用于生物油在线提质的铁基复合催化剂的制备方法转让专利

申请号 : CN201810576993.5

文献号 : CN108772070B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨双霞张晓东陈雷孙来芝谢新苹司洪宇

申请人 : 山东省科学院能源研究所

摘要 :

一种用于生物油在线提质的铁基复合催化剂的制备方法,其特征在于,它包括如下步骤:(a)水滑石前体制备:将六水硝酸钙、六水硝酸镁、九水硝酸铝和九水硝酸铁溶于去离子水中配成混合盐溶液;另配制浓度为2 mol/L的NaOH溶液作为沉淀剂;在连续强力搅拌条件下,缓慢的将上述配好的混合盐溶液连续滴加至碱溶液中,并控制最终溶液pH值在10.5~12,滴加完毕后形成悬浮液;在室温条件下晶化24h,将所得沉淀溶液离心、洗涤至上清液pH为7,于100℃下干燥12h后研磨得到层板含有Fe、Ca、Mg、Al元素的水滑石单一前驱体;(b)煅烧还原得到Fe基复合催化剂。

权利要求 :

1.一种用于生物油在线提质的铁基复合催化剂的制备方法,其特征在于,它包括如下步骤:(a)水滑石前体制备:将Ca(NO3)2∙6H2O、Mg(NO3)2∙6H2O、Al(NO3)3∙9H2O、Fe(NO3)3∙9H2O溶于去离子水中配成浓度为[Mg2+]+[Ca2+]+[Fe3+]+[Al3+]=1 1.6M的混合盐溶液;另配制浓度~为2 mol/L的NaOH溶液作为沉淀剂;在连续强力搅拌条件下,缓慢的将上述配好的混合盐溶液连续滴加至碱溶液中,并控制最终溶液pH值在10.5 12,滴加完毕后形成悬浮液;在室温~条件下晶化24h,将所得沉淀溶液离心、洗涤至上清液pH为7,于100℃下干燥12h后研磨得到层板含有Fe、Ca、Mg、Al元素的水滑石单一前驱体;

(b)煅烧还原:称取一定量步骤(a)得到的水滑石单一前驱体置于管式气氛炉中,在还原气氛中、温度为500℃~800℃条件下煅烧2h~6h,自然降温至室温,得到Fe基复合催化剂;

所述催化剂以MgAlO为载体,以Fe作为蒸气转化主活性组分,CaO作为助催化剂组分及载体,各组分的质量百分含量为:Fe为10%-30%,CaO为25%-48%,MgAlO为40%-48%。

2.根据权利要求1所述的用于生物油在线提质的铁基复合催化剂的制备方法,其特征在于,步骤(a)中混合盐溶液中(Mg2++Ca2+)/(Fe3++Al3+)摩尔比为(1 4):1;Mg2+:Ca2+:Fe3+:~

Al3+摩尔比为 1:1:1:1或2:2:1:1或3:3:1:1或4:4:1:1。

3.根据权利要求1所述的用于生物油在线提质的铁基复合催化剂的制备方法,其特征在于,步骤(b)中所述还原气氛为氢气或者还原气氛为氢气与氮气或氩气的混合气,其中氢气在混合气体中体积百分数为10%。

说明书 :

用于生物油在线提质的铁基复合催化剂的制备方法

[0001] 本申请是申请日为2016年7月18日,申请号为201610563540X,名称为用于生物油在线提质的铁基复合催化剂及制备和应用方法的中国发明专利申请的分案申请。

技术领域

[0002] 本发明属于生物质能的利用技术领域,更具体地说是涉及一种用于生物油在线提质的Fe基复合催化剂及其制备和应用方法。

背景技术

[0003] 作为一种可再生的清洁能源,生物质通过快速热解液化获得的液体产物-生物油是一种新型的液体燃料,具有能量密度高,易储存运输,且硫、氮含量低等优点,可望缓解能源短缺和使用化石燃料所带来的环境污染问题。然而,生物油粗产品成分非常复杂,几乎包含了各类含氧有机物(酸、醛、酮、醇、酚、呋喃、糖等),导致其稳定性差、酸度高、热值低、粘度大等缺点,严重阻碍了其作为碳氢燃料的推广应用。如何提高生物油油品质量已经成为影响生物质快速热裂解技术应用和经济性的一个关键技术问题。为了改善生物油的品质,以往人们已经做了许多的研究工作。
[0004] 专利“一种提高生物油品质的方法”(CN104560102A)公开了一种提高生物油品质的方法,所述方法包括将裂解产生的生物油加入高压反应釜,加入氧化钙作为催化剂,在N2保护条件下,通过分温段控制反应提高生物油品质。然而,该专利中生物质原料须经硫酸预处理,且得到的精制生物油中成分仍然比较复杂,目标产物糠基丙酮类产率低于25%,高含量的醛酮类化合物使得生物油稳定性并没有得到有效改善。
[0005] 专利“一种生物质油提质的方法”(CN101358138A)公开了一种生物质油提质的方法,所述方法通过超临界催化反应减少生物质油中重组分,将生物质油、超临界反应介质乙醇或甲醇、HZSM-5分子筛催化剂投入高压反应釜,在N2保护,压力为7.5-11MPa,100-300℃温度条件下反应3-5小时,精制生物油中重组分质量百分含量为15%-28%。然而,该专利采用超临界高压反应,反应条件苛刻,在实际推广应用过程中存在一定难度,且并未提及对生物油中酸类、醛类等影响生物油腐蚀性及稳定性的组分调整问题。
[0006] 此外,上述专利均是将生物质热解产生的生物油进行冷凝收集后进行再次加热提质处理,能耗高,处理程序复杂且费用昂贵,在商业化技术上应用也有难度。
[0007] 采用催化剂在线催化裂解生物质快速热解产物制备高品质生物油因其整个反应在同一个反应器中进行、无需将生物油冷凝并再次加热、操作简单、精制成本低,成为目前研究最为广泛的一种方法,而其核心在于催化剂的选择。目前国内外各研究单位报道的用于生物油催化提质的催化剂主要包括金属氧化物、沸石分子筛、以及贵金属类。其中,金属氧化物原料易得、价格低廉,但其催化活性较低;贵金属类催化剂活性高,但价格昂贵且在高温条件下或长时间运行时易烧结失活;分子筛类催化剂可同时满足高活性和择形催化的两种功能,却因其较强的酸性极易积碳失活。因此,寻找高效、廉价、且抗积碳、抗烧结的催化剂,是现阶段生物油在线提质这一研究工作的重点。

发明内容

[0008] 针对以上问题,本发明克服现有技术中不足之处,提供一种成本低廉、催化活性好、且抗烧结抗积碳的用于生物油在线提质的Fe基复合催化剂;
[0009] 本发明同时提供该Fe基复合催化剂的制备方法和应用方法。
[0010] 本发明解决技术问题采用如下技术方案:一种用于生物油在线提质的铁基复合催化剂,其特征在于,所述催化剂以Mg(Al)O为载体,以Fe作为蒸气转化主活性组分,CaO作为助催化剂组分及载体,各组分的质量百分含量为:Fe为10%-30%,CaO为25%-48%,Mg(Al)O为40%-48%。
[0011] 本方案的具体特点还有,所述主活性组分Fe高度分散在载体中,其粒径控制在5-10nm。
[0012] Fe基复合催化剂是通过以下步骤制备的:
[0013] (a)水滑石前体制备:将Ca(NO3)2∙6H2O、Mg(NO3)2∙6H2O、Al(NO3)3∙9H2O、Fe(NO3)3∙9H2O溶于去离子水中配成浓度为[Mg2+]+[Ca2+]+[Fe3+]+[Al3+]=1~1.6M的混合盐溶液;另配制浓度为2 mol/L的NaOH溶液作为沉淀剂;在连续强力搅拌条件下,缓慢的将上述配好的混合盐溶液连续滴加至碱溶液中,并控制最终溶液pH值在10.5 12,滴加完毕后形成悬浮液;
~
在室温条件下晶化24h,将所得沉淀溶液离心、洗涤至上清液pH为7,于100℃下干燥12h后研磨得到层板含有Fe、Ca、Mg、Al元素的水滑石单一前驱体。
[0014] (b)煅烧还原:称取一定量步骤(a)得到的水滑石单一前驱体置于管式气氛炉中,在还原气氛中、温度为500℃~800℃条件下煅烧2h~6h,自然降温至室温,得到Fe基复合催化剂。
[0015] 一种将上述铁基复合催化剂用于生物油在线提质的应用方法,它包括如下步骤:以Fe/CaO/Mg(Al)O为催化剂,以木粉为生物质原料,将生物质与催化剂装填在反应器中进行快速热解,生物质热解产生的蒸气直接在催化剂表面进行催化裂解,获得提质后的生物油蒸气,最后对提质后的生物油蒸气进行GC/MS在线组分及含量分析。
[0016] 本发明的具体特点还有,所述反应器为裂解-气相色谱质谱联用装置(Py-GC/MS);
[0017] 所述热解反应温度为550-700℃,停留时间为25s,催化剂与生物质用量之质量比为10-20;
[0018] 所述催化剂装载于生物质原料的一端或两端。
[0019] 一种铁基复合催化剂的制备方法,它包括如下步骤:
[0020] (a)水滑石前体制备:将Ca(NO3)2∙6H2O、Mg(NO3)2∙6H2O、Al(NO3)3∙9H2O、Fe(NO3)3∙9H2O溶于去离子水中配成浓度为[Mg2+]+[Ca2+]+[Fe3+]+[Al3+]=1~1.6M的混合盐溶液;另配制浓度为2 mol/L的NaOH溶液作为沉淀剂;在连续强力搅拌条件下,缓慢的将上述配好的混合盐溶液连续滴加至碱溶液中,并控制最终溶液pH值在10.5 12,滴加完毕后形成悬浮液;
~
在室温条件下晶化24h,将所得沉淀溶液离心、洗涤至上清液pH为7,于100℃下干燥12h后研磨得到层板含有Fe、Ca、Mg、Al元素的水滑石单一前驱体。
[0021] (b)煅烧还原:称取一定量步骤(a)得到的水滑石单一前驱体置于管式气氛炉中,在还原气氛中、温度为500℃~800℃条件下煅烧2h~6h,自然降温至室温,得到Fe基复合催化剂。
[0022] 本发明的具体特点还有,步骤(a)中混合盐溶液中(Mg2++Ca2+)/(Fe3++Al3+)摩尔比为(1 4):1,Mg2+:Ca2+:Fe3+:Al3+摩尔比进一步优选为 1:1:1:1或2:2:1:1或3:3:1:1或4:4:~
1:1。
[0023] 所述步骤(b)中所述还原气氛为氢气或者还原气氛为氢气与氮气或氩气的混合气,其中混合气体中H2体积百分数优选10%。
[0024] 与已有技术相比,本发明有益效果体现在:
[0025] 1、本发明基于LDHs前驱体结构拓扑转变,同时添加Mg(Al)O复合氧化物作为载体实现催化剂主活性组分Fe的高度分散,可显著提高催化活性并有效防止生物质快速热解产物中大分子低聚物的积碳反应导致催化剂失活。
[0026] 2、本发明提供的催化剂能够完全脱除生物油中酸类、醛酮类等非期望化合物,有效降低其酸性并显著提高其稳定性。
[0027] 3、本发明提供的催化剂有利于促进生物油中苯酚类化合物的形成,对其选择性可高达89.32%,有效提升生物油热值的同时,其还具有极高的化学附加值,是制备酚醛树脂、食品添加剂以及精细化学品等材料的重要化工中间体。

具体实施方式

[0028] 实施例1:一种铁基复合催化剂的制备方法,它包括如下步骤:
[0029] LDHs前驱体的制备:按照Mg2+:Ca2+:Fe3+:Al3+摩尔比约为1∶1∶1∶1的比例称取48.10g Mg(NO3)2∙6H2O、44.27g Ca(NO3)2∙6H2O、75.50g Fe(NO3)3∙9H2O和70.89g Al(NO3)3∙
9H2O加入去离子水配置成500 ml混合溶液,称取50.99gNaNO3加入去离子水配置成500 ml混合溶液,另称取56gNaOH加入去离子水配置成800mL浓度为2M的碱溶液。将NaNO3溶液和NaOH溶液倒入四口烧瓶中,在机械搅拌下将混合盐溶液滴加到上述混合碱溶液中,使得最终溶液pH为11.2,将所得浆液室温条件下晶化24小时,用去离子水洗涤、离心4次,于100℃下干燥12小时,研磨得到LDHs前驱体。
[0030] 焙烧还原:称取5g LDHs前驱体,均匀平摊于磁舟并置于管式气氛炉中,在N2/H2(90%/10%)还原气氛下,以10℃/min升温至500℃,保温2小时,待温度自然降至室温得到Fe基复合催化剂。
[0031] 上述方法制备的Fe基复合催化剂组成及质量百分含量为Fe:27.78%,CaO:28.06%,Mg(Al)O:44.16%,未发现其他杂质物相,其中Fe纳米粒子平均尺寸为7.3 nm。
[0032] 一种将上述铁基复合催化剂用于生物油在线提质的应用方法,它包括如下步骤:以Fe/CaO/Mg(Al)O为催化剂,以木粉为生物质原料,将生物质与催化剂装填在反应器中进行快速热解,生物质热解产生的蒸气直接在催化剂表面进行催化裂解,获得提质后的生物油蒸气,最后对提质后的生物油蒸气进行GC/MS在线组分及含量分析。所述反应器为裂解-气相色谱质谱联用装置(Py-GC/MS);所述热解反应温度为550-700℃,停留时间为25s,催化剂与生物质用量之质量比为10-20;所述催化剂装载于生物质原料的一端或两端。采用Py-GC/MS装置,在样品管中装填分别0.5mg木粉和10mg催化剂,设置反应温度为550℃,停留时间为20s,阀箱和传输线温度均为290℃。
[0033] 在上述反应条件下生物质直接快速热解产生的生物油粗产品的典型组分为:烃类(主要为脂肪烃)含量1.38%,苯酚类含量为52.53%,酸类含量18.05%,醛酮类含量23.29%,呋喃类含量4.75%。
[0034] 对如上所述组分的生物油粗产品进行在线提质,实验研究发现所得精制生物油组分得到了显著的优化,其中酸类、醛酮类等非期望化合物被完全脱除,生物油酸性及稳定性大大改善。酚类化合物成为主要产物,含量大幅增大至89.32%,此外还含有少量的呋喃类3.04%,以及烃类化合物7.64%(其中脂肪烃类含量为3.21%,芳香烃类含量为4.43%),生物油品质得到了明显提升。对反应后催化剂结构表征发现,其表面未发现积碳现象。
[0035] 实施例2:
[0036] 此实施例中催化剂的制备方法与实施例1相同之处不再赘述,不同之处在于活性2+ 2+ 3+ 3+
组分含量不同,其中Mg :Ca :Fe :Al 摩尔比约为4∶4∶1∶1。制备得到的催化剂组成及质量百分含量为Fe:11.41%,CaO:42.06%,Mg(Al)O:46.53%,未发现其他杂质物相,其中Fe纳米粒子平均尺寸为5.2 nm。
[0037] 与实施例1相同的裂解条件下进行生物油粗产品在线提质。实验研究发现,与生物油粗产品相比,精制生物油中酸类物质被完全脱除,醛酮类化合物的含量降低至5.46%,烃类化合物含量增加至33.52%(其中脂肪烃类含量为18.89%,芳香烃类含量为14.63%),酚类化合物含量略增大至56.88%,呋喃类含量为4.14%。提质后生物油中非期望化合物酸类以及醛酮类含量明显降低,含氧量和酸性显著降低,稳定性大幅提高,品质有所提升。与实施例1相比,催化剂中主活性组分Fe含量降低使得催化剂活性有所降低。对反应后催化剂结构表征发现,其表面有少量积碳。
[0038] 实施例3:
[0039] 此实施例中催化剂组成及质量百分含量与实施例1一致,为Fe:27.78%,CaO:28.06%,Mg(Al)O:44.16%,未发现其他杂质物相,其中Fe纳米粒子平均尺寸为7.3 nm。制备方法与实施例1相同,此处不再赘述。
[0040] 将上述铁基复合催化剂用于生物油在线提质的应用方法与实施例1相同之处不再赘述,与实施例1不同之处在于生物油提质过程中催化剂与木粉装填方式不同,具体为将木粉0.5mg,催化剂10mg装入样品管中摇晃使两者混合均匀。实验研究发现,提质后生物油中酸类物质含量为16.18%,烃类物质含量为20.58%(其中脂肪烃类含量为4.32%,芳香烃类含量为16.26%),酚类化合物含量为46.29%,醛酮类化合物含量为10.67%,呋喃类化合物含量为6.28%。与实施例1相比,采用催化剂与生物质物料混合裂解的方式虽然生物油中烃类物质的含量有所增加,然而对酸类、醛酮类等非期望化合物转化能力大大降低,生物油酸性及稳定性并未有所改善。
[0041] 实施例4:
[0042] 此实施例中催化剂组成及质量百分含量与实施例1一致,为Fe:27.78%,CaO:28.06%,Mg(Al)O:44.16%,未发现其他杂质物相,其中Fe纳米粒子平均尺寸为7.3 nm。制备方法与实施例1相同,此处不再赘述。
[0043] 将上述铁基复合催化剂用于生物油在线提质的应用方法一种将上述铁基复合催化剂用于生物油在线提质的应用方法与实施例1相同之处不再赘述,不同之处在于生物油提质过程中催化剂/木粉用量之比不同,具体为木粉装填量0.5mg,催化剂装填量5mg。实验研究发现,与生物油粗产品相比,精制生物油中酸类物质含量降低为2.18%,烃类物质含量增大至38.15%(其中脂肪烃类含量为20.89%,芳香烃类含量为17.26%),酚类化合物含量为
45.46%,醛酮类化合物含量降低至8.17%,呋喃类化合物含量为6.04%。提质后生物油中含氧量和酸性有所降低,稳定性有所提高,品质得到了明显提升。与实施例1相比,催化剂添加量降低明显减少了催化活性位点,使得催化剂活性有所降低,对酸类、醛酮类等非期望化合物转化能力有所降低。对反应后催化剂结构表征发现,其表面无积碳。
[0044] 实施例5:
[0045] 此实施例中催化剂组成及质量百分含量与实施例1一致,为Fe:27.78%,CaO:28.06%,Mg(Al)O:44.16%,未发现其他杂质物相,其中Fe纳米粒子平均尺寸为7.3 nm。制备方法与实施例1相同,此处不再赘述。
[0046] 与实施例1不同之处在于生物质裂解反应温度由550℃升高为700℃。实验研究发现,与生物油粗产品相比,精制的生物油中烃类物质含量增大至54.15%(其中脂肪烃类含量为39.89%,芳香烃类含量为14.26%),酚类化合物含量降低至39.06%,醛酮类化合物含量降低至1.17%,呋喃类化合物含量为5.04%,产物中还含有少量的酸类物质,含量约为0.58%。提质后生物油中含氧量和酸性显著降低,稳定性大幅提高,品质得到了明显提升。与实施例1相比,提质反应温度的升高有利于烃类化合物的生成,然而对于酸类、醛酮类化合物的转化能力略微降低。对反应后催化剂结构表征发现,其表面有少量积碳。
[0047] 实施例6:
[0048] 此实施例中催化剂组成及质量百分含量与实施例1一致,为Fe:27.78%,CaO:28.06%,Mg(Al)O:44.16%。制备方法与实施例1相同之处不再赘述,不同之处在于制备步骤中催化剂焙烧条件不同,焙烧温度由500℃升高为800℃。表征发现制备所得到的催化剂中Fe纳米粒子平均尺寸增大为9.5 nm。
[0049] 与实施例1相同的裂解条件下进行生物油粗产品在线提质。实验研究发现,与生物油粗产品相比,精制生物油中酸类、呋喃类物质被完全脱除,醛酮类化合物的含量显著降低至3.02%,烃类化合物含量增加至20.52%(其中脂肪烃类含量为12.89%,芳香烃类含量为7.63%),酚类化合物含量增大至76.46%。提质后生物油中非期望化合物含量明显降低,含氧量和酸性显著降低,稳定性大幅提高,品质得到了明显提升。与实施例1相比,当焙烧温度升高至800℃时,催化剂主活性组分Fe纳米粒子尺寸并未明显增大,进而使其仍维持较高的催化活性。对反应后催化剂结构表征发现,其表面无明显积碳。