发动机支座转让专利

申请号 : CN201711296694.8

文献号 : CN109424693B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 金承原

申请人 : 现代自动车株式会社起亚自动车株式会社

摘要 :

本发明公开一种发动机支座,该发动机支座包括:芯部,安装在壳体中并且支撑发动机的负荷;绝缘部,安装在芯部上并且根据施加至芯部的负荷而弹性变形;隔膜,安装在壳体的下部处;以及孔口组件,将绝缘部和隔膜之间的流体填充的空间划分成上液体室和下液体室,并且该孔口组件具有用于引起流体在上液体室和下液体室之间流动的至少一个孔口,其中发动机支座进一步包括橡胶膜,安装在孔口组件和绝缘部之间以便与绝缘部的下表面紧密接触,并且其中孔口组件包括用于强制地输送流体的流体输送构件,该流体输送构件根据车辆的行驶条件操作,并将流体选择性地移动到上液体室或下液体室以调节上液体室和下液体室中的流体量。

权利要求 :

1.一种发动机支座,包括:

壳体;

芯部,安装在所述壳体中;

绝缘部,安装在所述芯部上并且根据施加至所述芯部的负荷而弹性变形;

隔膜,安装在所述壳体的下部处;

孔口组件,将所述绝缘部和所述隔膜之间的流体填充的空间划分成上液体室和下液体室,所述孔口组件具有用于引起流体在所述上液体室和所述下液体室之间流动的孔口,其中所述孔口组件包括用于强制地输送流体的流体输送构件,所述流体输送构件被配置成根据车辆的行驶条件操作,并将所述流体选择性地移动到所述上液体室或所述下液体室以调节所述上液体室和所述下液体室中的流体量;以及橡胶膜,安装在所述孔口组件和所述绝缘部之间以便与所述绝缘部的下表面紧密接触,其中,所述孔口组件被配置成:当所述流体从所述下液体室移动到所述上液体室时,所述上液体室的压力增大,并且对振动的阻力增大。

2.根据权利要求1所述的发动机支座,其中,所述孔口组件被配置成:当所述流体从所述上液体室移动到所述下液体室时,所述橡胶膜与所述绝缘部间隔开,并且所述上液体室和所述绝缘部之间的特性从流体特性变成橡胶特性。

3.根据权利要求1所述的发动机支座,其中,气孔形成在所述壳体和所述绝缘部上,使得空气被连通到所述绝缘部和所述橡胶膜之间。

4.根据权利要求1所述的发动机支座,其中所述孔口组件包括:下板,在所述下板上相对于所述下板的中心在径向方向上形成多个下孔口;

上板,设置在所述下板的上部处并且在所述上板上相对于所述上板的中心在径向方向上形成多个上孔口,其中,所述流体输送构件设置在所述下板和所述上板之间;以及马达,安装在所述下板的下部处以使所述流体输送构件旋转。

5.一种发动机支座,包括:

壳体;

芯部,安装在所述壳体中;

绝缘部,安装在所述芯部上并且根据施加至所述芯部的负荷而弹性变形;

隔膜,安装在所述壳体的下部处;

孔口组件,将所述绝缘部和所述隔膜之间的流体填充的空间划分成上液体室和下液体室,所述孔口组件具有用于引起流体在所述上液体室和所述下液体室之间流动的孔口,其中所述孔口组件包括用于强制地输送流体的流体输送构件,所述流体输送构件被配置成根据车辆的行驶条件操作,并将所述流体选择性地移动到所述上液体室或所述下液体室以调节所述上液体室和所述下液体室中的流体量;以及橡胶膜,安装在所述孔口组件和所述绝缘部之间以便与所述绝缘部的下表面紧密接触,所述孔口组件包括:

下板,在所述下板上相对于所述下板的中心在径向方向上形成多个下孔口;

上板,设置在所述下板的上部处并且在所述上板上相对于所述上板的中心在径向方向上形成多个上孔口,其中,所述流体输送构件设置在所述下板和所述上板之间;以及马达,安装在所述下板的下部处以使所述流体输送构件旋转,其中所述流体输送构件包括具有预定角度的多个叶片,以根据所述马达的旋转方向产生流体的流动。

6.根据权利要求5所述的发动机支座,其中所述下板包括将所述流体输送构件布置在所述下板的中心处的阶梯部。

7.根据权利要求5所述的发动机支座,其中所述下孔口和所述上孔口被形成为彼此面对,所述流体输送构件插入在所述下孔口和所述上孔口之间。

8.根据权利要求5所述的发动机支座,其中所述下板包括流动路径槽以及第一连通孔,所述流动路径槽沿所述下孔口的外周设置成环形形状,以便允许所述流体从所述上液体室流向所述下液体室或从所述下液体室流向所述上液体室,所述第一连通孔设置在所述流动路径槽的侧面以使所述流动路径槽与所述下液体室连通。

9.根据权利要求8所述的发动机支座,其中所述上板包括与所述流动路径槽和所述上液体室连通的第二连通孔。

10.根据权利要求5所述的发动机支座,其中所述下板包括容纳部,所述马达在所述容纳部的下表面处被压入配合到所述容纳部。

11.根据权利要求10所述的发动机支座,其中所述隔膜具有中空的环形形状,所述隔膜的边缘安装在所述壳体中,并且所述隔膜的中心部分被压入配合到所述容纳部中。

12.根据权利要求5所述的发动机支座,其中所述马达的旋转轴被设置成使所述流体输送构件旋转,并被安装成穿过所述下板、所述流体输送构件和所述上板的中心,并且固定销安装在从所述上板突出的所述旋转轴上以防止所述上板分离。

13.一种发动机支座,包括:

芯部,安装在壳体中;

绝缘部,安装在所述芯部上并且根据施加到所述芯部的负荷而弹性变形;

隔膜,安装在所述壳体的下部处,流体填充的空间位于所述绝缘部和所述隔膜之间;

下板,位于所述流体填充的空间内,所述下板包括相对于所述下板的中心在径向方向上形成的多个下孔口;

上板,设置在所述下板的上部处,所述上板包括相对于所述上板的中心在径向方向上形成的多个上孔口;

流体输送构件,设置在所述下板和所述上板之间,所述流体输送构件被配置成根据车辆的行驶条件操作,并将流体选择性地移动到所述流体填充的空间的上液体室或所述流体填充的空间的下液体室以调节所述上液体室和所述下液体室的流体量;

马达,安装在所述下板的下部处以使所述流体输送构件旋转,其中所述流体输送构件包括具有预定角度的多个叶片,以根据所述马达的旋转方向产生流体的流动;以及橡胶膜,安装在所述上板和所述绝缘部之间,以便与所述绝缘部的下表面紧密接触。

14.根据权利要求13所述的发动机支座,其中所述下板包括将所述流体输送构件布置在所述下板的中心处的阶梯部。

15.根据权利要求13所述的发动机支座,其中所述下孔口和所述上孔口被形成为彼此面对,所述流体输送构件插入在所述下孔口和所述上孔口之间。

16.根据权利要求13所述的发动机支座,其中所述下板包括流动路径槽以及第一连通孔,所述流动路径槽沿所述下孔口的外周设置成环形形状,以便允许所述流体从所述上液体室流向所述下液体室或从所述下液体室流向所述上液体室,所述第一连通孔设置在所述流动路径槽的侧面以使所述流动路径槽与所述下液体室连通。

17.根据权利要求16所述的发动机支座,其中所述上板包括与所述流动路径槽和所述上液体室连通的第二连通孔。

18.根据权利要求13所述的发动机支座,其中所述下板包括容纳部,所述马达在所述容纳部的下表面处被压入配合到所述容纳部。

19.根据权利要求13所述的发动机支座,其中所述马达的旋转轴被设置成使所述流体输送构件旋转,并被安装成穿过所述下板、所述流体输送构件和所述上板的中心,并且固定销安装在从所述上板突出的所述旋转轴上以防止所述上板分离。

说明书 :

发动机支座

技术领域

[0001] 本公开涉及一种发动机支座,并且在特定的实施例中,涉及一种能够根据车辆的行驶条件改变特性的发动机支座。

背景技术

[0002] 通常,为了有效地减少车辆的发动机中产生的振动,发动机通过发动机支座被安装在车辆中。作为这种发动机支座,通常广泛使用通过橡胶的弹性力来隔离和衰减振动的橡胶支座和配置成封闭液压流体的液力支座。
[0003] 近年来,为了在车辆的行驶状态下呈现最佳性能,已经开发并使用半主动式支座、主动式支座和磁流变液(MRF)支座。韩国专利特许公开第10-2013-0003749号公开的半主动式支座和主动式支座具有通过减小动态特性来改善NVH(噪声、振动、不平顺性)性能的优点。另一方面,MRF支座具有通过提高动态特性来改善乘坐舒适性和操纵性能的优点。
[0004] 然而,半主动式支座或主动式支座存在以下问题:仅能通过接通/断开方法来控制动态特性,并且其体积庞大,并且由于半主动式支座或主动式支座在竖直方向上传递力,所以由于磁体的惯性阻力的作用而难以控制。
[0005] MRF支座具有以下问题:MR流体价格昂贵,并且当长时间放置时,其内部钢分子下沉并且其动态特性不可变。

发明内容

[0006] 根据本公开的实施例提供一种能够根据车辆的行驶状况改变动态特性以改善NVH、乘坐舒适性和操纵性能的发动机支座。
[0007] 本公开的其他方面将在下面的描述中部分地阐述,并且部分地将从描述中变得显而易见,或者可以通过本公开的实践而获知。
[0008] 根据本公开的一方面,可以提供一种发动机支座,该发动机支座包括:芯部,安装在壳体中并且支撑发动机的负荷;绝缘部,安装在芯部上并且根据施加至芯部的负荷而弹性变形;隔膜,安装在壳体的下部处;以及孔口组件,将绝缘部和隔膜之间的流体填充的空间划分成上液体室和下液体室,并且该孔口组件具有用于引起流体在上液体室和下液体室之间流动的至少一个孔口。发动机支座进一步包括橡胶膜,安装在孔口组件和绝缘部之间以便与绝缘部的下表面紧密接触。孔口组件包括用于强制性地输送流体的流体输送构件,该流体输送构件根据车辆的行驶条件操作,并将流体选择性地移动到上液体室或下液体室以调节上液体室和下液体室中的流体量。
[0009] 此外,当流体从上液体室被移动到下液体室时,橡胶膜可以与绝缘部间隔开,并且上液体室和绝缘部之间的特性可以从流体特性变成橡胶特性。
[0010] 此外,当流体从下液体室被移动到上液体室时,上液体室的压力可以增大,并且对振动的阻力可以增大。
[0011] 此外,气孔可以形成在壳体和绝缘部上,使得空气被连通到绝缘部和橡胶膜之间。
[0012] 此外,孔口组件可以包括:下板,在该下板上相对于该下板的中心在径向方向上形成至少一个下孔口;上板,设置在下板的上部处并且在该上板上相对于该上板的中心在径向方向上形成至少一个上孔口;流体输送构件,设置在下板和上板之间;以及马达,安装在下板的下部处以使流体输送构件旋转,其中流体输送构件可以包括具有预定角度的多个叶片,以根据马达的旋转方向产生流体的流动。
[0013] 此外,下板可以包括将流体输送构件布置在下板的中心处的阶梯部。
[0014] 此外,下孔口和上孔口可以被形成为彼此面对,流体输送构件插入在下孔口和上孔口之间。
[0015] 此外,下板可以包括:流动路径槽,该流动路径槽沿下孔口的外周设置成环形形状,以便允许流体从上液体室流向下液体室或从下液体室流向上液体室;以及至少一个第一连通孔,设置在流动路径槽的侧面以使流动路径槽与下液体室连通。
[0016] 此外,上板可以包括与流动路径槽和上液体室连通的至少一个第二连通孔。
[0017] 此外,下板可以包括容纳部,马达在容纳部的下表面处被压入配合到容纳部。
[0018] 此外,隔膜可以具有中空的环形形状,隔膜的边缘可以安装在壳体中,并且隔膜的中心部分可以被压入配合到容纳部中。
[0019] 此外,马达的旋转轴可以被设置成使流体输送构件旋转,并且可以被安装成穿过下板、流体输送构件和上板的中心,并且固定销可以被安装在从上板突出的旋转轴上以防止上板分离。

附图说明

[0020] 将参照下面的附图详细描述本公开,附图说明了本公开的优选实施例,因此本公开的技术思想不应被解释为受到附图的限制。
[0021] 图1是根据本公开的实施例的发动机支座的截面图。
[0022] 图2是说明包括在根据本公开的实施例的发动机支座中的孔口组件的分解立体图。
[0023] 图3是说明根据本公开的实施例的发动机支座被操作以改善NVH性能的状态的视图。
[0024] 图4是说明根据本公开的实施例的发动机支座被操作以改善乘坐舒适性和操纵性能的状态的视图。

具体实施方式

[0025] 在下文中,将参照附图详细描述本公开的实施例。提供以下实施例以将本公开的精神完整地传达给本公开所属领域的普通技术人员。本公开不限于本文示出的实施例,而是可以以其他形式来实施。附图不旨在以任何方式限制本公开的范围,并且为了清楚的说明起见,部件的尺寸可能被夸大。
[0026] 图1是根据本公开的实施例的发动机支座的截面图,图2是说明包括在根据本公开的实施例的发动机支座中的孔口组件的分解立体图。
[0027] 参照图1和图2,根据本公开的实施例的发动机支座1具有如下结构:支撑发动机(未示出)的负荷的芯部20;安装在芯部20上以根据传输到芯部20的负荷和振动而发生弹性变形的绝缘部30;以及设置在绝缘部30的下部处的孔口组件60,该孔口组件60被安装到壳体10。
[0028] 壳体10包括上壳体11和联接到上壳体11的下端的下壳体12。如图所示,下壳体12被形成为中空状态,并且其一端联接到绝缘部30以安装在上壳体11中且其另一端联接到孔口组件60。这样,在下壳体12的下部被打开的状态下,隔膜40联接到下壳体12和孔口组件60以形成下液体室16。
[0029] 芯部20和绝缘部30通常用在发动机支座1中,因此将省略其详细描述。
[0030] 根据本公开的一方面,橡胶膜50设置成与绝缘部30的下表面紧密接触。橡胶膜50通过稍后将描述的孔口组件60与绝缘部30紧密接触或与绝缘部30间隔开以改变上液体室15的液体量。以下将再次描述橡胶膜50的作用和效果。
[0031] 孔口组件60设置在绝缘部30和隔膜40之间,即在橡胶膜50和隔膜40之间。另外,在橡胶膜50和隔膜40之间填充有流体。孔口组件60将填充有流体的空间划分成上液体室15和下液体室16,并具有用于引起流体在上液体室15和下液体室16之间流动的孔口161和261。更具体地,孔口组件60包括:下板160;上板260,设置在下板160的上部上;流体输送构件
360,设置在下板160和上板260之间;以及马达460,安装在下板160的下部上以使流体输送构件360旋转。
[0032] 下板160包括与下液体室16连通的至少一个下孔口161。如图所示,至少一个下孔口161由多个孔口形成,该多个孔口相对于下板160的中心在径向方向上彼此间隔开预定的距离。另外,下板160包括:流动路径槽162,沿下孔口161的外周设置成环形形状;至少一个第一连通孔163,形成在流动路径槽162的侧面以使下液体室16和流动路径槽162连通;阶梯部164,其为阶梯状以容纳流体输送构件360;以及容纳部165,马达460被安装在该容纳部165中。
[0033] 流动路径槽162沿下孔口161的外周被形成为环形形状,并允许流体从上液体室15流向下液体室16或从下液体室16流向上液体室15。
[0034] 至少一个第一连通孔163在朝向下液体室16的方向形成在流动路径槽162的侧面处以与下液体室16连通。另外,第一连通孔163的数量和尺寸被形成为小于下孔口161的数量和尺寸。
[0035] 阶梯部164被形成为阶梯状,使得流体输送构件360设置在下板160的中心处。即,下板160的中心部分为阶梯状以便安置流体输送构件360。另外,下孔口161形成在安置流体输送构件360的阶梯表面处。
[0036] 容纳部165被形成为从下板160的下表面向下突出。容纳部165具有圆柱形形状,使得马达460被压入配合到容纳部165。另外,容纳部165设置在下板160的下部中心部处,使得马达460被设置在中心处。
[0037] 上板260被形成为覆盖下板160的上表面并且具有与下板160的直径对应的直径。上板260包括与上液体室15连通的至少一个上孔口261以及设置成与流动路径槽162和上液体室15连通的第二连通孔263。
[0038] 至少一个上孔口261形成在上板260的中心部处。如图所示,至少一个上孔口261由多个孔口形成,所述多个孔口相对于上板260的中心在径向方向上彼此间隔开预定的距离。上孔口261形成在对应于下孔口161的位置处并且被布置为彼此面对。
[0039] 形成第二连通孔263使得流动路径槽162和上液体室15彼此连通。也就是说,当第一连通孔163与下液体室16和流动路径槽162连通并且第二连通孔263与上液体室15和流动路径槽162连通时,上液体室15和下液体室16可以通过流动路径槽162彼此连通。另外,上液体室15和下液体室16可以通过上述的上孔口261和下孔口161彼此连通。上液体室15和下液体室16连通的结构(孔口和孔的位置和数量以及尺寸)旨在通过控制流体流量和流速来容易地改变动态特性,并将在下面再描述。
[0040] 流体输送构件360设置在下板160和上板260之间。如图所示,流体输送构件360被容纳在下板160的阶梯部164中,并且通过马达460旋转。流体输送构件360执行在其旋转时强制性地输送流体的功能。流体输送构件360包括具有预定角度的多个叶片361,以根据由马达460旋转的方向产生流体流。例如,流体输送构件360可以被配置成具有螺旋桨或风扇结构。因此,流体输送构件360沿马达460的旋转方向即顺时针方向或逆时针方向旋转,并向上或向下输送流体。
[0041] 另外,由于流体输送构件360被设置在下孔口161和上孔口261之间,所以便于将流体从下液体室16输送到上液体室15或从上液体室15输送到下液体室16。
[0042] 马达460通过正向和反向旋转来执行使流体输送构件360旋转的功能。马达460的旋转轴462可穿过下板160并安装在流体输送构件360的中心处,使得马达460被压入配合到容纳部165中以将旋转力传输到流体输送构件360。另外,旋转轴462被设置成穿透下板160、流体输送构件360和上板260,并且固定销464设置在旋转轴462的通过上板260突出的端部上以防止上板260分离。因此,孔口组件60可以设置成单个一体式组件,这有益于改善制造发动机支座1的组装性。
[0043] 隔膜40在其中心处具有中空环形形状。因此,隔膜40的边缘被安装在壳体10中,并且其中心部被压入配合到容纳部165中。
[0044] 气孔13和33分别形成在壳体10和绝缘部30上,使得绝缘部30和橡胶膜50之间的间隙与大气连通。气孔13和33与大气连通,使得橡胶膜50可容易地移动。
[0045] 在下文中,将描述发动机支座1根据行驶条件进行操作并衰减振动和噪声,并且改善乘坐舒适性和操纵性能的操作状态。
[0046] 首先,在正常行驶条件下,发动机支座1被设置在流体输送构件360未被操作的状态,如图1所示。当在这种状态下驱动车辆时,上液体室15中的流体通过第二连通孔263流经流动路径槽162,使得发动机支座1具有衰减特性。因而,可以改善由发动机行为引起的二次乘坐摇晃的性能。
[0047] 接着,将参照图3描述在NVH改进条件下的发动机支座1的操作状态。当发动机怠速(高频带的振动)时,由于驾驶员只感觉到从发动机传输的振动,因此使从发动机输入的振动最小很重要。也就是说,为了使作为发动机和车辆车身的传输系统的发动机支座1的绝缘率最大化,橡胶支座比液力支座更有利。这是因为液力支座的动态特性较高,橡胶支座的动态特性较低。
[0048] 因此,流体输送构件360通过马达460顺时针旋转,以强制性地将上液体室15中的流体输送到下液体室16。因此,当橡胶膜50与绝缘部30分离时,上液体室15的容积减小,液力支座变成橡胶支座。另外,隔膜40因被强制输送到下液体室16的流体而膨胀以根据增大的容积接收流体。也就是说,NVH性能可以根据向下的动态特性来改善。也就是说,为了维持NVH改善,流体输送构件360必须连续旋转。
[0049] 更具体地描述流体流动结构,根据流体输送构件360的操作,流体通过位于中心部分处的上孔口261和下孔口161从上液体室15被传送到下液体室16。也就是说,流体沿着箭头A的方向被传送。被传送到下液体室16的流体通过第一连通孔163、流动路径槽162和第二连通孔263被输送回上液体室15。即,流体沿箭头B的方向被输送回。此时,由于顺序通过第一连通孔163、流动路径槽162和第二连通孔263输送流体的路径比通过上孔口261和下孔口161传送流体的路径更长,所以流体阻力导致返回到原始状态缓慢。另外,由于第二连通孔
263和第一连通孔163的尺寸和数量比上孔口261和下孔口161的尺寸和数量更小,所以要返回到原始状态的流量小于传送的流量。
[0050] 另一方面,橡胶膜50可以通过形成在壳体10和绝缘部30上的气孔13和33容易地移动,从而便于从液力支座转换成橡胶支座。
[0051] 接着,将参照图4描述在乘坐舒适性和操纵性改善条件下发动机支座1的操作状态。如果在车辆运行期间转弯或突然行驶时动态特性下降,则发动机支座1相对于车辆车身的相对运动变大,降低了与车辆车身的一致感,从而降低了可操作性。因此,必须提高动态特性。
[0052] 因此,流体输送构件360通过马达460逆时针旋转,以将下液体室16中的流体强制地输送到上液体室15。因而,随着上液体室15的液体压力增大,上液体室15抵抗振动(压力)的阻力增大,并且静态特性和动态特性得到改善,从而提高乘坐舒适性和操纵性能。为了保持这种可变的动态特性,即乘坐舒适性和操纵性改善,流体输送构件360必须连续旋转。
[0053] 更具体地描述流体流动结构,根据流体输送构件360的操作,流体通过位于中心部分处的下孔口161和上孔口261从下液体室16被输送到上液体室15。即,流体沿着箭头A'的方向被传送。传送到上液体室15的流体通过第二连通孔263、流动路径槽162和第一连通孔163被输送回到下液体室16。即,流体沿着箭头B'的方向被输送回。此时,由于顺序通过第二连通孔263、流动路径槽162和第一连通孔163输送流体的路径比通过下孔口161和上孔口
261传送流体的路径更长,所以流体阻力导致返回到原始状态缓慢。另外,由于第二连通孔
263和第一连通孔163的尺寸和数量比下孔口161和上孔口261的尺寸和数量更小,所以要返回到原始状态的流量小于传送的流量。
[0054] 如上所述,由于流体通过流体输送构件360移动,因此线性地产生特性。此外,为了在改变动态特性时保持特性,流体输送构件360必须连续旋转。此时,由于橡胶膜50仅需要在NVH改善时与绝缘部30分离,所以被流体输送构件360强制地传送的流体量大于通过流动路径槽162返回到原始状态的流体量就足够。但是,当改善乘坐舒适性和操作性时,在车辆的转弯速度很大或突然行驶速度增大的情况下,流体输送构件360的旋转速度应当增大。也就是说,需要通过增大流体的强制传送量来进一步增大动态特性。这种控制可以通过控制马达460的转速来维持乘坐舒适性和操纵性能改善。
[0055] 从以上显而易见的是,根据本公开的实施例的发动机支座可以通过根据诸如正常行驶、发动机怠速、突然行驶或突然转向等车辆的行驶条件改变动态特性来改善NVH、乘坐舒适性和操纵性能。也就是说,本公开的发动机支座具有实现现有的主动式支座和MRF支座的性能以及降低诸如制造成本和附加消耗成本等成本的两种效果。
[0056] 虽然已经参照本公开的示例性实施例具体示出并描述本公开,但是本领域技术人员将会理解的是,在不脱离由以下权利要求提供的本公开的技术思想的情况下,可以对本公开进行各种修改和变化。