一种两段还原氮化生产氮化钛及碳氮化钛的方法转让专利

申请号 : CN201811556519.2

文献号 : CN109437917B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张国华吴柯汉

申请人 : 北京科技大学

摘要 :

一种两段还原氮化生产氮化钛及碳氮化钛的方法。包括如下步骤:(1)配料:以二氧化钛和碳黑为原料混合搅拌均匀;(2)将步骤一所得的混合粉末放入高温炉中加热,在1300~1600℃、常压氩气环境下保温1~4小时,得到一段还原产物;(3)检测步骤二所得的一段还原产物碳含量及氧含量,根据所需产物与原料碳、氧、氮之间的关系调配碳量并球磨混合;(4将步骤三所得的混合粉末放入高温炉中,在1600~1800℃、常压氮气环境下保温2~8小时,冷却后得到氮化钛或碳氮化钛。本发明优点是:产品纯度高、粒度细且均匀、分散性好,且工艺流程简单,易于工业化生产;避免了生产过程中碳含量不易控制的缺点,产物中碳氮比例可控,生产出的氮化钛及碳氮化钛相单一,氧含量低,游离碳含量极低。

权利要求 :

1.一种两段还原氮化生产氮化钛及碳氮化钛的方法,其特征在于:步骤一、配料:以二氧化钛和碳黑为原料,按照一定摩尔比混合搅拌均匀;

步骤二、一段还原:将步骤一所得的混合粉末放入高温炉中加热,在1300~1600℃、常压氩气环境下保温1~4小时,得到一段还原产物;

步骤三、定量配碳:检测步骤二所得的一段还原产物碳含量及氧含量,根据所需产物与原料碳、氧、氮之间的关系调配碳量并球磨混合;

步骤四、二段还原氮化:将步骤三所得的混合粉末放入高温炉中加热,在1600~1800℃、常压氮气环境下保温2~8小时,冷却后得到氧含量低,游离碳含量低,粒度细且均匀且C/N比例可控的氮化钛或碳氮化钛;

步骤一所述的二氧化钛、碳黑的摩尔比为1:1~3;

步骤二所述的一段还原产物为TiCxOy,是一种碳化钛与一氧化钛所形成的固溶体。

2.如权利要求1所述的制备方法,其特征在于:步骤四所制备出的氮化钛或碳氮化钛产物都为纯相且相单一,其中氧含量低于0.5wt%,粒径小于1微米,颗粒分散性好。

说明书 :

一种两段还原氮化生产氮化钛及碳氮化钛的方法

技术领域

[0001] 本发明属于金属陶瓷领域,具体涉及一种氮化钛及碳氮化钛的制备方法。

背景技术

[0002] 近年来,由于碳氮化钛、氮化钛具有高熔点,高硬度,低摩擦磨损及耐腐蚀等特性,在制备金属陶瓷、切削工具、电极衬里材料、涂层材料等方面有较大的应用价值。尤其在切削刀具方面,碳氮化钛及氮化钛以其高硬度,高红硬性,高耐磨性及相对较低的密度成为了一种替代WC-Co硬质合金的潜在材料。在金属切削加工中,碳氮化钛、氮化钛基金属陶瓷刀具能抵抗切削瘤、起皮和陷穴的形成,在高速研磨粗加工、半加工工件的尺寸精度和加工表面质量都优于WC-Co硬质合金刀具所加工的工件。此外,由于氮化钛具有与黄金类似的光学性能,常用于仿金材料领域。因此,研发高纯度、细粒度、粒度均匀分散、物相单一的碳氮化钛、氮化钛粉末具有重大的价值。
[0003] 国内外制备氮化钛的方法主要集中于直接氮化法和一步碳热还原氮化法。其中直接氮化为使用Ti或TiH2在含氮气氛下直接氮化,此方法优点是产物纯度高,产物粒度均匀,缺点是原料成本高。一步碳热还原氮化法为使用TiO2在氮气气氛下与碳质还原剂反应得到碳化钛,此方法优点是原料成本低,缺点是产物中存在的游离碳含量较高。此外,还有使用镁热还原氮化的方法,但该法制备出的产物粒度极不均匀,且生产过程涉及酸浸,对环境造成污染。
[0004] 而制备碳氮化钛的方法主要集中于直接合金化法及碳热还原氮化法。其中直接合金化法直接使用TiC粉和TiN粉或Ti粉,球磨混合后在1700℃以上直接固溶得到。该法存在的问题在于,使用温度高,耗时长,能耗高,对设备要求高,产物颗粒大,且往往需要引入烧结助剂而导致产物纯度纯度下降。相较于直接合金化法,碳热还原氮化法具有原料成本低,工艺流程短,温度相对较低的优点。然而,由于目前碳热还原氮化法主要使用的一步反应合成,反应过程不可控,配碳量不准,造成了产物纯度低,粒度不均,产物C/N比例不可控且产物中存在多种碳氮化钛相等问题,尚未用于工业生产。部分研究者对此工艺进行了改进,如公开号为CN102718214A的专利所公开的方法是:采用控制氮气分压的方式来实现碳氮化钛中C/N比例可控的方法。但该法中仍存在反应产物气体中CO/CO2不可控,从而使配碳量难以控制的问题,多余的碳导致产物中含有大量游离碳,使得产物纯度降低。又如公开号为CN103193231A的专利所公开的方法是:通过浮选法去除产物中游离碳的目的。但该法存在碳氮化钛中C/N比例不可控的问题,同时由于采用的一段还原,产物中氧含量高,且得到产物的物相难以单一,易同时存在多种C/N比例的碳氮化钛。又如CN102976759A的专利所公开的方法是:先真空碳热还原再通氮气氮化的方法制备碳氮化钛。该法制得的产物氧含量低,但是需采用高温真空设备,对设备要求高,不易于工业化生产。又如CN108424147A的专利所公开的方法是:先低温真空还原后高温氮化的方法制备碳氮化钛,通过控制氮化时间来控制产物中C/N比例。该法能制备出氧含量低的碳氮化钛,但存在的问题主要有以下三点:1.需采用真空设备,不易于工业化生产;2.需采用快速降温装置,工业上实行有困难;3.采用在1300~1500℃控制氮化时间的方式来控制碳氮化钛中的C/N比,其原理是该温度下碳化钛能与氮气反应,虽然能生产碳氮化钛,但会有副产物单质碳产生,如 所
示,且此反应在1600℃及之上温度会逆向反应,限制了氮化的温度,固溶过程将会很缓慢。
[0005] 因此,研发一种工业可行,C/N比例可控,高纯度,窄粒度分布的碳氮化钛及氮化钛生产路径具有重要的意义。我们提出了两段还原氮化法生产碳氮化钛及氮化钛。本发明以二氧化钛和碳黑为原料,采用先在常压氩气氛围下通过碳热还原制备出TiCxOy前驱体,在定量配碳后,通过在常压氮气氛围下进行二段还原氮化,既能得到高纯度的碳氮化钛或氮化钛。该法的优势在于将难以控制配碳量的碳热还原反应分离出来作为第一段反应;而第二段氮化反应在低于1500℃时几乎不发生反应,只在高温区下进行,而此温度区气体产物只有CO生成,易于精准配碳,如 所示。因此,生成的产物TiCxOy通过测碳氧含量确定其x与y的值后,可以通过精准配碳的方式得到所需的产物。此外,本发明最低在1600℃下即能制备出低游离碳且物相单一的碳氮化钛或氮化钛产品。本发明在成本,流程和纯度等方面都具有明显的优势。

发明内容

[0006] 本发明公开了一种两段还原氮化生产氮化钛及碳氮化钛的方法,本发明生产氮化钛及碳氮化钛包括如下步骤:
[0007] 步骤一、配料:以二氧化钛和碳黑为原料,按照一定质量比混合搅拌均匀;
[0008] 步骤二、一段还原:将步骤一所得的混合粉末放入高温炉中加热,在1300~1600℃、常压氩气环境下保温1~4小时,得到一段还原产物;
[0009] 步骤三、定量配碳:检测步骤二所得的一段还原产物碳含量及氧含量,根据所需产物与原料碳、氧、氮之间的关系调配碳量并球磨混合;
[0010] 步骤四、二段还原氮化:将步骤三所得的混合粉末放入高温炉中加热,在1600~1800℃、常压氮气环境下保温2~8小时,冷却后得到氧含量低,游离碳含量低,粒度细且均匀的氮化钛或碳氮化钛。
[0011] 步骤一所述的二氧化钛、碳黑的摩尔比为1:1~3;步骤二所述的一段还原产物为TiCxOy,是一种碳化钛与一氧化钛所形成的固溶体;步骤四所制备出的氮化钛或碳氮化钛产物都为纯相且相单一,其中氧含量低于0.5wt%,粒径小于1微米,颗粒分散性好。
[0012] 本发明的有益技术效果:
[0013] (1)采用二氧化钛和碳黑为原料,能制备出纯度高、粒度细且均匀、分散性好的氮化钛及碳氮化钛,且工艺流程简单,易于工业化生产;
[0014] (2)采用两段还原氮化的方法,相较于一步直接还原氮化的方法,避免了生产过程中碳含量不易控制的缺点,产物中碳氮比例可控,生产出的氮化钛及碳氮化钛相单一,氧含量低,游离碳含量极低。

具体实施方式

[0015] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
[0016] 相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
[0017] 实施例1
[0018] 本发明以分析纯TiO2、炭黑(99.85wt%)为原料,按TiO2:C摩尔比为1:1.6的比例配料,然后利用研钵将配好的原料混合均匀;将混合后的原料放入高温炉内,在氩气流下以5℃/min的升温速率加热至1400℃,保温4小时,然后降至室温,得到TiCxOy前驱体,测得其碳含量为6.12wt%,氧含量为17.35wt%;以制备TiN为例,根据反应式补碳6.90wt%,以200rpm球磨3小时混合
均匀;将混合后的原料放入高温炉内,在氮气气流下以5℃/min的升温速率加热至1800℃,保温2小时,然后降至室温,得到碳含量约0.23wt%,氧含量约0.48wt%,氮含量约
21.93wt%,粒径小于1μm的氮化钛产品。经X射线衍射(XRD)分析表明,产物物相为TiN,没有其他物相;电镜(SEM)表明,最终得到的TiN颗粒粒度均匀,分散性好。
[0019] 实施例2
[0020] 实施例2与实施例1基本相同,不同之处在于:
[0021] 按TiO2:C摩尔比为1:2的比例配料,在氩气流下以5℃/min的升温速率加热至1500℃,保温1小时,然后降至室温,得到TiCxOy前驱体,测得其碳含量为10.48wt%,氧含量为11.90wt%;以制备TiC0.5N0.5为例,根据反应式 补碳
8.16wt%,以400rpm球磨6小时混合均匀;将混合后的原料放入高温炉内,在氮气气流下以5℃/min的升温速率加热至1700℃,保温4小时,然后降至室温,得到碳含量约9.66wt%,氧含量约0.42wt%,氮含量约11.27wt%,粒径小于1μm的TiC0.5N0.5产品。经XRD分析表明,产物物相为TiC0.5N0.5,没有其他物相;SEM表明,最终得到的产物颗粒粒度均匀,分散性好。
[0022] 实施例3
[0023] 实施例3与实施例1基本相同,不同之处在于:
[0024] 按TiO2:C摩尔比为1:1.8的比例配料,在氩气流下以5℃/min的升温速率加热至1600℃,保温4小时,然后降至室温,得到TiCxOy前驱体,测得其碳含量为8.48wt%,氧含量为14.40wt%;以制备TiC0.3N0.7为例,根据反应式 补碳
8.11wt%,以300rpm球磨4小时混合均匀;将混合后的原料放入高温炉内,在氮气气流下以5℃/min的升温速率加热至1600℃,保温8小时,然后降至室温,得到碳含量约5.75wt%,氧含量约0.48wt%,氮含量约15.64wt%,粒径小于1μm的TiC0.3N0.7产品。经XRD分析表明,产物物相为TiC0.3N0.7,没有其他物相;SEM表明,最终得到的产物颗粒粒度均匀,分散性好。
[0025] 实施例4
[0026] 实施例4与实施例1基本相同,不同之处在于:
[0027] 按TiO2:C摩尔比为1:1.8的比例配料,在氩气流下以5℃/min的升温速率加热至1600℃,保温4小时,然后降至室温,得到TiCxOy前驱体,测得其碳含量为8.48wt%,氧含量为14.40wt%;以制备TiC0.7N0.3为例,根据反应式 补碳
15.83wt%,以300rpm球磨4小时混合均匀;将混合后的原料放入高温炉内,在氮气气流下以
5℃/min的升温速率加热至1600℃,保温8小时,然后降至室温,得到碳含量约13.64wt%,氧含量约0.37wt%,氮含量约6.82wt%,粒径小于1μm的TiC0.7N0.3产品。经XRD分析表明,产物物相为TiC0.7N0.3,没有其他物相;SEM表明,最终得到的产物颗粒粒度均匀,分散性好。