基于弧形斜指换能器的微颗粒多通道分时分离装置及方法转让专利

申请号 : CN201910226920.8

文献号 : CN109865542B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 汪延成许诚瑶梅德庆韩晨阳

申请人 : 浙江大学

摘要 :

本发明公开了一种基于弧形斜指换能器的微颗粒多通道分时分离装置及方法。弧形斜指电极与信号发生器的输出通道相连,弧形斜指电极和PDMS微流道置在铌酸锂晶片上,弧形斜指电极是主要由叉指电极由直线非对称地弯曲成圆弧曲线而成,且弧形斜指电极的电极两端以一端尺寸大另一端尺寸小非对称布置;PDMS微流道包括主体流道、两个入口端和多个出口端,主体流道呈近似弧形流道,布置在弧形斜指电极外侧方的周围;在声表面波覆盖段发生粒子排布并完成微颗粒分离;在不同时刻,通过调节信号发生器输出频率改变声表面波的产生位置而在不同出口处完成微颗粒分离。本发明能实现微颗粒的多通道分时分离,具有操作简便、可控性强、设备简单等特点。

权利要求 :

1.一种基于弧形斜指换能器的微颗粒多通道分时分离装置,其特征在于:包括铌酸锂晶片(1)、弧形斜指电极(2)和PDMS微流道(3),在铌酸锂晶片(1)上布置弧形斜指电极(2),弧形斜指电极(2)与铌酸锂晶片(1)构成声表面波弧形斜指换能器,弧形斜指电极(2)与信号发生器的输出通道相连,PDMS微流道(3)布置在弧形斜指电极(2)侧方的铌酸锂晶片(1)上且通过氧等离子键合方法与铌酸锂晶片(1)粘合;

所述的弧形斜指电极(2)是主要由叉指电极由直线非对称地弯曲成圆弧曲线而成,且弧形斜指电极(2)的电极两端以一端尺寸大另一端尺寸小非对称布置,且弧形斜指电极(2)在同一径向角度上各个指电极(条状)之间的间距相等,从一端到另一端之间在不同径向角度处的各个指电极(条状)之间的间距逐渐递增或者递减;

所述的PDMS微流道(3)包括主体流道、两个入口端和多个出口端,两个入口端分别为均一起连接到主体流道一端的粒子流入口(4)和鞘流入口(5),粒子流入口(4)和鞘流入口(5)分别通入混合粒子流(9)和鞘流(10),混合粒子流(9)包含有不同尺寸的微颗粒,主体流道在中部和另一端之间设有1~4个分叉口,每个分叉口处设置有1~3个出口端;

所述的信号发生器向弧形斜指电极(2)施加电信号,弧形斜指电极(2)作为声表面波源向PDMS微流道(3)发出声表面波,PDMS微流道(3)中的微颗粒受声表面波作用下分散分离,进而实现PDMS微流道(3)中混合粒子流的分时分离;

通过不同时间施加不同频率的电信号,在弧形斜指电极(2)的不同径向角度位置上径向向外激发出声表面波;

所述的PDMS微流道(3)的主体流道呈近似弧形流道,布置在弧形斜指电极(2)外侧方的周围。

2.根据权利要求1所述的一种基于弧形斜指换能器的微颗粒多通道分时分离装置,其特征在于:所述的弧形斜指电极(2)的材料为铝,通过光刻和物理气相沉积的方法在铌酸锂晶片(1)上形成。

3.应用于权利要求1-2任一所述装置的一种基于弧形斜指换能器的微颗粒多通道分时分离方法,其特征在于:方法包括以下各步骤:(1)构建由铌酸锂晶片(1)和弧形斜指电极(2)组成的声表面波弧形斜指换能器,制造特定形状的PDMS微流道(3);

(2)将声表面波弧形斜指换能器与信号发生器的输出通道相连,启动信号发生器向弧形斜指电极(2)施加电信号,声表面波弧形斜指换能器在铌酸锂晶片(1)上产生声表面波向PDMS微流道(3)激发,使PDMS微流道(3)被激发位置处产生声表面波行波场形成声表面波行波覆盖段;

(3)混合粒子流(9)与鞘流(10)分别从PDMS微流道(3)通入,在流经声表面波行波覆盖段时,微颗粒受到声表面波的声辐射力作用,声辐射力随微颗粒直径尺寸增大而增大导致微颗粒在PDMS微流道(3)宽度方向上运动不同而分散,并在PDMS微流道(3)上的分叉口处完成分离;并且在不同时刻通过改变信号发生器输出的电信号的频率,在弧形斜指电极(2)的不同圆周角度位置上向外激发出声表面波,微颗粒在该圆周角度位置对应PDMS微流道(3)分叉口处分散分离。

说明书 :

基于弧形斜指换能器的微颗粒多通道分时分离装置及方法

技术领域

[0001] 本发明涉及一种微颗粒多通道分时分离技术,尤其是涉及了一种基于弧形斜指换能器的微颗粒多通道分时分离装置及方法。

背景技术

[0002] 微流控芯片是一种以在微米尺度空间对流体进行操控为主要特征的科学技术。主流形式的微流控芯片多由微通道形成网络,以可控流体贯穿整个系统,用以实现常规化学或生物等实验室的各种功能。它将生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
[0003] 粒子分离技术在生物、化学、医疗诊断等领域具有重要作用,是微流控芯片技术的基础之一。常用的粒子分离技术有离心分离、磁力分离、流体动力学分离、介电泳分离等。离心分离方法通过在旋转室内旋转样品而将较轻的粒子与较重的粒子分离,但其装置体积大,并且对生物细胞样本存在损伤。磁力分离方法对样品施加外部磁场以完成粒子的分离,但需要对粒子进行磁性标记的预处理。流体动力学方法通过在流道内设计不对称障碍物将不同尺寸粒子引导到不同的流道出口,但不同粒子的分离需要设计不同的流道。介电泳分离方法通过外部电场来分离具有不同电荷或极化特性的粒子,对粒子本身性质存在要求。
[0004] 声流体粒子分离是近年来兴起的一种新的粒子分离技术,具有无需标记、生物相容性高、易于集成等优点。声流体粒子分离技术可以分为基于体波的声流体粒子分离和基于声表面波的声流体粒子分离两大类。几乎任何类型的粒子或细胞都可以根据其形状、大小、密度或压缩性等方面的差异进行分离。现有的声流体粒子分离方法大多通过在流道的某一固定段施加体波场或声表面波场来实现粒子的排布并分离,对于成分随时间变化的混合粒子流,现有的声流体粒子分离方法不能很好地实现粒子的分时分离。

发明内容

[0005] 为了解决背景技术中存在的问题,利用高频的声表面波的声场作用,本发明提出了一种基于弧形斜指换能器的微颗粒多通道分时分离装置及方法。高频的超声声表面波在PDMS流道内形成声表面波行波场,利用微颗粒在声表面波行波场中所受声辐射力随直径尺寸增加而急剧增加的特点,可以实现不同直径微颗粒的排布而完成分离;调节信号发生器的频率,产生不同方向的声表面波而在不同流道段完成微颗粒的排布与分离,达到微颗粒多通道分离的目的。
[0006] 本发明解决其技术问题所采用的技术方案如下:
[0007] 一、一种基于弧形斜指换能器的微颗粒多通道分时分离装置:
[0008] 装置包括铌酸锂晶片、弧形斜指电极和PDMS微流道,在铌酸锂晶片上布置弧形斜指电极,弧形斜指电极与铌酸锂晶片构成声表面波弧形斜指换能器,弧形斜指电极与信号发生器的输出通道相连,PDMS微流道布置在弧形斜指电极侧方的铌酸锂晶片上且通过氧等离子键合方法与铌酸锂晶片粘合;所述的弧形斜指电极是主要由叉指电极由直线非对称地弯曲成圆弧曲线而成,且弧形斜指电极的电极两端以一端尺寸大另一端尺寸小非对称布置,且弧形斜指电极在同一径向角度上各个指电极(条状)之间的间距相等,从一端到另一端之间在不同径向角度处的各个指电极(条状)之间的间距逐渐递增或者递减;所述的PDMS微流道包括主体流道、两个入口端和多个出口端,两个入口端分别为均一起连接到主体流道一端的粒子流入口和鞘流入口,粒子流入口和鞘流入口分别通入混合粒子流和鞘流,混合粒子流包含有不同尺寸的微颗粒,主体流道在中部和另一端之间设有1~4个分叉口,每个分叉口处设置有1~3个出口端。
[0009] 所述的信号发生器向弧形斜指电极施加电信号,弧形斜指电极作为声表面波源向PDMS微流道发出声表面波,PDMS微流道中的微颗粒受声表面波作用下分散分离,进而实现PDMS微流道中混合粒子流的分时分离。
[0010] 通过不同时间施加不同频率的电信号,在弧形斜指电极的不同径向角度位置上径向向外激发出声表面波。
[0011] 所述的PDMS微流道的主体流道呈近似弧形流道,布置在弧形斜指电极外侧方的周围。
[0012] 所述的弧形斜指电极的材料为铝,通过光刻和物理气相沉积的方法在铌酸锂晶片上形成。
[0013] 所述的PDMS微流道为聚二甲基硅氧烷微流道。
[0014] 二、一种基于弧形斜指换能器的微颗粒多通道分时分离方法,方法包括以下各步骤:
[0015] (1)构建由铌酸锂晶片和弧形斜指电极组成的声表面波弧形斜指换能器,制造特定形状的PDMS微流道;
[0016] (2)将声表面波弧形斜指换能器与信号发生器的输出通道相连,启动信号发生器向弧形斜指电极的两端施加电信号,声表面波弧形斜指换能器在铌酸锂晶片上产生声表面波向PDMS微流道激发,使PDMS微流道被激发位置处产生声表面波行波场形成声表面波行波覆盖段;
[0017] (3)混合粒子流与鞘流分别从PDMS微流道的两个入口通入,在流经声表面波行波覆盖段时,微颗粒受到声表面波的声辐射力作用,声辐射力随微颗粒直径尺寸增大而急剧增大导致微颗粒在PDMS微流道宽度方向上运动不同距离而分散,并在PDMS微流道上的分叉口处完成分离;并且在不同时刻通过改变信号发生器输出的电信号的频率,在弧形斜指电极的不同圆周角度位置上向外激发出声表面波,微颗粒在该圆周角度位置对应PDMS微流道分叉口处分散分离。
[0018] 本发明具有的有益效果是:
[0019] (1)本发明利用所发明的弧形斜指换能器在不同电信号下产生不同方向声表面波的特点,在PDMS微流道的指定段产生声表面波场,实现了微颗粒的多通道分时分离;
[0020] (2)本发明所用设备简单、操作简便,在铌酸锂晶片上光刻弧形斜指电极,制造工艺成熟;
[0021] (3)本发明具有易与其他微流控技术结合、能耗低的特点。

附图说明

[0022] 图1是本发明的装置结构示意图。
[0023] 图2是本发明的弧形斜指电极的俯视图。
[0024] 图3是本发明的PDMS微流道的俯视图。
[0025] 图4是实施例在频率f1的电信号下启动装置的示意图。
[0026] 图5是实施例在频率f1的电信号下粒子排布与分离的示意图。
[0027] 图6是实施例在频率f2的电信号下启动装置的示意图。
[0028] 图7是实施例在频率f2的电信号下粒子排布与分离的示意图。
[0029] 图中:1、铌酸锂晶片,2、弧形斜指电极,3、PDMS微流道,4、粒子流入口,5、鞘流入口,6、1号出口,7、2号出口,8、3号出口,9、混合粒子流,10、鞘流,11、声表面波(f1),12、声表面波(f2),13、声表面波(f1)覆盖段;14、声表面波(f2)覆盖段。

具体实施方式

[0030] 下面结合附图和实施例对本发明作进一步的说明,但本发明的实施方式不限于此。
[0031] 如图1所示,具体实施的分时多通道分离装置包括铌酸锂晶片1、弧形斜指电极2和PDMS微流道3,在铌酸锂晶片1上布置弧形斜指电极2,弧形斜指电极2与铌酸锂晶片1构成声表面波弧形斜指换能器,弧形斜指电极2与信号发生器的输出通道相连,PDMS微流道3布置在弧形斜指电极2侧方的铌酸锂晶片1上且通过氧等离子键合方法与铌酸锂晶片1粘合。
[0032] 如图2所示,弧形斜指电极2是主要由普通常规叉指电极由直线非对称地弯曲成圆弧曲线而成,且弧形斜指电极2的电极两端以一端尺寸大另一端尺寸小非对称布置,且弧形斜指电极2在同一径向角度上各个指电极(条状)之间的间距相等,在不同径向角度上间距发生改变,从一端到另一端之间在不同径向角度处的各个指电极(条状)之间的间距逐渐递增或者递减。
[0033] 如图3所示,PDMS微流道3包括主体流道、两个入口端和多个出口端,主体流道呈近似弧形流道,布置在弧形斜指电极2外侧方的周围。两个入口端分别为均一起连接到主体流道一端的粒子流入口4和鞘流入口5,粒子流入口4和鞘流入口5分别通入混合粒子流9和鞘流10,混合粒子流9包含有不同尺寸的微颗粒,主体流道在中部和另一端之间设有1~4个分叉口,每个分叉口处设置有1~3个出口端。
[0034] 具体实施中,如图1和图3所示,主体流道在中部设有1个分叉口,该分叉口处设置有1个出口端,为1号出口6;在另一端设有1个分叉口,该分叉口处设置有2个出口端,为2号出口7、3号出口8。
[0035] 弧形斜指电极2的材料为铝,厚度为200nm,通过光刻与物理气相沉积的方法在铌酸锂晶片1上形成。PDMS微流道为聚二甲基硅氧烷微流道。
[0036] 本发明的实施例及其具体实施过程如下:
[0037] (1)先制备弧形斜指电极2和PDMS微流道1:在铌酸锂(LiNO3)晶片2上旋涂一层正性光刻胶,采用预先制作的掩膜板进行掩膜曝光,随后洗去曝光的光刻胶,在晶片上获得与金属电极形状相同的无胶区域;采用物理气相沉积的方法在光刻后的铌酸锂晶片上沉积一层厚度为200nm的金属铝,之后采用丙酮溶解掉残余的光刻胶及多余的金属薄膜,获得的弧形斜指电极2如图2所示。
[0038] 采用软光刻方法制作SU-8模具,浇注PDMS后加热固化,获得PDMS微流道3,其形状如图3所示;通过氧等离子键合方法将PDMS微流道3粘结在铌酸锂晶片1上与弧形斜指电极2相对的位置。
[0039] (2)将分离装置放置在水平工作台上,将弧形斜指换能器与信号发生器的输出通道相连,启动信号发生器并输出频率为f1的电信号,如图4所示,弧形斜指换能器在压电晶片上产生声表面波(f1)11,在PDMS微流道3特定位置处产生声表面波行波场。
[0040] (3)混合粒子流9与鞘流10分别从PDMS微流道3的粒子流入口4和鞘流入口5通入,其流速分别为25μL/h和75μL/h;如图5所示,在流经声表面波(f1)覆盖段13时,不同直径的粒子受到大小不同的声辐射力,在流道宽度方向上运动不同距离而完成排布,在随后的分叉口处直径3μm的微粒流至3号出口8,直径10μm的微粒流至1号出口6,完成分离。
[0041] (4)改变信号发生器的输出信号频率为f2,如图6所示,弧形斜指换能器在另一角度上激发声表面波(f2)12,声表面波(f2)12不同于声表面波(f1)11,如图7所示,混合粒子流在声表面波(f2)覆盖段14发生排布,在随后的分叉口处直径3μm的微粒流至3号出口8,直径10μm的微粒流至2号出口7,完成分离。
[0042] 由实施例可见,本发明实现了微颗粒的多通道分时分离,操作简便,能耗低,适用范围广。