一种全背电极电池及其高效陷光和选择性掺杂制造方法转让专利

申请号 : CN201810806095.4

文献号 : CN109192809B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 丁建宁袁宁一高纪凡张学玲

申请人 : 常州大学江苏大学

摘要 :

本发明属于太阳电池制造技术领域,具体涉及一种全背电极电池的高效陷光和选择性掺杂制造方法。利用微纳结构结合原子层沉积技术制备超薄氧化硅钝化膜,降低前表面的光反射和钝化膜寄生光吸收,同时保证前表面的钝化。针对背面金属区域复合大的问题,采用选择性掺杂,在磷掺杂层上利用皮秒激光保证在n+层表层进行重掺杂,严格控制重掺杂层的深度,既保证了磷掺杂层与金属接触区形成良好的欧姆接触,又不会产生由于重掺杂带来的严重的载流子复合。利用超薄氧化硅钝化,在后续的氢气气氛下的低温退火处理进一步对晶硅进行体钝化。利用热蒸发方法制备Al金属电极,激光辐照下,Al透过氧化硅与p+和n++形成良好的欧姆接触。

权利要求 :

1.一种全背电极电池的高效陷光和选择性掺杂制造方法,其特征在于:所述方法步骤如下:(1)、选用电阻率1-7Ω·cm的n型单晶硅片,抛光去除表面损伤,清洗;

(2)、利用BBr3源在抛光清洗后的单晶硅片表面进行硼掺杂,首先进行硼源预沉积,然后高温推进;在高温推进过程中单晶硅片表面的硼原子扩散进单晶硅片,进行掺杂,形成p+区,同时单晶硅片表面形成一层含有硼元素的SiO2,即硼硅玻璃(BSG);

(3)、利用激光将硼掺杂后的单晶硅片背面需要进行磷掺杂的区域表面上的BSG和p+区去除,用碱液和去离子水去除激光辐照损伤;

(4)、然后用POCl3对步骤(3)激光辐照后的单晶硅片进行磷掺杂, 700-800℃磷源预沉积30-60min,800 950℃高温推进5-20min,形成n+区,同时单晶硅片表面形成一层含有磷元~素的SiO2,即磷硅玻璃(PSG);

+ +

(5)、利用皮秒激光在覆盖n区的磷硅玻璃表面进行扫描,在单晶硅片内n区上方形成超薄重掺杂n++层;

(6)、将步骤(5)的单晶硅片正面朝下置于湿法单面刻蚀机中,正面去除PSG和BSG;

(7)、将步骤(6)单晶硅片正面利用化学湿法和金属纳米颗粒催化刻蚀方法制备微纳陷光结构;

(8)、将步骤(7)单晶硅片用POCl3进行磷掺杂,正面形成n+层即前表面场钝化FSF;700-

800℃磷源预沉积10-30min,800-950℃高温推进5-20min,形成n+层,同时单晶硅片表面形成一层含有磷元素的SiO2,即磷硅玻璃(PSG);

(9)、将步骤(8)单晶硅片的正面和背面所有的PSG和BSG去除;

(10)、利用原子层沉积方法在正面和背面同时制备超薄氧化硅层,氧化硅层厚度在2-

10nm,实现对正面和背面的表面钝化;

(11)、氢气气氛下,低温300-450℃对整个单晶硅片退火20-30min;氢原子通过超薄的氧化硅层扩散进去,对单晶硅片进行钝化;

(12)、在整个背面热蒸发金属铝;既可以保护超薄氧化硅钝化层,又可以对未被单晶硅片吸收的长波进行反射,进一步提高光的利用率;

(13)、利用皮秒激光在背面n++层和p+区上方的铝层扫描,铝原子在激光作用下穿透氧化硅层,达到 n++和p+所在的位置,实现电接触;

(14)、激光刻槽,分割p区和n区的铝电极。

2.如权利要求1所述的全背电极电池的高效陷光和选择性掺杂制造方法,其特征在于:步骤(2)所述硼源预沉积温度:750-850℃,硼源预沉积时间:10-30min,然后高温推进,温度

900-1050℃,时间10-30min,N2气流量为10-15slm,O2气流量1000-2000 sccm,BBr3流量50-

300 sccm。

3.如权利要求1所述的全背电极电池的高效陷光和选择性掺杂制造方法,其特征在于:步骤(4)所述磷源预沉积N2气流量为10-15slm,O2气流量1000-2000 sccm,POCl3流量为300-

500sccm。

4.如权利要求1所述的全背电极电池的高效陷光和选择性掺杂制造方法,其特征在于:步骤(5)所述皮秒激光波长800 nm,功率密度1-15W/cm2,脉冲间隔7-10 ps,扫描速率6-

10m/s,形成的n++层深度在20-50纳米。

5.如权利要求1所述的全背电极电池的高效陷光和选择性掺杂制造方法,其特征在于:步骤(8)所述磷源预沉积N2气流量为10-15slm,O2气流量1000-2000 sccm,POCl3流量为300-

500sccm。

6.一种如权利要求1-5任一项所述方法制得的全背电极电池,其特征在于:所述单晶硅片的正面有在掺杂磷n+层的硅片表面沉积的超薄氧化硅层,硅片背面有p+/p++和n+/n++叉指结构,表面沉积有超薄氧化硅层。

说明书 :

一种全背电极电池及其高效陷光和选择性掺杂制造方法

技术领域

[0001] 本发明属于太阳电池制造技术领域,具体涉及一种全背电极电池的高效陷光和选择性掺杂制造方法。

背景技术

[0002] 太阳能发电技术是新能源发展的一个重要领域,提高太阳电池的单位面积输出功率是太阳能电池技术进步的最终目标。背接触(IBC)太阳电池,其正负金属电极都在电池非受光面呈指状交叉排布。电池在电池受光面没有金属电极的存在,能够消除金属电极遮光带来的光学损失,增大短路电流;所有的电极在电池背面呈交叉指状的分布,较大的金属化面积提升了电池填充因子;从而可以提高太阳电池片转换效率。
[0003] 对于晶硅太阳电池,前表面的光学特性和复合至关重要。对于IBC高效电池而言,更好的光学减反设计显得尤其重要。在电学方面,和常规电池相比,IBC电池的性能受前表面的影响更大,因为大部分的光生载流子在入射面产生,而这些载流子需要从前表面流动到电池背面直到接触电极,因此,需要更好的表面钝化来减少载流子的复合。现有的IBC电池陷光结构主要采用金字塔状绒面来增强光的吸收,采用SiNx的叠层钝化减反膜。这种结构存在的光学损失包括了前表面反射、减反膜寄生吸收、长波段不完美光陷阱、自由载流子吸收的影响等。
[0004] 另外,由于IBC电池的正表面没有金属栅线的遮挡,电流密度较大。在电池背面指状交叉排列的p区、n区接触电极的覆盖面积几乎达到了背表面的1/2。金属接触区的复合通常都较大。

发明内容

[0005] 本发明针对现有IBC电池技术中光损失和电损失两大问题,提供了一种全背电极电池的高效陷光和选择性掺杂制造方法,具体步骤如下:
[0006] (1)、选用电阻率1-7Ωcm的n型单晶硅片,抛光去除表面损伤,清洗;
[0007] (2)、利用BBr3源在抛光、清洗后的单晶硅片表面进行硼掺杂,形成p型区域,从而与n型硅衬底形成p-n结。即首先在750-850℃进行硼源预沉积10-30min,然后高温推进,温度900-1050℃,时间10-30min,N2气流量为10-15slm,O2气流量1000-2000sccm,BBr3流量50-300sccm。
[0008] 首先发生反应:4BBr3+3O2→2B2O3+63Br2↑,产生的B2O3沉积在硅片表面,B2O3与Si发生反应生成SiO2和硼原子:2B2O3+3Si→3SiO2+4B↓,这样硅片表面硼原子在高温推进过程中扩散进硅片,进行掺杂,形成p+区;同时硅片表面形成一层含有硼元素的SiO2,即硼硅玻璃(BSG);
[0009] (3)、利用激光将硼掺杂后的单晶硅片背面需要进行磷掺杂的区域表面上的BSG和p型层去除,用碱液和去离子水去除激光辐照损伤;
[0010] (4)、然后用POCl3对步骤(3)激光辐照后的单晶硅片进行磷掺杂,形成n+区,与p+形成平行叉指结构,电极制备后,电池就可以实现全背电极结构。700-800℃磷源预沉积30-60min,800-950℃高温推进5-20min,N2气流量为10-15slm,O2气流量1000-2000sccm,POCl3流量为300-500sccm。形成n+区,同时硅片表面形成一层含有磷元素的SiO2,即磷硅玻璃(PSG);
[0011] 由于硼和磷的原子大小不同,扩散速率不同,如果先沉积硼源和磷源,然后利用一步高温推进同时形成硼和磷掺杂,硼和磷的掺杂无法同时达到理想的掺杂分布,因此,本发明先进行硼掺杂再进行磷掺杂的掺杂方法,可以分别控制硼、磷掺杂浓度和深度,可控性更好。
[0012] (5)、利用皮秒激光(波长800nm,功率密度1-15W/cm2,脉冲间隔7-10ps,扫描速率6-10m/s)在覆盖的n+区域磷硅玻璃表面进行扫描,在n+区上方形成超薄n++层,n++层深度在
20-50纳米。
[0013] 重掺杂区域由于掺杂浓度高,缺陷密度高,载流子复合严重。但是要与金属电极实现良好的欧姆接触,又必须实现重掺杂。所以要尽可能降低重掺杂层的厚度。本发明方法采用皮秒激光扫描重掺杂,形成超薄n++层,并控制n++层深度在20-50纳米,可以保证表面与金属有很好的欧姆接触的同时,又不显著增加晶体硅内部的载流子复合。
[0014] (6)、将步骤(5)的硅片正面朝下置于湿法单面刻蚀机,去除正面的PSG和BSG,其中,腐蚀液是HF水溶液(体积比HF:H2O=1:6);
[0015] (7)、步骤(6)得到的硅片正面先用低浓度(NaOH质量分数为1%)NaOH乙醇溶液,温度80±5℃,时间20min,制备大小为3-6微米尺度的金字塔结构;然后用质量比10%的盐酸水溶液酸洗10min,再利用质量比8%的HF水溶液进行漂洗。利用AgNO3和HF混合液(HF 5mol L-1,AgNO3 0.02mol L-1)在金字塔微米结构上制备100-300nm的纳米坑,形成微纳陷光结构;
[0016] 微纳复合结构相对微米结构可以大大提高光吸收,相对于纳米结构,表面钝化容易。所以,微纳结构兼顾了两者的优势。采用AgNO3和HF混合液,制备微纳陷光结构不需要模板。AgNO3和HF混合液在硅片表面会自发形成Ag纳米颗粒;由于Ag纳米颗粒的催化效应,在Ag纳米颗粒下方的硅刻蚀速率大,从而形成纳米坑。
[0017] (8)、正面用POCl3进行磷掺杂,形成n+层即前表面场钝化FSF(front surface field)。700-800℃磷源预沉积10-30min,800-950℃高温推进5-20min,N2气流量为10-15slm,O2气流量1000-2000sccm,POCl3流量为300-500sccm。形成n+区,同时硅片表面形成一层含有磷元素的SiO2,即磷硅玻璃(PSG);
[0018] (9)、利用腐HF水溶液(体积比HF:H2O=1:6)去除硅片正面和背面所有的PSG和BSG;
[0019] (10)、利用原子层沉积(ALD)方法在正面和背面同时制备超薄氧化硅层,氧化硅层厚度在2-10nm,实现对正面和背面的表面钝化。在沉积室中先通入三甲基硅烷,通入时间10-20s,再向该室中通入N2气,吹扫时间10-30s。然向该室中通入臭氧O3,通入时间10-20s,再向该室中通入N2气,吹扫时间10-30s s,沉积温度为300-400℃,这是一个循环。一个循环的薄膜厚度在0.1nm左右。这个循环重复100-300次。
[0020] 本发明利用ALD方法制备的氧化硅薄膜,其好处在于薄膜致密,厚度很小的情况下,即可实现很好的表面钝化效果。厚度越小,所需的成本越低。同时ALD工艺温度低,硅体内的氢原子不会再后续低温退火下,从体内溢出,造成体内钝化失效。
[0021] (11)、氢气气氛下,低温(300-450℃)对整个硅片退火20-30min;氢原子通过超薄的氧化硅层扩散进去,对晶硅进行体钝化。
[0022] (12)、在整个背面热蒸发金属铝;既可以保护超薄氧化硅钝化层,又可以对未被晶硅吸收的长波进行反射,进一步提高光的利用率。
[0023] (13)、利用皮秒激光在背面n++和p+区域上方的铝层扫描,铝原子在激光作用下穿透氧化硅层,达到n++和p+所在的位置,实现电接触。利用皮秒激光扫描,由于氧化硅层超薄,Al可以透过氧化硅层到达电极。
[0024] (14)、激光刻槽,分割p区和n区电极。
[0025] 由于金字塔等微米结构,陷光效果不理想,需进一步制备钝化减反膜,从而降低前表面的光反射。但减反膜需要满足一定的厚度,才能起到减反的作用。减反膜越厚,自身的光吸收就越强;但减反膜的光吸收,不能产生光生载流子。晶硅电池发电是要尽可能提高晶硅的光吸收。为此本发明利用微纳结构结合原子层沉积(ALD)技术制备超薄氧化硅钝化膜,来降低前表面的光反射和钝化膜寄生光吸收,同时保证前表面的钝化。
[0026] 针对背面金属区域复合大的问题,采用选择性掺杂,即在磷掺杂层上利用皮秒激光脉冲时间短的特点,保证在n+层表层进行重掺杂,也就是严格控制重掺杂层的深度,这样既保证了磷掺杂层与金属接触区形成良好的欧姆接触,又不会由于重掺杂带来的严重的载流子复合。后续的氢气气氛下的低温退火,对晶硅进行体钝化。
[0027] 有益效果:
[0028] 本发明利用氧化硅和硅优异的匹配,原子层沉积技术独特的沉积原理(原子吸附,致密,保形),在微纳陷光结构上沉积致密超薄氧化硅钝化膜,保证微纳结构的优异陷光结构的同时,也保证了微纳结构的表面钝化,降低了钝化层的寄生吸光。在n区掺杂层上利用皮秒激光,形成了超薄n++。氢气气氛下的低温退火处理,氢原子扩散进体内进行体钝化。在背面超薄氧化硅上沉积铝层,在皮秒激光扫描下,铝透过超薄氧化硅层,扩散到达n++和p+,实现电接触。这样背面致密超薄的氧化硅很好地钝化了背表面。ALD方法制备的氧化硅薄膜致密,厚度很小的情况下,即可实现很好的表面钝化效果。厚度越小,所需的成本越低。同时ALD工艺温度低,硅体内的氢原子不会在后续低温退火下从体内溢出,造成体内钝化失效。

附图说明

[0029] 图1本发明所述IBC电池制备流程图。

具体实施方式

[0030] 实施例1
[0031] (1)、选用电阻率2.5Ωcm的n型单晶硅片,采用高浓度(20%)的NaOH腐蚀液,90℃温度下处理1min进行抛光,利用HF和HCl混合液进行2min清洗;
[0032] (2)、利用BBr3源进行硼掺杂,预沉积参数:800℃,20min,N2气流量为13slm,O2气流量1500sccm,BBr3流量150sccm,在整个硅片表面形成p+层,同时硅片表面形成了一层硼硅玻璃(BSG)介质层,高温推进参数:1000℃,15min;
[0033] (3)、利用皮秒激光器将背面需要进行磷掺杂的区域表面上的BSG和p型层去除,用去离子水清洗,去除激光辐照形成的一些浮尘;
[0034] (4)、用POCl3进行磷掺杂,预沉积700℃,40min,N2气流量为15slm,O2气流量1800sccm,POCl3流量为400sccm。推进温度850℃,推进时间10min。形成n+区,同时表面生成了一层磷硅玻璃(PSG)介质层;
[0035] (5)、利用皮秒激光(波长800nm,功率密度5W/cm2,脉冲间隔7ps,扫描速率10m/s)在n+区域进行扫描,形成超薄n++层,n++层深度40纳米。
[0036] (6)、将硅片置于湿法单面刻蚀机,利用HF水溶液(体积比HF:H2O=1:6)去除正面的PSG和BSG。
[0037] (7)、正面先用低浓度(NaOH质量分数为1%)NaOH乙醇溶液,温度85±5℃,时间20min,制备3-6微米尺度的金字塔结构;然后用质量比10%的盐酸水溶液酸洗10min,再利用质量比8%的HF水溶液进行漂洗。随后将表面有金字塔微米结构的硅片放在HF/AgNO3(HF 
5mol L-1,AgNO3 0.02mol L-1)水溶液中刻蚀10min,制备100-300nm的纳米坑。
[0038] (8)、正面用POCl3进行磷掺杂,形成n+层即前表面场钝化FSF;预沉积700℃,20min,N2气流量为15slm,O2气流量1800sccm,POCl3流量为400sccm。推进温度850℃,推进时间10min。形成n+区,同时表面生成了一层磷硅玻璃(PSG)介质层;
[0039] (9)、利用HF水溶液(体积比HF:H2O=1:6)去除硅片正面和背面所有的PSG和BSG;
[0040] (10)、氢气气氛下,低温(300℃)对整个硅片退火20min;氢原子通过超薄的氧化硅层扩散进去,对晶硅进行体钝化。
[0041] (11)、利用原子层沉积(ALD)方法在正面和背面同时制备超薄氧化硅层,具体为:在沉积室中先通入三甲基硅烷,通入时间10s,再向该室中通入N2气,吹扫时间10s。然向该室中通入臭氧O3,通入时间10s,再向该室中通入N2气,吹扫时间10s,沉积温度为300℃,这是一个循环。重复150次。
[0042] (12)、在整个背面热蒸发金属铝,铝层厚度100nm;既可以保护超薄氧化硅钝化层,又可以对未被晶硅吸收的长波进行反射,进一步提高光的利用率。
[0043] (13)、利用皮秒激光在背面n++层和p+区域上方覆盖的超薄氧化硅层上扫描,铝原子在激光作用下扩散,达到n++和p+所在的位置,实现电接触。
[0044] (14)、激光刻槽,分割p区和n区。
[0045] 实施例2
[0046] 制备方法:
[0047] 步骤(2)、利用BBr3源进行硼掺杂,预沉积参数:750℃,25min,N2气流量为13slm,O2气流量1500sccm,BBr3流量150sccm,高温推进温度1000℃,推进时间15min,;
[0048] 步骤(4)、用POCl3进行磷掺杂,预沉积800℃,40min,N2气流量为15slm,O2气流量1800sccm,POCl3流量为400sccm。推进温度950℃,推进时间10min。
[0049] 其他同实施例1。
[0050] 实施例3
[0051] 制备方法:
[0052] 步骤(11)、利用原子层沉积(ALD)方法在正面和背面同时制备超薄氧化硅层,具体为:在沉积室中先通入三甲基硅烷,通入时间10s,再向该室中通入N2气,吹扫时间10s。然向该室中通入臭氧O3,通入时间10s,再向该室中通入N2气,吹扫时间10s,沉积温度为300℃,这是一个循环。重复300次。
[0053] 其他同实施例1
[0054] 实施例4
[0055] 制备方法:
[0056] 步骤(5)、利用皮秒激光(波长800nm,功率密度10W/cm2,脉冲间隔10ps,扫描速率10m/s)在n+区域进行扫描,形成超薄n++层,n++层深度40纳米。
[0057] 其他同实施例1。
[0058] 本发明各实施例的电极性能数据见表1
[0059] 表1
[0060]