一种二维坐标系下三相空间矢量快速调制方法转让专利

申请号 : CN201811029939.5

文献号 : CN109067224B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 舒泽亮林宏健雷园毛文君闫晗钱奕何晓琼

申请人 : 西南交通大学

摘要 :

本发明提供了一种二维坐标系下三相空间矢量快速调制方法,属于电力电子调制技术领域。该方法将传统的三相二维坐标系变换为新型的二维直角坐标系,通过直接检查离原点最近的矢量来得到调制三角形的其余两个矢量,具有极强的扩展性。此外,该方法能提供若干可控因子,因子N能作为优化目标减弱共模电压与选择冗余矢量进行均压;所产的可控开关序列能保证调制三角形内与调制三角形间矢量的平滑过渡以降低系统总体开关频率减少开关损耗以及优化谐波性能;可调节的零矢量占空比亦可优化谐波性能,合成较理想磁链园输出高质量正弦波以及与因子N一样也能确保电压均衡。该方法所具有的功能体现了其优越的应用价值与良好的应用前景。

权利要求 :

1.一种二维坐标系下三相空间矢量快速调制方法,该方法在二维坐标系下具体实现过程如下:a、利用简单坐标变化使矢量从二维坐标系映射到新的二维直角坐标系里面:把三相参考相电压的瞬时值Va、Vb和Vc中任意两相相减得到新矢量与第三相垂直,形成新的二维直角坐标系:其中,Vx,Vy为新的二维直角坐标系下的二维参考电压;并计算出新的二维直角坐标系下参考电压矢量:Vref=(n-1)[Va,Vb,Vc]T                         (2)式中,n为变换器的电平数,上标T表示转置矩阵;

假设参考电压矢量在实轴与虚轴的投影为Vref(x)与Vref(y),则参考电压矢量在新的二维直角坐标系下的坐标为式中,x与y为新的二维直角坐标系下参考电压矢量坐标;Vdc为直流链电压;

b、检测离原点最近的调制矢量:

利用新的二维直角坐标系,直接检测调制三角形的三个矢量中离坐标原点最近的矢量所对应的冗余开关状态中最小的一个,剩余的其他开关状态由所检测的开关状态加N产生;

其中,0≤N≤n-1-max(Sa,Sb,Sc),n为多电平变换器电平数,max(.)为三个开关状态中的最大值,N为一种可控因子,通过它来任意选择冗余开关状态:式中,(Sa,Sb,Sc)为所检测到的离原点最近开关状态,min(.)表示取最小值;

T

[N+Sa,N+Sb,N+Sc]          (5)N作为一个可控因子用于减少多电平变换器的共模电压与进行多电平变换器的电压均衡;

c、多电平矢量空间简化为两电平矢量空间:

由新的二维直角坐标系下参考电压矢量减去该坐标系下的所检测的离原点最近调制矢量,所得的剩余矢量长度小于单个调制三角形的边长,此时,多电平矢量空间简化为两电平矢量空间,任意电平变换器全部按两电平变换器调制方式处理;

在新的二维直角坐标系下离原点最近调制矢量为

OP1=Vdc[Sa Sb Sc]T                                   (6)在新的二维坐标系统中,将参考电压矢量进行缩放把多电平矢量调制空间简化成两电平矢量调制空间,同时参考电压矢量转换为两电平空间,即:Vref1=Vref-OP1                                 (7)式中,Vref表示为参考电压矢量,Vref1表示简化后的参考电压矢量;OP1表示距离原点最近的调制矢量,其顶点为式(4)所检测开关状态;

d、计算简化后两电平空间扇区与作用矢量占空比:

所得扇区reg如式(8)所示,角度θ是简化参考电压矢量与实轴的夹角;

reg=int(3θ/π)+1                               (8)把简化后的矢量按两电平调制算法来处理,利用简化后的参考电压矢量计算两电平空间的六个扇区并把在两电平调制空间中合成简化参考电压矢量的基本矢量与零矢量计算出来:d0=1-d1-d2                          (10)式中,参考电压矢量在实轴与虚轴的投影分别为Vrx与Vry;两电平调制空间中两个基本矢量占空比为d1与d2,零矢量占空比为d0;

e、计算每相占空比:

在每个调制三角形的调制周期内,调制点所对应的各相冗余开关在一个开关周期中的只有两个数值,且相差1;结合最近电平调制的原理得出步骤b检测的三相冗余开关状态所对应的三相占空比Da,Db,Dc;该三相占空比与步骤d所计算的扇区、基本矢量和零矢量占空比有关,所利用的最近电平调制确定在调制三角形内且与调制三角形间合成参考电压矢量时开关动作次数达到最小,控制零矢量在连续调制与断续调制之间选择;

f、产生开关驱动信号:

把步骤e计算出的每相占空比与三角载波进行比较即得到三相多电平变换器每相开关器件驱动信号。

说明书 :

一种二维坐标系下三相空间矢量快速调制方法

技术领域

[0001] 本发明属于电力电子调制技术领域。

背景技术

[0002] 空间矢量调制技术(SVPWM)是一种建立在空间电压矢量合成概念上的脉宽调制方法,在电力电子调制中已经被广泛应用。它的核心思想就是将变换器的不同开关状态作为基本作用矢量,根据所选择的基本矢量及其特定的作用时间来合成参考电压矢量。相比普通的PWM调制算法,它有很多突出的优点:电压的利用率高,易于数字化实现,输出波形质量好,接近正弦,合理安排空间矢量,可以降低开关频率,减少开关损耗,此外利用SVPWM的冗余矢量可实现多电平变换器电压的平衡,可在算法基础上消除共模电压,可优化谐波特性,成本上大大减少。
[0003] 目前现有的SVPWM算法有很多种。其中以二维90度坐标系为基础,通过大量乘除法及根号运算进行大扇区,小扇区的判别,在矢量作用时间计算与矢量的分配上仍包含着复杂运算与矢量的罗列,整个过程实现起来及其复杂,非常不易于扩展。随后,基于45度,60度等相关的快速算法陆续提出,该些算法较传统90度算法来讲在扇区判断上进行较大程度的简化,省去复杂计算流程,在实现上进行了较大的简化。但在进行矢量分配上仍需对矢量进行一一罗列,仍然不易于扩展而且该些算法功能单一仅能实现参考电压矢量的基本合成,对优化多电平变换器其他方面的性能没有突出贡献。

发明内容

[0004] 本发明目的是提供一种二维坐标系下三相空间矢量快速调制方法,它能有效地解决各种三相多电平变换器开关动作顺序的优化,减少开关损耗与谐波输出的技术问题。
[0005] 具体实现过程如下:
[0006] 1、一种二维坐标系下三相空间矢量快速调制方法,该方法在二维坐标系下具体实现过程如下:
[0007] a、利用简单坐标变化使矢量从二维坐标系映射到新的二维直角坐标系里面:
[0008] 把三相参考相电压的瞬时值Va、Vb和Vc中任意两相相减得到新矢量与第三相垂直,形成新的二维直角坐标系:
[0009]
[0010] 其中,Vx,Vy为新的二维直角坐标系下的二维参考电压;并计算出新二维直角坐标系下参考电压矢量:
[0011] Vref=(n-1)[Va,Vb,Vc]T  (2)
[0012] 式中,n为变换器的电平数,上标T表示转置矩阵。
[0013] 假设参考电压矢量在实轴与虚轴的投影为Vref(x)与Vref(y),则参考电压矢量在新的二维直角坐标系下的坐标为
[0014]
[0015] 式中,x与y为新二维直角坐标系下参考电压矢量坐标;Vdc为直流链电压;
[0016] b、检测离原点最近的调制矢量:
[0017] 利用新的二维直角坐标系,直接检测调制三角形的三个矢量中离坐标原点最近的矢量所对应的冗余开关状态中最小的一个,剩余的其他开关状态由所检测的开关状态加N产生;
[0018] 其中,0≤N≤n-1-max(Sa,Sb,Sc),n为多电平变换器电平数,max(.)为三个开关状态中的最大值,N为一种可控因子,通过它来任意选择冗余开关状态:
[0019]
[0020] 式中,(Sa,Sb,Sc)为所检测到的离原点最近开关状态,min(.)表示取最小值;
[0021] [N+Sa,N+Sb,N+Sc]T  (5)
[0022] 其中,N∈[0,n-1-max(Sa,Sb,Sc)]。由式(5)计算(Sa,Sb,Sc)的任意冗余开关状态,N作为一个可控因子用于减少多电平变换器的共模电压与进行多电平变换器的电压均衡;
[0023] c、多电平矢量空间简化为两电平矢量空间:
[0024] 由新的直角坐标系下参考电压矢量减去该坐标系下的所检测的离原点最近调制矢量,所得的剩余矢量长度小于单个调制三角形的边长,此时,多电平矢量空间简化为两电平矢量空间,任意电平变换器全部按两电平变换器调制方式处理;
[0025] 在新的二维直角坐标系下离原点最近调制矢量为OP1=Vdc[Sa Sb Sc]T  (6)[0026] 在新的二维坐标系统中,将参考电压矢量进行缩放把多电平矢量调制空间简化成两电平矢量调制空间,同时参考电压矢量转换为两电平空间;
[0027] Vref1=Vref-OP1  (7)
[0028] 式中,Vref表示为参考电压矢量,Vref1表示简化后的参考电压矢量;OP1表示距离原点最近的调制矢量,其顶点为式(4)所检测开关状态。
[0029] d、计算简化后两电平空间扇区与作用矢量占空比:
[0030] 所得扇区reg如式(8)所示,角度θ是简化参考电压矢量与实轴的夹角。
[0031] reg=int(3θ/π)+1  (8)
[0032] 把简化后的矢量按两电平调制算法来处理,利用简化后的参考电压矢量计算两电平空间的六个扇区并把在两电平调制空间中合成简化参考电压矢量的基本矢量与零矢量计算出来:
[0033]
[0034] d0=1-d1-d2  (10)
[0035] 式中,参考电压矢量在实轴与虚轴的投影分别为Vrx与Vry;两电平调制空间中两个基本矢量占空比为d1与d2,零矢量占空比为d0;
[0036] e、计算每相占空比。
[0037] 在每个调制三角形的调制周期内,调制点所对应的每相开关在一个开关周期中的只有两个数值,且相差1。此时可结合利用最近电平调制的原理,得出步骤b检测的每相开关状态所对应的每相占空比,Da,Db,Dc,如表1所示,可看出该三相占空比与步骤d所计算的扇区与基本矢量和零矢量占空比有关。通过该占空比可确保单个调制三角形内与两个调制三角形间形成平滑过渡,即在两个调制点之间三相开关状态只变化某一相中一个单位的数值以及确保从一个调制三角形结束的最后一个矢量过渡到另一个调制三角形时的开始矢量是同一个矢量。达到调制过程中每次开关动作次数的最小化,减少了损耗。亦可叫做实现最优开关动作次数。此时该功能可称为第二个可控因子。
[0038] 表1
[0039]
[0040] 表中,reg为扇区号,①-⑥为6个扇区。
[0041] 此外,该占空比与零矢量的占空比(如表1中d0)有关,此时当d0为0.5时,为正常的一个调制模式。当d0为0时为断续调制模式。断续模式可提高该变换器的谐波特性。因此该算法能利用零矢量占空比取不同值来均压与优化变换器谐波特性。
[0042] f、产生开关驱动信号
[0043] 把步骤e计算出的每相占空比与三角载波进行比较可得三相多电平变换器每相开关器件驱动信号。
[0044] 与现有技术相比的优点与效果:该方法兼具以往所有快速SVPWM算法所有优势且在新的二维直角坐标系下实现了整个调制过程中没有任何乘除法与三角函数运算,利用简单的加减法实现变换器任意电平的输出。此外,该方法还提供若干可控因子,利用该些因子能实现各种三相多电平变换器开关动作顺序的优化,减少开关损耗与谐波输出;能消除共模电压,输出更平滑的磁链以及能确保相内电压平衡和相间电压平衡。

附图说明

[0045] 图1为本发明所应用的结构示意图
[0046] 图2(a)为本发明多电平矢量分布二维图
[0047] 图2(b)为本发明的多电平二维矢量图
[0048] 图3(a)为本发明简化后的两电平矢量图
[0049] 图3(b)为本发明简化后的两电平矢量图
[0050] 图4(a)为本发明的最近电平调制图(升压模式)
[0051] 图4(b)为本发明的最近电平调制图(降压模式)
[0052] 图5为本发明的流程图

具体实施方式

[0053] 下面结合附图对本发明做进一步描述:本发明所提算法应用于任意的多电平变换器如图1所示,包括二极管钳位多电平,级联多电平以及模块化多电平。图2(a)为五电平变换器空间矢量图。由图2(a)进行坐标变化使三相120度坐标系变换到两相直角坐标系如图2(b)所示。图中H0~H3分别为两电平到五电平空间矢量平面。当检测到离原点最近矢量时,多电平调制空间简化为两电平空间如图3(a)与(b)所示。可见在一个调制三角形内合成参考电压矢量有升压与降压两种模式且一个开关周期内每相的开关状态只变化一个单位。此时可等效为最近电平调制,如图4(a)与(b)所示。将电平调制的原理应用与空间矢量中得到每相作用占空比,进而得到驱动开关管开通与关断的信号。
[0054] 具体实现过程如下:
[0055] a、利用简单坐标变化使矢量从二维坐标系映射到新的二维直角坐标系里面。
[0056] 把三相参考相电压的瞬时值Va,Vb与Vc相减得到线电压瞬时值,同时该步骤也是把矢量从二维坐标系如图2(a)折射到三维坐标系如图2(b)所示。
[0057]
[0058] 并计算出新坐标系下参考电压矢量,如式(2)所示。
[0059] Vref=(n-1)[Va,Vb,Vc]T  (2)
[0060] 式中,上标T表示转置矩阵,假设参考电压矢量在实轴与虚轴的投影为Vref(x)与Vref(y),则参考电压矢量在新的直角坐标系下的坐标为
[0061]
[0062] b、检测离原点最近的调制矢量。
[0063] 利用新的二维直角坐标系下矢量表示的另外形式直接检测调制三角形三个矢量中离坐标原点最近的矢量所对应的开关状态,此开关状态为多个冗余开关状态中数值最小的一个。
[0064] 如式(3)所示。
[0065]
[0066] 在检测调制三角形中离原点最近的矢量点后,由式(3)可直接计算出该矢量点中数值最小的开关状态。此时该矢量点所有开关状态可产生
[0067] [N+Sa,N+Sb,N+Sc]T  (5)
[0068] 其中,N∈[0,n-1-max(Sa,Sb,Sc)]。由式(5)计算(Sa,Sb,Sc)的任意冗余开关状态,N可作为一个可控因子用于减少多电平变换器的共模电压与进行多电平变换器的电压均衡。
[0069] c、多电平矢量空间简化为两电平矢量空间。
[0070] 由新坐标系下参考电压矢量减去该坐标系下所检测的离原点最近调制矢量(步骤b)所得的剩余矢量长度不超过单个调制三角形的边长,此时多电平矢量空间可简化为两电平矢量空间。
[0071] 此时在新的直角坐标系下该矢量点为
[0072] OP1=Vdc[Sa Sb Sc]T  (6)
[0073] 其次在新的坐标系统中,将参考电压矢量进行缩放把多电平矢量调制空间简化成两电平矢量调制空间,同时参考电压矢量转换为两电平空间,图2(a)(b)加粗部分。图2(b)中,H0-H3为两电平到五电平的调制空间。
[0074] Vref1=Vref-OP1  (7)
[0075] 缩放后的矢量Vref1在等效的两电平空间中旋转,此时任意电平调制方法可按两电平调制来实现,如图3所示。图3(a)中,031-041-141-142为顺时针旋转。图3(b)中142-141-041-031为逆时针旋转。
[0076] d、把简化后的矢量按两电平调制算法来处理,利用简化后的参考电压矢量计算两电平空间的六个扇区并把在两电平调制空间中合成简化参考电压矢量的基本矢量与零矢量计算出来。
[0077] 所得扇区reg如式所示,角度θ是简化参考电压矢量与实轴的夹角。
[0078] reg=int(3θ/π)+1  (8)
[0079] 把所得式(8)所得扇区与参考电压矢量在实轴投影Vrx与虚轴投影Vry进行计算可得两电平调制空间中两个基本矢量占空比d1与d2以及零矢量占空比d0。
[0080]
[0081] d0=1-d1-d2  (10)
[0082] e、计算每相占空比。
[0083] 在每个调制三角形的调制周期内,调制点所对应的每相开关在一个开关周期中的只有两个数值,且相差1。此时可结合利用最近电平调制的原理,如图4所示。得出步骤b检测的每相开关状态所对应的每相占空比,Da,Db,Dc,如表1所示,可看出该三相占空比与步骤d所计算的扇区与基本矢量和零矢量占空比有关。通过该占空比可确保单个调制三角形内与两个调制三角形间形成平滑过渡,即在两个调制点之间三相开关状态只变化某一相中一个单位的数值以及确保从一个调制三角形结束的最后一个矢量过渡到另一个调制三角形时的开始矢量是同一个矢量。达到调制过程中每次开关动作次数的最小化,减少了损耗。亦可叫做实现最优开关动作次数。此时该功能可称为第二个可控因子。
[0084] 表1
[0085]
[0086] 例如,假如简化后的参考电压矢量在一扇区与通过式(9)和式(10)计算d01=0.5,d1=0.1,d2=0.2时,可得Da=0.5,Db=0.4,Dc=0.2。
[0087] 此外,该占空比与零矢量的占空比(如表1中d0)有关,此时当d0为0.5时,为正常的一个调制模式。当d0为0时为断续调制模式。断续模式可提高该变换器的谐波特性。因此该算法能利用零矢量占空比取不同值来均压与优化变换器谐波特性。
[0088] f、产生开关驱动信号
[0089] 把步骤d计算出的每相占空比与三角载波进行比较可得三相多电平变换器每相开关器件驱动信号。
[0090] 算法的总体流程图如图5所示。
[0091] 与现有技术相比的优点与效果:该方法兼具以往所有快速SVPWM算法所有优势且在新的二维直角坐标系下实现了整个调制过程中没有任何乘除法与三角函数运算,利用简单的加减法实现变换器任意电平的输出。此外,该方法还提供若干可控因子,利用该些因子能实现各种三相多电平变换器开关动作顺序的优化,减少开关损耗与谐波输出;能消除共模电压,输出更平滑的磁链以及能确保相内电压平衡和相间电压平衡。