带有磁应变源的自调式GeSn红外探测器及其制备方法转让专利

申请号 : CN201810998916.9

文献号 : CN109166942B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张庆芳李康张吉涛王晓雷曹玲芝韩根全

申请人 : 郑州轻工业学院

摘要 :

本发明公开了带有磁应变源的自调式GeSn红外探测器,包括:由下至上依次设置的衬底层、赝衬底层、驰豫层和n+型层;还包括应变源阵列和光吸收阵列、p+型金属接触阵列、探测第一电极和探测第二电极,应变源阵列的四周包裹绝缘电介质薄膜。本发明将探测器有源区的本征区和p+型金属接触刻蚀成条形阵列,在阵列间隔处生长超磁致伸缩材料,通过外加磁场施加或改变磁场强度,调控超磁致伸缩材料的形变量,进而在探测器有源区沿磁场方向引入可调应变。有源区内的应变会影响GeSn合金能带结构及带隙大小的变化,从而调控GeSn材料的光吸收边界,进而实现对GeSn探测器光响应范围的调控。

权利要求 :

1.带有磁应变源的自调式GeSn红外探测器,其特征在于,包括:

由下至上依次设置的衬底层(101)、赝衬底层(102)、驰豫层(103)和n+型层(104);

所述GeSn红外探测器还包括应变源阵列(108)和光吸收阵列(105),所述应变源阵列(108)的上、下、左、右四个面均包裹绝缘电介质薄膜(107)以保证应变源与探测器间的电隔离,所述应变源阵列(108)和光吸收阵列(105)间隔设置在n+型层(104)的上方,且n+型层(104)的上方的最外侧均为应变源阵列(108);

所述应变源阵列(108)由超磁致伸缩材料制成,

+ +

所述光吸收阵列(105)的上方设置有p型金属接触阵列(106),所述n 型层(104)、光吸收阵列(105)和p+型金属接触阵列(106)组成GeSn红外探测器的p-i-n有源区,所述p-i-n有源区为单晶GeSn材料制成,所述p+型金属接触阵列(106)的上方设置有环形探测第一电极(109),所述探测第一电+极(109)的底部与p型金属接触阵列(106)和绝缘电介质薄膜(107)接触,所述n+型层(104)上设置有探测第二电极(110)。

2.根据权利要求1所述的带有磁应变源的自调式GeSn红外探测器,其特征在于,所述衬底层(101)为单晶Si衬底层,所述赝衬底层(102)为单晶Ge赝衬底层,所述驰豫层(103)为单晶GeSn驰豫层,所述n+型层(104)为单晶n+型GeSn层,所述绝缘电介质薄膜(107)为SiO2薄膜。

3.根据权利要求1所述的带有磁应变源的自调式GeSn红外探测器,其特征在于,所述p-i-n有源区的单晶GeSn材料的通式为Ge1-xSnx,其中0.06 ≤ x ≤ 0.1。

4.根据权利要求1所述的带有磁应变源的自调式GeSn红外探测器,其特征在于,所述驰豫层(103)内的Sn的含量高于p-i-n有源区内Sn的含量,驰豫层(103)中GeSn材料的通式为Ge1-ySny,其中y > 0.1。

5.根据权利要求1所述的带有磁应变源的自调式GeSn红外探测器,其特征在于,所述应变源阵列(108)上方绝缘介质薄膜(107)的顶端不超过p+型金属接触阵列(106)的顶端。

6.权利要求1所述的带有磁应变源的自调式GeSn红外探测器的制备方法,其特征在于,包括以下步骤:步骤1:利用分子束外延工艺及原位掺杂技术在衬底层(101)依次生长赝衬底层(102)、驰豫层(103)、n+型层(104)和一层本征GeSn材料,一层p+型GeSn材料;

步骤2:利用光刻技术将本征GeSn材料和p+型GeSn材料刻蚀成阵列形式,形成光吸收阵列(105)和p+型金属接触阵列(106);

步骤3:利用等离子体增强化学气相沉积工艺在光吸收阵列(105)单元侧面及光吸收阵列(105)单元间沉积一层SiO2材料;

步骤4:利用磁控溅射工艺在光吸收阵列(105)单元间生长超磁致伸缩材料,形成应变源阵列(108),并利用刻蚀技术在应变源阵列(108)单元的一侧刻出露台暴露n+型层(104);

步骤5:利用等离子体增强化学气相沉积工艺在应变源阵列(108)顶端及侧面沉积SiO2材料使应变源阵列(108)单元被绝缘介电质薄膜(107)包裹上、下、左、右四个面;

+

步骤6:在p型金属接触阵列(106)和绝缘介电质薄膜(107)的顶端形成环形第一金属电极(109),将p+型金属接触阵列(106)连接起来;同时在暴露的n+型GeSn上形成探测第二电极(110)。

说明书 :

带有磁应变源的自调式GeSn红外探测器及其制备方法

技术领域

[0001] 本发明属于半导体光电子技术领域,具体涉及一种带有磁应变源、响应范围可调的GeSn红外探测器及其制备方法。

背景技术

[0002] 随着硅微电子工艺的发展及光互连集成电路需求的膨胀,硅基光子器件的研究已经成为近些年研究的重点和热点。受硅微电子兼容性、材料对光的响应范围及环境友好度的限制,高量子效率、宽响应范围的光电材料成为限制红外尤其是中红外硅基光电子迅速发展的主要因素。
[0003] 近十几年,具有优良电学特性和赝直接带隙的IV族锗(Ge)半导体,由于其光响应波长达到1.55μm接近重要的通讯窗口L(1565-1625nm)波段和U(1625-1675nm)波段,且与Si具有较好的兼容性,这使得Ge成为当时近红外探测器的最佳备选材料。然而,材料本身间接带隙的性质直接影响了Ge光电探测器的内量子效率。此外,通过结构设计,即使引入张应变Ge探测器的响应范围也很难覆盖L波段通讯窗口。
[0004] 近几年通过引入负带隙半导体锡(Sn)的方式,使得Ge转变成直接带隙半导体材料成为可能。相对于Ge,新型半导体GeSn合金提高了光电探测器的量子效率,并且通过调节Sn组分拓展了探测范围。但Ge中Sn的固溶度很低且受材料质量和热稳定性的限制,GeSn合金中Sn的含量非常有限。因此,单纯依靠提高Sn的组分实现GeSn带隙较大范围的调节比较困难。理论研究表明,应变的引入可以调节GeSn合金的带隙,张应变有利于合金直接带隙的减小和向直接带隙材料的转变,压应变作用效果与之相反。因此,通过对GeSn合金内应变的调控便可实现GeSn光电探测器的光电响应的调制。为了引入并调控GeSn内的应变,本发明利用超磁致伸缩材料作为应变源,采用此新结构在GeSn光电探测器内引入应变,并通过外加磁场调控器件内的应变进而调节探测器的光响应性能。

发明内容

[0005] 本发明的目的是提出一种带有可控磁应变源的自调式GeSn红外光电探测器新结构,以满足近/中红外波段对硅基光电子器件的需求。其中应变源使用超磁致伸缩材料,例如:Terfenol-D,其通式为TbxDy1-xFey,其中0
[0006] 本发明用以实现上述目的的技术方案如下:
[0007] 带有磁应变源的自调式GeSn红外探测器,包括:
[0008] 由下至上依次设置的衬底层、赝衬底层、驰豫层和n+型层;
[0009] 所述GeSn红外探测器还包括应变源阵列和光吸收阵列,所述应变源阵列的上、下、左、右四个面均包裹绝缘电介质薄膜以保证应变源与探测器间的电隔离,所述应变源阵列和光吸收阵列间隔设置在n+型层的上方,且n+型层的上方的最外侧均为应变源阵列;
[0010] 所述应变源阵列由超磁致伸缩材料制成,
[0011] 所述光吸收阵列的上方设置有p+型金属接触阵列,所述n+型层、光吸收阵列和p+型金属接触阵列组成GeSn红外探测器的p-i-n有源区,所述p-i-n有源区为单晶GeSn材料制成,
[0012] 所述p+型金属接触阵列的上方设置有环形探测第一电极,所述探测第一电极的底部与p+型金属接触阵列和绝缘电介质薄膜接触,将p+型金属接触阵列连接起来;
[0013] 所述n+型层上设置有探测第二电极。
[0014] 进一步地,所述衬底层为单晶Si衬底层,所述赝衬底层为单晶Ge赝衬底层,所述驰豫层为单晶GeSn驰豫层,所述n+型层为单晶n+型GeSn层,所述绝缘电介质薄膜为SiO2薄膜。
[0015] 进一步地,所述p-i-n有源区的单晶GeSn材料的通式为Ge1-xSnx,其中0.06≤x≤0.1。
[0016] 进一步地,所述驰豫层内的Sn的含量高于p-i-n有源区内Sn的含量,驰豫层中GeSn材料的通式为Ge1-ySny,其中y>0.1。
[0017] 进一步地,所述应变源阵列上方绝缘介质薄膜的顶端不超过p+型金属接触阵列的顶端。
[0018] 上述的带有磁应变源的自调式GeSn红外探测器的制备方法,包括以下步骤:
[0019] 步骤1:利用分子束外延工艺及原位掺杂技术在衬底层上依次生长赝衬底层、驰豫层、n+型层和一层本征GeSn材料,一层p+型GeSn材料;
[0020] 步骤2:利用光刻技术将本征GeSn材料和p+型GeSn材料刻蚀成阵列形式,形成光吸收阵列和p+型金属接触阵列;
[0021] 步骤3:利用等离子体增强化学气相沉积工艺在光吸收阵列单元侧面及光吸收阵列单元间沉积一层SiO2材料;
[0022] 步骤4:利用磁控溅射工艺在光吸收阵列单元间生长超磁致伸缩材料,形成应变源阵列,并利用刻蚀技术在应变源阵列单元的一侧刻出露台以暴露n+型GeSn;
[0023] 步骤5:利用等离子体增强化学气相沉积工艺在应变源阵列顶端及侧面沉积SiO2材料使应变源阵列单元被绝缘介电质薄膜包裹上、下、左、右四个面;
[0024] 步骤6:在p+型金属接触阵列和绝缘介电质薄膜的顶端形成环形第一金属电极,将p+型金属接触阵列连接起来;同时在暴露的n+型层上形成探测第二电极。
[0025] 应变源材料采用超磁致伸缩材料,可通过改变外加磁场调控有源区引入应变的大小,进而调控有源区GeSn合金的能带结构,如GeSn合金从间接带隙向直接带隙材料的转变及直接带隙EG,Γ的减小。最终实现GeSn光电探测器探测范围的自调节。
[0026] 相比现有技术,本发明的有益效果在于:
[0027] 本发明的光吸收阵列为单晶GeSn合金,应变源阵列材料为超磁致伸缩材料,可通过增加Sn的比列,实现GeSn合金从间接带隙向直接带隙材料的转变。此外,还可通过调节外加磁场的大小,改变超磁致伸缩材料的伸缩度,从而调控光吸收阵列GeSn材料内引入的沿Y轴方向的应变,应变状态的变化会引起GeSn材料能带结构及带隙EG,Γ大小的变化,从而实现有源区光响应范围的双向可调。

附图说明

[0028] 图1为带有磁应变源的自调式GeSn红外探测器的立体结构图。
[0029] 图2为带有磁应变源的自调式GeSn红外探测器的XZ面剖面图。
[0030] 图3为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤1的加工示意图。
[0031] 图4为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤2的加工示意图。
[0032] 图5为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤3的加工示意图。
[0033] 图6为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤4的加工示意图。
[0034] 图7为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤5的加工示意图。
[0035] 图8为带有磁应变源的自调式GeSn红外探测器的制备方法的步骤6的加工示意图。
[0036] 附图中标号:101-衬底层,102-赝衬底层,103-驰豫层,104-n+型层,105-光吸收阵列,106-p+金属接触阵列,107-绝缘介电质薄膜,108-应变源阵列,109-探测第一电极,110-探测第二电极。

具体实施方式

[0037] 以下实施例用于说明本发明,但不用来限定本发明的保护范围。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段。
[0038] 实施例1带有磁应变源的自调式GeSn红外探测器
[0039] 如图1和图2所示,带有磁应变源的自调式GeSn红外光电探测器,包括:由下至上依次设置的衬底层101、赝衬底层102、驰豫层103和n+型层104,所述衬底层101为单晶Si衬底层,所述赝衬底层102为单晶Ge赝衬底层,所述驰豫层103为单晶GeSn驰豫层,所述n+型层104为单晶n+型GeSn层。
[0040] 所述GeSn红外探测器还包括应变源阵列108和光吸收阵列105,所述应变源阵列108的上、下、左、右四个面均包裹绝缘电介质薄膜107以保证应变源与探测器间的电隔离,所述应变源阵列108和光吸收阵列105间隔设置在n+型层104的上方,n+型层104的上方的最外侧均为应变源阵列108,所述绝缘电介质薄膜107为SiO2薄膜。
[0041] 所述应变源阵列108由超磁致伸缩材料制成,具体为Terfenol-D,通式为Tb0.3Dy0.7Fe1.92。
[0042] 所述光吸收阵列105的上方设置有p+型金属接触阵列106,所述n+型层104、光吸收阵列105和p+型金属接触阵列106组成GeSn红外探测器的p-i-n有源区,所述p-i-n有源区为单晶GeSn材料制成,p-i-n有源区的单晶GeSn材料的通式为Ge0.9Sn0.1。
[0043] 驰豫层103内的Sn的含量高于p-i-n有源区内Sn的含量,驰豫层103的单晶GeSn材料的通式为Ge0.87Sn0.13。
[0044] 所述p+型金属接触阵列106的上方设置有环形探测第一电极109,所述探测第一电极109的底部与p+型金属接触阵列106和绝缘电介质薄膜107接触,
[0045] 所述n+型层104上设置有探测第二电极110,所述探测第二电极110的一侧与绝缘电介质薄膜107接触。
[0046] 实施例2
[0047] 本实施例与实施例1基本相同,相同之处不再赘述,不同之处在于:p-i-n有源区的单晶GeSn材料的通式为Ge0.92Sn0.08,驰豫层103的单晶GeSn材料的通式为Ge0.88Sn0.12。
[0048] 实施例3
[0049] 本实施例与实施例1基本相同,相同之处不再赘述,不同之处在于:p-i-n有源区的单晶GeSn材料的通式为Ge0.94Sn0.06,驰豫层103的单晶GeSn材料的通式为Ge0.89Sn0.11。
[0050] 实施例4带有磁应变源的自调式GeSn红外探测器的制备
[0051] 包括以下步骤:
[0052] 步骤1:如图3所示,在Si衬底层101上,利用分子束外延工艺及原位掺杂技术依次生长一层单晶Ge材料形成赝衬底层102;一层驰豫的Ge0.88Sn0.12材料以形成驰豫层103,减弱+ +有源区GeSn内的压应变;一层驰豫的n 型Ge0.92Sn0.08材料以形成n 型层104,一层本征Ge0.92Sn0.08材料,一层p+型Ge0.92Sn0.08材料,形成p-i-n结构作为光吸收阵列的基础。
[0053] 步骤2:如图4所示,利用光刻技术将本征Ge0.92Sn0.08材料和p+型Ge0.92Sn0.08材料刻蚀成阵列形式,每个阵列单元为矩形柱,形成光吸收阵列105和p+型金属接触阵列106。
[0054] 步骤3:如图5所示,利用等离子体增强化学气相沉积(PECVD)工艺在光吸收阵列105单元侧面及光吸收阵列105单元间沉积一层SiO2材料形成绝缘介电质薄膜107。
[0055] 步骤4:如图6所示,利用磁控溅射工艺在光吸收阵列105间生长超磁致伸缩材料Terfenol-D(通式为Tb0.3Dy0.7Fe1.92),形成应变源阵列108,并利用刻蚀技术在器件的一侧+刻出露台以暴露n型层104。
[0056] 步骤5:如图7所示,利用PECVD工艺在应变源阵列顶端及侧面沉积SiO2材料使应变源阵列单元被绝缘介电质薄膜107包裹上、下、左、右四个面。
[0057] 步骤6:如图8所示,在p+型金属接触阵列106和绝缘介电质薄膜107的顶端形成环形第一金属电极109,将p+型GeSn金属接触阵列连接起来;同时在暴露的n+型GeSn(即n+型层)上形成探测第二电极110。以上,一个完整的带有磁应变源的自调式GeSn红外探测器制备完成。
[0058] 以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理及工艺条件所做的变化和改进等,均应包括于本发明申请专利范围内。