以这种方式驱动光源,即当光源的温度已经进一步降低时,即利用较低强度的电流(由于第三温度水平TL2dec大于第四温度水平TL1dec),光源可以提供基本恒定的光通量,因为不需要补偿热损耗。
[0039] 优选地,在这些实施例中,第二温度水平TL2inc大于第三温度水平TL2dec;第三温度水平TL2dec大于第一温度水平TL1inc;并且第一温度水平TL1inc大于第四温度水平TL1dec。
[0040] 在一些实施例中,所述多个分立的模拟电子部件包括多个电阻器,并且所述方法还包括:为所述多个电阻器中的每个电阻器选择电阻以调节所述第一温度水平TL1inc,第二温度水平TL2inc,第三温度水平TL2dec和第三温度水平TL1dec中的每一个的值。
[0041] 在本发明的一些实施例中,光源包括至少一个基于半导体的光源(例如至少一个LED,至少一个OLED,至少一个激光器)或多个基于半导体的光源的支路,并且该方法进一步包括:提供热敏电阻以用于感测所述至少一个基于半导体的光源、多个基于半导体的光源的所述支路或所述光源的基板中的一个中的温度T。
[0042] 此外,与本发明的第一方面所描述的优点相似的优点也可以适用于本发明的第三方面。
[0043] 本发明的第四方面涉及一种用于制造机动车车灯的方法,该方法包括:提供光源;并且连接电子电路以根据本发明的第三方面驱动光源。

附图说明

[0044] 为了完成描述以及为了更好地理解本发明,提供了一组附图。所述附图形成说明书的组成部分并且示出了本发明的实施例,其不应被解释为限制本发明的范围,而仅仅作为如何实施本发明的示例。附图包括以下图:
[0045] 图1显示了在没有补偿热损耗的情况下由LED驱动的机动车车灯提供的光通量的时间演变。
[0046] 图2以框图形式示出了根据本发明实施例的机动车车灯。
[0047] 图3示出了根据本发明实施例的电流的改变。
[0048] 图4示出了根据本发明另一实施例的电流的改变。
[0049] 图5示出了根据本发明实施例的由机动车车灯提供的光通量的时间演变。
[0050] 图6以框图形式示出了根据本发明实施例的机动车车灯的光源。
[0051] 图7示出了根据本发明实施例的适用于机动车车灯的电流驱动电路。
[0052] 图8A-8B示出了根据本发明实施例的机动车车灯的两个电流调节电路。

具体实施方式

[0053] 图1在曲线图100上示出了当不存在由于光源的温度升高引起的光通量损耗的补偿时由包括作为光源的至少一个LED的机动车车灯提供的光通量101的时间演变。
[0054] 可以理解的是,在第一时刻110(当光源仍然是凉的时或者在环境温度下,例如在激活1分钟后)和第二时刻111(当由于其长时间的操作,例如在使用30分钟后,光源已经很热)之间具有光通量101的减少。第二时刻111处的光通量101的减少可以相对于在第一时刻110处的光通量101例如为10%或更多,15%或更多,20%或更多,25%或甚至更多;例如第二时刻111处的光通量101可以是95流明,而在第一时刻110处,光通量101可以是115流明。
随着光源温度升高,由光源提供的光通量101减小,因此需要补偿光通量的这种变化,以确保机动车车灯以基本恒定和规则的方式提供光。即使机动车车灯在第二时刻111提供的流明量足以符合最低安全法规,光通量的时间变化也是不允许的。
[0055] 图2示出了根据本发明实施例的机动车车灯200的框图。机动车车灯200可以包括光源202,产生驱动光源202的电流的电流驱动电路203以及电流调节电路204。
[0056] 光源202可以包括至少一个基于半导体的光源,例如一个LED,两个LED或甚至多于两个LED,例如但不限于五个LED或十个LED。
[0057] 充当电流调节电路204的电子电路连接到电流驱动电路203,以便改变驱动光源202的电流。这反过来又导致光源202的光通量损耗的补偿和保护光源202免于过热。图7中示出了电流驱动电路203的示例性实施方式,并且图8A-8B中示出了电流调节电路204的两个示例性实施方式。
[0058] 机动车辆的电源201(机动车辆内的发电源,例如交流发电机或电池)向机动车车灯200提供电力。在其他未示出的实施例中,机动车车灯还可以包括电源。电源201电连接到光源202,电流驱动电路203和电流调节电路204。
[0059] 图3在曲线图300上示出了驱动(根据本发明的实施例的机动车车灯的)光源的电流301相对于温度的演变。电流301在曲线图300上用箭头示出,该箭头指示机动车车灯的电子电路改变电流的趋势。
[0060] 电子电路通过在第一电流310和第二电流320之间切换来改变驱动光源的电流,以便补偿光源的光通量中的热损耗并保护光源免于过热。
[0061] 特别地,当光源的温度小于第一温度水平330时,利用强度低于第二电流320的第一电流310来驱动光源。当温度升高并且超过第一温度电平330时,电子电路改变其阻抗,从而将驱动光源的电流301从第一电流310切换到第二电流320。
[0062] 在电流被切换之前,光源提供的光通量可能相对于正好当光源被激活时提供的光通量减小(这一事实可以在图1的时间演变中理解)。因此,在切换到第二电流320(强度较高)时,由光源提供的光通量增加。通过改变温度水平330,第一电流310和第二电流320,光通量可以保持基本恒定;这些值可能需要根据光源的性能(性能取决于温度,驱动光源的电流以及光源根据温度和电流的大小提供的光通量)进行调节。
[0063] 此外,如果光源的温度保持增加(由于光源可能长时间工作并且具有高强度的电流,所以这可以预期)并且超过第二温度水平340,则电子电路再次改变其阻抗以便将电流301从第二电流320切换到第一电流310。电流301的这种变化保护光源免于由于高强度的电流(诸如第二电流320)的过热,并因此可以延长其寿命。
[0064] 图4在与图3的曲线图300类似的曲线图400上示出了驱动(根据本发明的另一个实施例的机动车车灯的)光源的电流401对温度的演变。
[0065] 当光源的温度增加时,机动车车灯的电子电路(用作电流调节电路)提供与图3的机动车车灯的电子电路相同的响应(即,当超过第一温度水平330和第二温度水平340时,电子电路在第一电流310和第二电流320之间切换)。与图3的响应形成对比,其响应如图4所示的电子电路也在光源的温度降低时改变驱动光源的电流(这用虚线和指向左侧的箭头表示以仅用于说明目的)。
[0066] 当光源的温度降低并低于第三温度水平350(低于第二温度水平340但高于第一温度水平310)时,电子电路改变其阻抗以将电流301从第一电流310切换到第二电流320,从而增加光源辐射的光通量。
[0067] 此外,如果温度进一步下降并且低于第四温度水平360(低于第一温度水平310),则电子电路改变其阻抗以便将电流301从第二电流320切换到第一电流310。由于光源较冷,因此光源提供基本恒定的光通量所需的电流可以具有较低的强度。
[0068] 图5在曲线图500上示出了由机动车车灯提供的光通量501的时间演变,机动车车灯包括作为光源的至少一个LED以及用于补偿由于至少一个LED的温度升高引起的光通量的热损耗的电子电路。
[0069] 光通量501的初始趋势与图1的光通量101相同,但是随着光通量501开始衰减,机动车车灯的电子电路(用标记520指示)将驱动光源的电流切换到更高强度的电流。相应地,在第一时刻510(当光源仍然是凉的时或在环境温度下,例如在被激活1分钟后)的光通量501基本上类似于第二时刻511处的光通量501(当光源由于其长时间操作(例如在使用30分钟后)已经被加热),因此第二时刻511处的光通量501相对于第一时刻510处的光通量501的差值可以是,例如,10%或更少,7%或更少,5%或甚至更少,例如-5%(即负5%)。
[0070] 图6示出了根据一个实施例的机动车车灯的光源600。光源600包括至少一个LED,特别是串联连接的多个三LED601-603的支路;在其他实施例中,LED可以并联连接。
[0071] 光源600进一步包括可以连接电源(例如图2的电源201)的第一端子610和可以连接电流驱动电路(例如图2的电流驱动器电路203)的第二端子611以用于产生将驱动三个LED601-603的电流。
[0072] 图7示出了可用作例如图2的电流驱动电路203的电流驱动电路的电子电路700。
[0073] 电子电路700包括提供来自电源的电压的第一端子701,光源可连接到的第二端子702以及电流调节电路可连接到的第三端子703。电子电路700还包括电阻器710(通常称为Rbin)。第三端子703处的阻抗决定了在电子电路700内产生并且将驱动光源的电流的强度,因此电阻器710连同可连接到第三端子703的电流调节电路的阻抗将影响电流的强度。
[0074] 显而易见的是,电子电路700是电流驱动电路的示例性实施方式,因此在不脱离本公开的范围的情况下其他实现方式是可能的。
[0075] 图8A-8B示出了可以用作例如图2的电流调节电路204的两个电流调节电路的电子电路800和850。
[0076] 图8A的电子电路800设置有用于连接到电流驱动电路(例如图7中的一个)的端子810。电子电路800包括将影响驱动光源的电流的电阻器801和用作开关的晶体管802:当晶体管802接通时,驱动(电流驱动电路的)电阻器Rbin的电流受电阻器801(作为与电阻器Rbin并联的电阻器)影响,并且当晶体管802断开时,因为整个电子电路800充当开路,所以驱动电阻器Rbin的电流将不受电阻器801的影响。
[0077] 电子电路800还包括多个分立的模拟电子部件,多个分立的模拟电子部件确定电流调节电路在第一电流和第二电流之间切换时的温度水平。电子电路800还包括提供由温度传感器(例如NTC热敏电阻)感测的光源的温度的电阻器803以及两个电压比较器820和830。
[0078] 在低温下,驱动光源的电流的强度应该较低。通过使电压821大于电压822(比较器820的输入)和使电压831低于电压832(比较器830的输入),晶体管802保持截止并且因此整个电子电路800的等效阻抗是开路。随着光源的温度升高,电压822减小,并且当其变得低于电压821时(在大于第一温度水平的温度下),晶体管802接通。如果温度持续增加,则在某一时刻(在大于第二温度水平的温度下),电压832变得低于电压831,并且晶体管802再次关断。
[0079] 由于电子电路800被配置有滞后作用,所以当光源的温度降低时,晶体管802可以在与第一温度水平和第二温度水平不同的温度下,特别是如上关于图4所述的第三温度水平和第四温度水平下,在接通和关断状态之间切换。
[0080] 在这方面,可以选择电阻器841,842以便调节电子电路800的操作以便补偿光源的热损耗,而电阻器843,844可以被选择以便调节电子电路800的操作以便保护光源免于过热。
[0081] 关于图8B的电子电路850,其行为与电子电路800类似。电子电路850包括用于连接到电流驱动电路的端子860,影响驱动光源的电流的电阻器851,使电子电路850在第一电流和第二电流之间切换的晶体管852,两个电压比较器870和880以及多个分立的模拟电子部件。在这个例子中,电阻器853指示由温度传感器感测到的光源的温度。
[0082] 当电压871大于电压872(比较器870的输入)并且电压881大于电压882(比较器880的输入)时,例如在低温时,晶体管852保持关断并且因此它产生开路。随着光源的温度升高,电压872也增加,并且当电压872变得大于电压871时(在大于第一温度水平的温度下),晶体管852接通并且电阻器851与连接到端子860的电流驱动电路的电阻器Rbin并联。在较高温度下,电压882增加,并且当电压882变得大于电压881时(在大于第二温度水平的温度下),晶体管852被关断。
[0083] 由于电子电路850被配置有滞后作用,所以当光源的温度降低时,晶体管852可以在与第一温度水平和第二温度水平不同的温度下,特别是如上关于图4所述的第三温度水平和第四温度水平下,在接通和关断状态之间切换。
[0084] 在这方面,可以选择电阻器891,892以便调节电子电路850的操作以便补偿光源的热损耗,而电阻器893,894可以被选择以便调节电子电路850的操作以便保护光源免于过热。
[0085] 显而易见的是,电子电路800和850是电流调节电路的示例性实施方式,并且因此在不脱离本公开的范围的情况下其他实施方式是可能的。
[0086] 此外,显而易见的是,未被描述的电子电路700,800和850的不同端子可以被提供有不同的电压。类似地,尽管没有明确示出,但电子电路700,800和850的有源部件被电驱动。
[0087] 尽管术语第一,第二,第三等在本文中已经用于描述多个变量,但应该理解的是,变量不应该被这些术语限制,因为术语仅用于区分一个变量与另一个变量。例如,在不脱离本公开的范围的情况下,第一电流IL1也可以被称为第二电流IL1并且第二电流IL2可以被称为第一电流IL2。
[0088] 在本文中,术语“包括”及其派生词(例如“包含”等)不应被理解为排除意义,即,这些术语不应被解释为排除所描述和限定的可能性以外的可能性,而是可能包括其他元件,步骤等。
[0089] 本发明显然不限于在此描述的具体实施例,而是在本发明的权利要求中限定的总体范围内还包括本领域技术人员可以考虑到的任何变化(例如关于材料,尺寸,部件,构造等的选择)。