差动电流感测总线方法转让专利

申请号 : CN201810902211.2

文献号 : CN109390907B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 丹尼斯·W·弗莱格查德·米特尔施泰特R·J·加斯道格拉斯·P·万华特詹森·波特拉茨

申请人 : 施耐德电气美国股份有限公司

摘要 :

本公开涉及差动电流感测总线方法。使用经由电流互感器的接地故障感测的、例如小型电路断路器的电路断流器的线路功率导体和中性导体被布置为由平板形成的刚性导体,并且当穿过接地故障断流器电流互感器时围绕并保持绝缘柔性导体。刚性导体可以提供成形的电流路径以最大化电流互感器的效率。

权利要求 :

1.一种电路断流器设备,所述电路断流器设备具有线路功率电流路径和中性返回功率电流路径以及被配置为检测接地故障电流异常的带孔电流互感器,所述电路断流器设备包括:实质上刚性的导体,所述实质上刚性的导体围绕并保持柔性导体,所述实质上刚性的导体由平板形成,所述平板具有第一端子板和第二端子板以及更宽的中心部分,所述更宽的中心部分被卷成实质上管状的成形件,从而产生用于适合通过所述电流互感器的实质上管状部分,所述实质上刚性的导体和所述柔性导体穿过在所述电路断路器设备内部的所述电流互感器的孔。

2.根据权利要求1所述的电路断流器设备,其中,所述实质上刚性的导体包括电阻特征部,所述电阻特征部被配置为对流过所述实质上刚性的导体的电流增加阻力。

3.根据权利要求2所述的电路断流器设备,其中,所述电阻特征部仅在所述实质上管状部分的一端上。

4.根据权利要求2所述的电路断流器设备,其中,所述电阻特征部包括所述实质上管状部分的截面中的变窄的壁厚。

5.根据权利要求2所述的电路断流器设备,其中,所述电阻特征部包括所述实质上管状部分的截面中的通孔。

6.根据权利要求1所述的电路断流器设备,其中,所述平板在形成期间绕着所述平板的中心轴线扭曲。

7.根据权利要求1所述的电路断流器设备,其中,所述实质上刚性的导体连接到所述中性返回功率电流路径并形成所述中性返回功率电流路径的一部分。

8.根据权利要求1所述的电路断流器设备,其中,所述电路断流器设备是小型电路断路器。

9.一种电弧故障感测类型的小型电路断路器,包括:

a)具有带孔磁芯的电流互感器;

b)被配置为检测接地故障的电子设备;

c)穿过所述芯延伸的第一初级导体和第二初级导体;

d)所述第一初级导体是实质上刚性的导体,所述第一初级导体具有位于所述芯内部的管状部分,并且还具有在所述芯外部与所述管状部分成角度延伸的非管状的第二部分和第三部分,其中所述管状部分不形成完全封闭的管;

e)所述第二初级导体是在实质上同轴的布置中保持在所述第一初级导体的所述管状部分内的柔性导线;

f)所述电流互感器还具有包括在所述芯上的多个匝的次级绕组;以及g)响应于所述次级绕组上的感测的信号的跳闸电路。

10.根据权利要求9所述的小型电路断路器,其中,所述电子设备被安装在印刷电路板上,并且所述第一初级导体的所述第二部分和所述第三部分中的一者附接到所述印刷电路板。

说明书 :

差动电流感测总线方法

[0001] 发明背景1.发明领域
[0002] 本发明涉及利用接地故障感测作为故障检测方法的一部分的电路断流器,其包括电路断路器或插座,且尤其涉及在住宅使用中最常见到的接地故障感测小型电路断路器和出口插座。
[0003] 2.相关技术的讨论
[0004] 图1示出了接地故障断流器类型的已知电路断路器10的基本要素,其中示意性表示了线路功率电流路径11。线路电流路径在断路器10的线路功率端子13处开始,并继续通过可分离接触部15和环形电流互感器的电流传感器17到达负载端子18,该负载端子18线连接到在这里被表示为电机的分支负载22。电路断路器10的机械“侧”或部分16包含热和磁跳闸单元19,通常分别是双金属和磁轭组件,其为用于在过电流状况的情况下使接触部15跳闸(即分离)的部件。
[0005] 电弧故障感测电路断路器10的电子“侧”或部分20包含以电流互感器17的形式的电流传感器以及用于对接地故障事件进行评估的相关电子设备21。电子设备21控制致动器23,一般是螺线管,其功能也是使可分离接触部15跳闸并从负载22移除电力。
[0006] 来自负载22的返回中性电流路径24通过电流互感器的电流传感器17从负载22行进到中性端子28,并出来到中性返回线26。应该认识到的是,在中性型断路器上的插头将具有端子夹,其不是所示的引出线或是对所示的引出线的补充。
[0007] 当功率导体和中性导体被布线穿过接地故障电流互感器17的传感器外壳时,功率导体和中性导体的电流流动方向相反。每个载流导体将产生符合用于确定通量方向的“右手法则”的磁通量。当两个导体携带相反的方向上的相同水平的电流时,一个导体的通量将抵消来自另一个导体的通量。那么这具有零的净通量值。如果有相等的电流离开并然后通过接地故障电路断路器返回,则接地故障传感器将不输出信号。如果在电路线路中存在电流的失衡,则接地故障断流器传感器将输出与电流失衡成比例的电流,且如果该失衡超过预定阈值,则接地故障电路断路器将检测到接地故障的存在并中断电路。
[0008] 接地故障断流器传感器的一个公认的问题是,如果导体没有正确地放置在传感器中,即使通过导体路径的总电流是平衡的,在整个电流传感器组件中的不均匀磁场也可导致来自电流传感器的输出电流。结果是电流传感器输出的不准确,其被称为负载转移误差。通常,当主导体(线路和中性)穿过接地故障电流互感器时,通过扭曲主导体来补偿这种误差。例如授予Misencik的美国专利3,725,741提出了用围绕穿过接地故障断流器电流互感器的孔的绝缘柔性导体的刚性管状外导体代替主导体(线路和中性)的常用双绞线。
[0009] 发明概述
[0010] 用于接地电弧故障感测断流器的线路功率导体和中性导体被布置为改进的刚性导体,其当穿过电流感测互感器时围绕并保持绝缘柔性导体。刚性导体可以被成形为提供受控的电流分布,以用于调节通过电流互感器的任何接地故障负载转移,并且更均匀地分布通过电流互感器的磁场。相反,在本发明的一些方面中,如果需要,有意的接地故障负载转移可以由装置提供。
[0011] 根据本发明的接地故障电流感测封装利用所谓的“仿同轴母线”,即包含和保持柔性绝缘导体的刚性导体,其通过电流互感器芯以代替双绞线来帮助控制在接地故障电流传感器内部的接地故障负载转移性能。本发明的方面可用于控制在仿同轴电缆两端的电流分布,以得到来自电流传感器的更好的输出。仿同轴电缆布置还提供了更容易的构造,同时也消除了对双绞线组件的需要,并为线路和中性线保持更一致的布线路径,以获得更一致的负载转移性能。
[0012] 在一个方面,本发明提供了一种用于检测接地故障电流异常的具有在有带孔电流互感器内的线路功率电流路径和中性功率电流路径的接地故障感测小型电路断路器,其包括:围绕并保持柔性导体的刚性导体;刚性导体和柔性导体穿过在小型电路断路器内部的接地故障电流互感器的孔,其中刚性导体被成形为控制在芯内的电流密度和产生的通量。
[0013] 在本发明的一些方面中,刚性导体连接到中性连接的电流路径并形成该中性连接的电流路径的一部分。可选地,刚性导体可以形成线路功率连接的一部分,且中性线可以通过由刚性导体包围和保持的柔性导体进行连接。刚性导体可以由具有第一端子板和第二端子板以及更宽的中心部分的扁平坯件形成,该更宽的中心部分被卷成实质上管状的成形件,以用于适合通过电流互感器。刚性导体还可以具有集成在其中的电流密度引导特征部,以对电流流动产生增加的阻力,例如其中在刚性导体中的电阻特征部是由在实质上管状的成形件的截面中的变窄的壁厚或通孔产生的。此外,例如,管状的成形件可以例如由在输入和输出端子之间的180度或270度的卷起而形成,以控制电流和通量分布图。
[0014] 本发明的其他方面提供了对差动互感器类型的接地故障断流器装置(例如接地故障感测类型的小型电路断路器)的改进,该接地故障断流器装置包括:具有带孔磁芯的电流互感器;具有用于检测接地故障事件的电子设备的印刷电路板;穿过芯延伸的第一初级导体和第二初级导体;第一初级导体是实质上刚性的导体,其具有位于芯内部的管状部分,并且还具有在芯外部与管状部分成角度延伸的非管状第二部分和第三部分,第二部分或第三部分中的一者固定到印刷电路板;第二初级导体是在实质上同轴的布置中保持在第一初级导体的管状部分内的柔性导线;该电流传感器还具有次级绕组,该次级绕组包括在芯上的多个匝;跳闸电路,其响应于在次级绕组上的所感测的信号。在本发明的一些方面中,卷起的中心部分不一定形成完全封闭的管。本发明的其它方面提供了一种包括刚性导体的改进,该刚性导体形成为从扁平导电件开始并具有扁平件的卷起的中心部分,从而产生管状导体和扁平端子板。再次,可以将特征部添加到刚性导体的结构以提供成形电流,其中特征部可以包括在卷起的中心部分的壁中的通孔或者包括在卷起的中心部分的壁中的变窄的壁厚。在理解本发明时,要认识到的是,刚性导体可以提供在电路断流器内的其他电流布线优点,例如消除了跳线。

附图说明

[0015] 在阅读下面的详细说明并参考附图后,所公开的实施例的上述和其他优点将变得明显,其中:
[0016] 图1是如本领域中已知的示例性接地故障或双功能电路断路器的工作部件的示意图。
[0017] 图2是本发明的双功能电路断路器的机械侧的内部的透视图;
[0018] 图3是本发明的图2的电路断路器的电子设备侧的透视图;
[0019] 图4是利用一个接地故障电流互感器的本发明的具有集成电弧故障和接地故障电流感测封装的双功能电路断路器PCB的透视图。
[0020] 图5-25详述了刚性导体的各种可选实施例。
[0021] 详细描述
[0022] 首先,要将认识到的是,合并所公开的实施例的方面的实际商业应用的发展将需要许多与具体实现方式相关的决定来达到开发者的对商业实施例的最终目标。这样的与具体实现方式相关的决定可包括,且可能不限于,与系统相关的、业务相关的、政府相关的规定和其他的限制,这可能会随着特定的实现方式、地点并随时间变化而改变。从绝对意义上讲,虽然开发者的努力可能是多方面的和耗时的,但是这样的努力对于受益于本公开的本领域技术人员而言将是常规的工作。
[0023] 还应理解的是,本文中公开的和教导的各实施方式易受许多且不同的修改和替换形式的影响。因此,单数术语例如但不限于“一(a)”及类似术语的使用不旨在作为项的数量的限制。类似地,在书面描述中使用的任何关联术语(例如但不限于“顶部(top)”、“底部(bottom)”、“左(left)”、“右(right)”、“上部(upper)”、“下部(lower)”、“向下(down)”、“向上(up)”、“侧面(side)”等)是为了在对附图的具体提及中的清楚表述,并且不旨在限制本发明的范围。
[0024] 表示程度的词例如“大约”、“实质上”等在本文中在“在或几乎在当给定在规定的情况中固有的制造、设计和材料容限时”的意义上进行使用,并且用来防止无道德的侵权人非正当地利用本发明公开内容,其中确切或绝对的附图和操作或结构关系被陈述为帮助理解本发明。
[0025] 本领域中的普通技术人员将认识到,对本发明的陈述不必要的电子小型电路断路器的众所周知的部件没有在这里被详细描述,但是将被理解为存在于如上简要说明的运转的电路断流器中。虽然在这里在小型电路断路器的背景示出,但是本领域中的技术人员将认识到的是,本发明可以应用于各种接地故障感测装置,例如其它形式的电路断流器设备、插座或监测系统。
[0026] 图2示出了根据本发明的某些方面的部分地构造的电弧故障感测电路断路器30的“机械侧”,即机械部分。术语“侧”和“部分”在本文中用于传达功能分组的意义,该功能分组可以或可以不以在断路器的设计中的分立的物理布局存在。此外,在图1和其余附图之间的一些公共参考编号可以在这里被使用,其中部件功能在这两者之间实质上是共同的。线路(功率)电流路径在断路器30的线路功率端子13处开始,并继续通过可分离接触部15进入可移动接触臂70内,并通过轭状物74、插销板78和双金属片76的机械跳闸部分随电线72行进,这通过使插销板78与跳闸杠杆80分离而引起机械跳闸。电流路径然后在离开到负载端子18之前通过接地故障断流器电流互感器34,如下面进一步解释的,该负载端子18接线到分支负载22(图1)。
[0027] 图3示出了包含电流互感器电流传感器34的电弧故障感测电路断路器30的一个可能的电子“侧”,即电子部分31,以及安装到PCB 50用于评估接地故障和电弧故障事件的相关电子设备52。电子设备52控制螺线管致动器53,螺线管致动器53的功能还将插销板78从跳闸杠杆80移动,以使可分离接触部15跳闸并从负载(未示出)移除电力。来自负载的返回(中性)电流路径从作为刚性导体36的第二端的中性返回端子28行进穿过电流传感器电流互感器34,如下文进一步解释的,并出来到中性返回线(引出线)26或在中性夹82上的插头,这两者在此都是为了解释起见而被示出。
[0028] 特别参考图4,如在本领域中所理解的,电流互感器34在其外壳内包括缠绕的环形芯。穿过环形互感器芯的孔40的是刚性导体36,该刚性导体36围绕并保持绝缘柔性导体38,即电线,其在此布置成携带通过电路断路器的线路功率电流并终止于负载端子18处(以虚线的形式),以用于连接到分支负载线。这种布置为本发明的接地故障电流感测装置创建所谓的“仿同轴导体”。刚性导体36在刚性导体36的第一端42处连接到有时被称为引出线的中性返回线26,作为通过电路断路器30的中性电流路径的一部分。刚性导体36的第二端44在电路断路器的中性端子28中形成,用于连接到分支负载22(图1)的中性线。
[0029] 刚性导体36与执行断路器30的电路中断功能所必需的各种电子部件(统称为52)一起安装(例如焊接)到印刷电路板(PCB)50。引线可以被合并到PCB 50中,并与刚性导体36接触,在此,引线被焊接到电路板,例如在电路板的引脚57中的一个处(见图24),被连接以提供操作断路器所必需的电流路径,而不过度使用跳线。
[0030] 图5示出了刚性导体的第一可选形式110,其装配到在电流互感器的中心内的管状开口中,并允许第二柔性导体(38,图4)穿过刚性导体110的中心管状部分111。
[0031] 图6和图7示出了通过刚性导体110的电流114。图7示出了在中心管状部分111卷起以产生管之前导体110的扁平图案。在管状部分111的每一端处的孔(统称为112)的图案改变通过中心主体区域113的电流的方向,以在整个宽度上均匀分布电流线114,导致受控的电流密度和实质上平行的电流方向。良好控制的电流密度和方向将产生良好的通量分布图115,以得到最小的负载转移误差。在操作期间,刚性导体110的该受控区域113将位于GFI电流互感器34(图4)的中心。
[0032] 这种设计的目的是产生平行的电流路径,以产生良好定向的通量分布图来抵消在刚性导体内的柔性导体线的通量分布图,其中所产生的通量符合传感器芯和绕组。被束缚的柔性导体(未示出)的电流路径将在与刚性导体电流路径正好相反的方向上产生通量线。
[0033] 图8示出了刚性导体的基本构造的第二可选形式118,其中扁平导体坯件的未被刺穿的宽的中心部分119仅具有被折叠成具有零度扭曲的管的横向边缘。然而,在该基本实施例中的电流路径被发现是相当不均匀的,并且通常集中在两端之间的直线上。
[0034] 图9示出了刚性导体的第三可选形式120,其具有类似于图8的零度扭曲的卷起的中心部分121,但是在管状中间部分121中狭槽122被压印,其将电流123重定向到管的外边缘。这种设计产生了比图8的可选方案更好的通量分布图。
[0035] 图10示出了使用三个狭槽127而不是图9中的一个狭槽122的刚性导体的第四可选形式126。这些额外的狭槽127提供电流路径128的重定向,以在需要的情况下实现不同的电流分布。
[0036] 图11示出了刚性导体的第五可选形式130。图12是图11的刚性导体的扁平模式,其示出了一般电流路径134和通量分布图135。刚性导体130的端部131、132彼此张开180度,因为在从扁平(图12)到管状(图11)的形成期间中间部分133完成了半卷起扭曲。发现该实施例改变了电流方向,以得到在整个中心部分中良好的电流密度分布和通量分布图135。
[0037] 图13和图14示出了刚性导体的第五可选形式137。扁平端部138、139没有偏移,因为中心管状部分140形成有零度卷起,即没有扭曲。在刚性导体管状中心140的每一端处的减小的横截面141的壁区域是图5、9和10所示的可选方案中的孔的可选形式。这些减小的横截面141将产生对电流的阻力,并且将使电流寻找更宽的路径,如由图14的电流线142所示。
[0038] 图15和图16示出了刚性导体的第六可选形式145,其类似于第五可选形式,但是具有减小的横截面146,其被成形为相对于外部区域149在管状主体148的中心147中产生不同的电阻值。电阻值变化以使电流围绕刚性导体的中心部分147均匀分布。因为电流在最小电阻路径中最高,横截面的电阻区域在中心147中变得更高,并且在外部区域149上提供最小电阻以实现电流和通量路径150的良好分布。
[0039] 图17和图18示出了刚性导体的第七可选形式152。刚性导体的引弧板153、154彼此张开360度,因为在从扁平(图18)到管状(图17)的形成期间中间部分157完成了完整的卷起扭曲。这改变了电流155的方向,以得到在整个部件中的良好的密度分布。箭头156示出了一般通量方向,注意到该方向与作为整体的导体的中心轴的法线成一角度。
[0040] 图19和图20示出了刚性导体的第八可选方案158。刚性导体的引弧板(即端子)159、160彼此张开270度,因为在从扁平(图20)到管状(图19)的形成期间中间部分163完成了四分之三的卷起扭曲。箭头162示出了一般通量方向,注意到该方向与作为整体的导体的中心轴的法线成一角度。
[0041] 图21和图22示出了刚性导体的第九可选方案166。中心区域169的第一端167具有由减小的横截面积成形的电阻区域170。第一端167迫使大部分电流171在凹陷部170的外边缘周围被传送到中心部分169的外边缘。在通过凹陷部170之后,电流171然后不受约束地斜向内行进而通过中心部分169,以在中心部分169的相对端168处再次聚集在一起,以实现电流171和通量172的路径在刚性导体166的整个长度上的变化的分布。这种结构将导致在刚性导体和被束缚的柔性导体之间的不同的通量输出,因而提供不同的通量分散,以有意地在电流互感器传感器绕组中产生电流和随后的负载转移输出。
[0042] 图23、图24和图25示出了刚性导体36的三种可能的变形36a、36b、36c,这些变形36a、36b、36c折叠成好像通过接地故障断流器电流互感器组装成仿同轴导体。如从前面的讨论中将理解的,每个刚性导体36a、36b、36c可以开始作为在构造仿同轴传感器封装的刚性导体的过程期间被冲压、卷起和弯曲的平板状部件。在每个变形中,刚性导体36的第一端
42被卷起,以形成在断路器内的柔性电线的开放式圆筒形管状连接点60。虽然在前述描述中被示为携带中性电流,但要认识到的是,刚性导体36在其它布置中也可以携带线路电流。
通过使板的更宽的中心部分卷起来形成在这里在所有三种变形中未封闭的中心管状部分
62。图23的中心管状部分62被卷起和/或扭曲180度。图24的中心管状部分62被卷起和/或扭曲90度,并且图25的中心管状部分62具有所谓的“零度”扭曲,中心板的边缘仅仅朝着彼此翻起而没有穿过起始板的轴的扭曲。图25的中心部分62还具有特征部64,其由于壁部分的减小的厚度而增加对冲压到中心部分的电流的阻力。
[0043] 仿同轴概念的多种变化可用于使用几何形状的变化来优化负载转移性能;一些示例是同轴形状、长度、材料厚度等;以优化在一般60Hz或50Hz处以及在电弧故障期间在更高频率特性处的电压降。
[0044] 刚性导体与基本PCB导体结合还进一步用于替换与模块的单独跳线连接。例如,功率和按键测试(PTT)输入可以通过刚性导体而不是作为跳线来被合并。还应当认识到的是,刚性导体的主体可以被绝缘以减少对周围部件的介电涉及。又要认识到的是,在仿同轴布置的结构中,可以通过线路功率(热)线路径或中性返回线路径来连接刚性导体36。
[0045] 尽管已经示出并描述了本公开的特定方面、实现方式和应用,但是应当理解的是,本公开不限于本文所公开的精确结构和组成,以及根据前述描述,各种修改、改变和变形可以变得明显而不偏离如在所附权利要求中限定的本发明。
[0046] 本公开提供了以下方面:
[0047] 1)一种电路断流器设备,所述电路断流器设备具有线路功率电流路径和中性返回功率电流路径以及用于检测接地故障电流异常的带孔电流互感器,所述电路断流器设备包括:
[0048] 刚性导体,所述刚性导体围绕并保持柔性导体,所述刚性导体由平板形成,所述平板具有第一端子板和第二端子板以及更宽的中心部分,所述更宽的中心部分被卷成实质上管状的成形件,以用于适合通过所述电流互感器;
[0049] 所述刚性导体和所述柔性导体穿过在小型电路断路器内部的所述电流互感器的孔。
[0050] 2)根据1)所述的电路断流器设备,其中,所述刚性导体具有放置在所述刚性导体中的电阻特征部,以对流过所述刚性导体的电流产生增加的阻力。
[0051] 3)根据2)所述的电路断流器设备,其中,电阻特征部仅放置在所述实质上管状的成形件的一端上。
[0052] 4)根据2所述的电路断流器设备,其中,在所述刚性导体中的所述电阻特征部是由所述实质上管状的成形件的截面中的变窄的壁厚产生的。
[0053] 5)根据2)所述的电路断流器设备,其中,在所述刚性导体中的所述电阻特征部是由所述实质上管状的成形件的截面中的通孔产生的。
[0054] 6)根据1)所述的电路断流器设备,其中,所述平板在形成期间绕着所述平板的中心轴线扭曲。
[0055] 7)根据1)所述的电路断流器设备,其中,所述刚性导体连接到所述中性返回电流路径并形成所述中性返回电流路径的一部分。
[0056] 8)一种电弧故障感测类型的小型电路断路器,包括:
[0057] a)具有带孔磁芯的电流互感器;
[0058] b)具有用于检测接地故障事件的电子设备的印刷电路板;
[0059] c)穿过所述芯延伸的第一初级导体和第二初级导体;
[0060] d)所述第一初级导体是实质上刚性的导体,所述第一初级导体具有位于所述芯内部的管状部分,并且还具有在所述芯外部与所述管状部分成角度延伸的非管状的第二部分和第三部分,所述第二部分和第三部分中的一者固定到所述印刷电路板;
[0061] e)所述第二初级导体是在实质上同轴的布置中保持在所述第一初级导体的所述管状部分内的柔性导线;
[0062] f)所述电流互感器还具有包括在所述芯上的多个匝的次级绕组;以及
[0063] g)响应于所述次级绕组上的感测的信号的跳闸电路。
[0064] 9)根据8)所述的小型电路断路器,其中卷起的中心部分不形成完全封闭的管。