基于耗散性的金属轧制过程有限区域控制方法转让专利

申请号 : CN201811378135.6

文献号 : CN109283846B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 杨荣妮李玲玲余雅茹

申请人 : 山东大学

摘要 :

本发明公开了一种基于耗散性的金属轧制过程有限区域控制方法,包括:建立金属轧制过程的数学模型;设计动态输出反馈控制器,使金属轧制系统满足有限区域有界性和有限区域二维(T,S,R)‑δ‑耗散性。本发明有益效果:基于二维系统理论框架,考虑基于网络通讯的具有数据丢失的金属轧制过程,解决网络控制中控制器和执行器不能实时更新导致的问题;从能量的角度分析,设计动态输出反馈控制器确保系统满足有限区域有界性和有限区域二维(T,S,R)‑δ‑耗散性,本发明通过输出反馈控制器对金属轧制系统进行控制,进一步提高了金属轧制系统的性能。

权利要求 :

1.基于耗散性的金属轧制过程有限区域控制方法,其特征在于,包括:基于二维系统理论框架,建立金属轧制过程的数学模型;

设计动态输出反馈控制器,使金属轧制系统满足有限区域有界性和有限区域二维(T,S,R)-δ-耗散性;

所述动态输出反馈控制器具体为:

xd(i+1,j+1)=Ad,1xd(i,j+1)+Ad,2xd(i+1,j)+Bd,1y(i,j+1)+Bd,2y(i+1,j),u(i,j)=Cdxd(i,j)+Ddy(i,j),其中, 为控制器的状态向量,Ad,1,Ad,2,Bd,1,Bd,2,Cd和Dd是控制器增益矩阵;

xd(i,j+1)、xd(i+1,j)分别表示(i,j+1)、(i+1,j)对应的状态,y(i,j+1)、y(i+1,j)分别表示(i,j+1)、(i+1,j)对应的测量输出;

所述建立金属轧制过程的数学模型,具体为:

x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j),y(i,j)=Cx(i,j),

其中, 表示系统状态, 表示控制输入, 是测量输出,(i,j)∈N×N,N为非负整数;x(i,j+1)、x(i+1,j)分别表示(i,j+1)、(i+1,j)对应的状态,u(i,j+1)、u(i+1,j)分别表示(i,j+1)、(i+1,j)对应的控制输入;

A1,A2,B1,B2,C是系数矩阵:

M表示輥缝调节机构的集中质量,T1表示采样周期,k1表示调节机构弹簧刚度,k2表示金属带的硬度, 表示金属带与轧辊机构的复合刚度。

2.如权利要求1所述的基于耗散性的金属轧制过程有限区域控制方法,其特征在于,考虑具有数据丢失现象和具有外部扰动后,金属轧制过程的数学模型为:x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j)+G1ω(i,j+1)+G2ω(i+

1,j),

y(i,j)=ρ(i,j)Cx(i,j)+G3ω(i,j),其控制输出为:

z(i,j)=Ex(i,j)+Fu(i,j)+G4ω(i,j),其中, 表示外部扰动, 表示控制输出,E,F,G1,G2,G3和G4均为系数矩阵;ρ(i,j)是取值为0或1的随机伯努利序列,表示数据丢失情况,当ρ(i,j)=1时,系统没有发生数据丢失,ρ(i,j)=0时,系统发生数据丢失,且满足:和

式中 为已知常数;同时假设外部扰动ω(i,j)满足:式中ω0≥0是已知常数,Γ为正整数。

3.如权利要求1所述的基于耗散性的金属轧制过程有限区域控制方法,其特征在于,定义增广系统:其中,

要得到金属轧制过程的有限区域有界性,增广系统需满足:其中,c1,c2,c为给定标量且满足0

4.如权利要求3所述的基于耗散性的金属轧制过程有限区域控制方法,其特征在于,金属轧制过程具有有限区域二维(T,S,R)-δ-耗散性需满足的条件为:其中, 表示外部扰动, 表示控制输出,δ>0为给定标量,γ(·)为实函数,(Γi,Γj)∈N×N,T,S,R为给定矩阵且T和R为实对称矩阵,T≤0且存在某一矩阵T*使得另外:

说明书 :

基于耗散性的金属轧制过程有限区域控制方法

技术领域

[0001] 本发明涉及金属轧制和网络控制领域,尤其涉及一种基于耗散性的金属轧制过程有限区域控制方法。

背景技术

[0002] 金属轧制系统是一个典型的二维系统,它与汽车、建筑、能源等国民经济支柱产业密切相关,也与人们的生活密切相关。另外,稳定性作为动态系统理论研究中的重要一环,保证金属轧制过程的稳定性是非常重要的。在控制理论的研究中,人们所关心的系统稳定性主要是指Lyapunov稳定性。一般而言,Lyapunov稳定刻画的是一个系统的稳态性能,但并不能反映系统的暂态性能。很多时候,一个渐近稳定的系统可能具有较坏的暂态性能。
[0003] 耗散性是系统非常重要的特性,是比无源性和稳定性更为一般化的性能指标,它是指系统内部消耗的能量不超出外界对它供给的能量。众所周知,金属轧制系统是一个典型的耗散系统。研究金属轧制系统耗散性的主要出发点在于提出了一种分析和设计的思想,即从能量的角度,以输入输出的方式描述控制系统分析和控制的框架。另一方面,金属轧制系统如果通过无线网络连接实现,一个需要考虑的问题就是在网络控制系统中是否有足够的带宽资源,将信息实时反馈到控制器上,然后将控制命令发送到执行器并作用到被控对象上。在数据传输过程中,如果发生网络堵塞,会导致系统发生数据丢失,控制器和执行器不能实时更新,影响系统性能,甚至可能波及系统的稳定性。因此,对基于网络传输的具有数据丢失的金属轧制过程进行研究是非常有意义的。目前,在二维系统理论框架下,基于网络通讯的金属轧制系统的有限区域输出反馈耗散控制的研究结果尚属空白。

发明内容

[0004] 为了解决上述问题,本发明提出了一种基于耗散性的金属轧制过程有限区域控制方法,利用二维系统理论框架对金属轧制过程进行控制。
[0005] 为了实现上述目的,本发明采用如下技术方案:
[0006] 本发明基于耗散性的金属轧制过程有限区域控制方法,包括:
[0007] 建立金属轧制过程的数学模型;
[0008] 设计动态输出反馈控制器,使金属轧制系统满足有限区域有界性和有限区域二维(T,S,R)-δ-耗散性。
[0009] 首先,所述建立金属轧制过程的数学模型,具体为:
[0010] x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j),
[0011] y(i,j)=Cx(i,j),
[0012] 其中, 表示系统状态, 表示控制输入, 表示测量输出,(i,j)∈N×N,N为非负整数;x(i,j+1)、x(i+1,j)分别表示(i,j+1)、(i+1,j)对应的状态,u(i,j+1)、u(i+1,j)分别表示(i,j+1)、(i+1,j)对应的控制输入;
[0013] A1,A2,B1,B2,C是系数矩阵:
[0014]
[0015]
[0016] C=[00100],
[0017] M表示輥缝调节机构的集中质量,T1表示采样周期,k1表示调节机构弹簧刚度,k2表示金属带的硬度, 表示金属带与轧辊机构的复合刚度。
[0018] 进一步地,考虑网络通讯中的数据丢失现象和外部扰动后,金属轧制过程的数学模型为:
[0019] x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j)
[0020] +G1ω(i,j+1)+G2ω(i+1,j),
[0021] y(i,j)=ρ(i,j)Cx(i,j)+G3ω(i,j),
[0022] 其控制输出为:
[0023] z(i,j)=Ex(i,j)+Fu(i,j)+G4ω(i,j),
[0024] 其中, 表示外部扰动, 表示控制输出,E,F,G1,G2,G3和G4均为系数矩阵;ρ(i,j)是取值为0或1的随机伯努利序列,表示数据丢失情况,当ρ(i,j)=1时,系统数据成功传输,ρ(i,j)=0时,系统发生数据丢失,且满足:
[0025]
[0026] 此外,有下式成立:
[0027]
[0028] 式中 为已知常数;同时假设外部扰动ω(i,j)满足:
[0029]
[0030] 式中ω0≥0是已知常数,Γ为正整数。
[0031] 构造如下所示动态输出反馈控制器:
[0032] xd(i+1,j+1)=Ad,1xd(i,j+1)+Ad,2xd(i+1,j)
[0033] +Bd,1y(i,j+1)+Bd,2y(i+1,j),
[0034] u(i,j)=Cdxd(i,j)+Ddy(i,j),
[0035] 其中, 表示控制器的状态,Ad,1,Ad,2,Bd,1,Bd,2,Cd和Dd是控制器增益矩阵;xd(i,j+1)、xd(i+1,j)分别表示(i,j+1)、(i+1,j)对应的状态,y(i,j+1)、y(i+1,j)分别表示系统在(i,j+1)、(i+1,j)对应的测量输出;
[0036] 定义如下增广系统:
[0037]
[0038]
[0039] 其中,
[0040]
[0041]
[0042]
[0043] 若增广系统满足:
[0044]
[0045] 则称金属轧制过程满足有限区域有界性。
[0046] 其中,c1,c2,c为给定标量且满足0
[0047] 进一步地,若有下式成立:
[0048]
[0049] 则金属轧制过程具有有限区域二维(T,S,R)-δ-耗散性。其中,δ>0为给定标量,γ(·)为实函数,(Γi,Γj)∈N×N,T,S,R为给定矩阵且T和R为实对称矩阵,T≤0且存在某一矩阵T*使得-T=T*TT*;
[0050] 且
[0051]
[0052] 与现有技术相比,本发明的有益效果是:
[0053] 本发明提出基于耗散性的金属轧制过程有限区域控制方法,基于二维系统理论框架,考虑基于网络通讯的具有数据丢失的金属轧制过程,解决网络控制中控制器和执行器不能实时更新导致的问题;从能量的角度分析,设计动态输出反馈控制器确保系统满足有限区域有界性和有限区域二维(T,S,R)-δ-耗散性。本发明从能量角度进行分析,对基于网络通讯的金属轧制过程实施动态输出反馈控制,保证了系统的有限区域稳定性和耗散性能。

附图说明

[0054] 构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
[0055] 图1是金属轧制系统简化示意图;
[0056] 图2是输出反馈网络控制框图;
[0057] 图3是随机伯努力序列ρ(i,j)的取值;
[0058] 图4是开环情况下, 的值;
[0059] 图5是动态输出反馈控制器作用下, 的值。

具体实施方式

[0060] 应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
[0061] 需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
[0062] 本发明基于耗散性的金属轧制过程有限区域控制方法,包括以下步骤:
[0063] 一、建立金属轧制过程的数学模型为:
[0064] x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j),
[0065] y(i,j)=Cx(i,j),
[0066] 其中:
[0067]
[0068]
[0069] 另外, 表示系统状态, 表示控制输入, 表示测量输出且(i,j)∈N×N,N为非负整数,A1,A2,B1,B2,C是系数矩阵。M表示輥缝调节机构的集中质量,T1表示采样周期,k1表示调节机构弹簧刚度,k2表示金属带的硬度, 表示金属带与轧辊机构的复合刚度。
[0070] 考虑网络通讯中的数据丢失现象和外部扰动后,金属轧制过程的数学模型为:
[0071] x(i+1,j+1)=A1x(i,j+1)+A2x(i+1,j)+B1u(i,j+1)+B2u(i+1,j)
[0072] +G1ω(i,j+1)+G2ω(i+1,j),
[0073] y(i,j)=ρ(i,j)Cx(i,j)+G3ω(i,j),
[0074] 其控制输出为:
[0075] z(i,j)=Ex(i,j)+Fu(i,j)+G4ω(i,j),
[0076] 其中, 表示外部扰动, 表示控制输出,E,F,G1,G2,G3和G4为系数矩阵。ρ(i,j)是取值为0或1的随机伯努利序列,表示数据丢失情况,如图3所示,当ρ(i,j)=1时,系统数据传输成功,ρ(i,j)=0时,系统发生数据丢失,且满足:
[0077]
[0078] 和
[0079]
[0080] 式中 为已知常数。同时假设外部扰动ω(i,j)满足:
[0081]
[0082] 式中ω0≥0是已知常数,Γ为正整数。
[0083] 二、设计动态输出反馈控制器,使金属轧制系统满足有限区域有界性和有限区域内二维(T,S,R)-δ-耗散性;
[0084] 设计具有如下形式的动态输出反馈控制器:
[0085] xd(i+1,j+1)=Ad,1xd(i,j+1)+Ad,2xd(i+1,j)
[0086] +Bd,1y(i,j+1)+Bd,2y(i+1,j),
[0087] u(i,j)=Cdxd(i,j)+Ddy(i,j),
[0088] 其中,Ad,1,Ad,2,Bd,1,Bd,2,Cd和Dd是控制器增益矩阵,可以利用Matlab中LMI工具箱求解得到。
[0089] 定义如下增广系统:
[0090]
[0091]
[0092] 其中:
[0093]
[0094]
[0095]
[0096] 若金属轧制过程具有有限区域有界性,则增广系统需满足:
[0097]
[0098] 其中,c1,c2,c为给定标量且满足0
[0099] 若金属轧制过程满足有限区域二维(T,S,R)-δ-耗散性,则:
[0100]
[0101] 其中,δ>0为给定标量,Υ(·)为实函数,(Γi,Γj)∈N×N,T,S,R为给定矩阵且T和R为实对称矩阵,T≤0且存在某一矩阵T*使得 另外:
[0102]
[0103] 本发明考虑了基于网络通讯的金属轧制过程的数据包/信号丢失现象。如图2所示,金属轧制过程(系统)的传感器、控制器和执行器是通过网络连接的,形成一个闭环反馈网络化控制系统。
[0104] 本发明的关键就是设计动态输出反馈控制器,进而使金属轧制系统满足给定的性能要求。众所周知,通过结合系统数学模型和所设计的动态输出反馈控制器,我们可以得到一个增广系统。通过引入的有限区域有界稳定性和耗散性定义,建立二维Lyapunov函数和一系列数学迭代过程,求解得到动态输出反馈控制器增益矩阵的设计方法。所获得的设计结果不全是线性矩阵不等式的形式,需通过舒尔补性质和解耦等一系列数学方法得到可解的线性矩阵不等式条件,这样使得所获结果可以直接利用仿真软件中的LMI工具箱进行求解。
[0105] 下面利用Matlab进行仿真,以验证本发明提出的基于耗散性的金属轧制过程有限区域控制方法的有效性。
[0106] 如图1所示的金属轧制系统,图中,Fm表示电动机所产生的力,Fs表示弹簧产生的力,M表示輥缝调节机构的集中质量,T1表示采样周期,y1表示压缩距离,yi/yi-1表示第i/i-1个輥缝的厚度,k1表示调节机构弹簧刚度,k2表示金属带的硬度, 表示金属带与轧辊机构的复合刚度。
[0107] 其中系统参数设置如下:
[0108] M=50,k1=1500,k2=500,T1=1
[0109] 则系统矩阵可表示为:
[0110]
[0111]
[0112] C=[0 0 1 0 0],D=0,
[0113] 另外,给定其他系数矩阵为:
[0114] E=[0.01 0 0 0 0],F=[0.1], G3=[0.3],G4=[0.4],
[0115] 给定耗散性矩阵T=-1,S=1.2,R=1.5,常数 有限区域有界性的限制条件为H1=H2=I,c1=2.5,c2=3,c=8,ω0=1,Γ=6。然后运用MATLAB-LMI工具箱求解线性矩阵不等式,可以得到本实施例中所设计的动态输出反馈控制器的增益矩阵为:
[0116]
[0117]
[0118] Cd=[0.1044 -0.0002 0.0016 -0.0017 0.0003],Dd=[-0.0016]
[0119] 和耗散性能的最优边界值δ*=2.2535,并通过计算得出金属轧制系统满足有限区域二维(T,S,R)-δ-耗散性;对比仿真图4和图5,可以看出本实施例中所设计的动态输出反馈控制器可以保证系统有限区域的有界性。
[0120] 上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。