确定旋转齿形轮的齿的周期中的误差的方法转让专利

申请号 : CN201780066563.2

文献号 : CN109906358B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : N·艾尔霍尔J·丽娃

申请人 : 德尔福知识产权有限公司

摘要 :

一种确定旋转齿形轮的齿的周期中的误差的方法,尤其是确定具有N个齿的旋转齿形轮的一个或更多个齿的角间隔、节距或周期中的误差的方法,该方法包括以下步骤:i)生成与所述齿通过一个点的齿周期相对应的周期性信号;ii)关于每个齿周期Ti,针对每个齿i,确定侧方N‑1个周期的居中和Ti(N‑1)的值;iii)确定每个居中和Ti(N‑1)的局部梯度的量度;iv)相对于所有齿周期Ti(N‑1)计算梯度平均值v)基于所述梯度平均值与在步骤iii)中相对于所述齿计算出的局部梯度之间的差值,计算关于齿角周期的误差值τ。

权利要求 :

1.一种确定具有N个齿的旋转齿形轮的一个或更多个齿的周期中的误差的方法,该方法包括以下步骤:i)生成与所述齿通过一个点的齿周期相对应的周期性信号;

ii)关于每个齿周期Ti,针对每个齿i,确定侧方N-1个周期的居中和Ti(N-1)的值;

iii)确定各居中和Ti(N-1)的局部梯度 的量度;

iv)对于所有齿周期计算梯度平均值v)基于所述梯度平均值 与在步骤iii)中对于齿计算出的所述局部梯度 之间的差值,计算关于齿角周期的误差值τ。

2.根据权利要求1所述的方法,其中,所述局部梯度 是根据以下公式中的一个来计算的:或

3.根据权利要求1所述的方法,其中,所述梯度平均值是根据以下公式中的一个来计算的:或

4.根据权利要求1所述的方法,该方法包括:确定精细误差值所述精细误差是在步骤ii)中计算出的所述居中和Ti(N-1)的实际值与其理想值之间的差值,所述理想值是通过对在步骤v)中确定的误差τ的值低于阈值的侧方齿的居中(N-1)和Ti 的值进行线性插值而确定的。

5.根据权利要求4所述的方法,其中,所述理想值 是针对以下方程中的一个计算的:或

其中, 和 分别是关于前侧齿的居中和的值和关于后侧齿的居中和的值,idxbefore、idxafter分别是所述前侧齿的索引和所述后侧齿的索引,i是当前齿的索引,并且 是所确定的所述前侧齿与所述后侧齿之间的步增的平均值。

6.根据权利要求1至5中任一项所述的方法,其中,所述方法在停机、松开油门或减速条件下执行。

说明书 :

确定旋转齿形轮的齿的周期中的误差的方法

技术领域

[0001] 本发明涉及确定齿形轮或齿轮的角节距(连续齿之间的角间隔)的方法。本发明还涉及确定角节距中的误差或不规则性;即,各个角节距针对标称角节距的变化。还公开了一种确定齿周期及其不规则性的对应方法。其适用于环绕周边具有多个齿的轮子,并且适用于齿轮,尤其适用于齿形曲轴轮。本发明的各方面涉及提高确定内燃机曲轴位置的准确度。

背景技术

[0002] 曲轴的位置通常通过利用传感器(诸如单个霍尔效应传感器)来实现,该传感器检测齿轮或轮装置的齿何时挨着传感器通过。该信息用于如发动机速度和位置确定这样的目的,以及用于诸如喷射正时的软件任务安排。
[0003] 在一些应用中,需要以非常高的精度来进行发动机位置和速度测量。喷射正时需要曲轴角与时间的转换。失火(misfire)检测需要两个连续齿之间的高准确度的发动机速度/时间间隔。基于齿加速度的转矩估计使用高分辨率瞬时齿周期确定。有关周期测量的各误差可能在转矩估计中引入误差。
[0004] 在已知的方法中,使用从传感器输出的检测到的下降沿或上升沿来测量发动机位置,该传感器输出对应于齿周期的周期性信号。为了估计发动机位置和速度,当前的策略通常假设,在等同于角周期的周期性信号的每个下降沿或上升沿之间存在确切的固定角间隔(例如,6度),其由传感器随着每个齿通过它而被检测到。这种近似导致有关发动机位置和速度的误差,因为实际曲轴轮齿角不完全是例如6°。
[0005] 目前存在几种不同的方法来校正角间隔/节距(例如6°)近似。美国专利申请公开US7607415B2公开了一种曲轴信号干扰补偿的方法。该方法的缺点在于,曲轴速度和加速度在k个齿上是恒定的(在没有非循环状况(acyclism)和汽缸分散的情况下)。因此,针对每个齿的理想曲轴周期和相应齿误差都受到邻近的k个齿的误差的影响。美国专利申请US5789658公开了一种用于校正换能器轮的公差的自适应方法。该方法使用线性回归来标识误差。美国专利申请US5628291描述了一种用于在发动机速度测量结果中进行误差校正的方法。该方法复杂并且需要高计算负载。而且,在没有非循环状况和气缸分散影响的情况下,很难获得像恒定发动机速度的学习条件。由于诸如摩擦、泵送、惯性等的许多原因,所有这些方法都限制了与曲轴速度变化的关联。
[0006] 本发明的一个目的是克服这样的问题并提供一种以改进的准确度来确定诸如角节距、齿周期或曲轴位置的参数的系统和方法。

发明内容

[0007] 在一个方面,提供了一种确定具有N个齿的旋转齿形轮的一个或更多个齿的角间隔、节距或周期中的误差的方法,该方法包括以下步骤:
[0008] i)生成与所述齿通过一个点的齿周期相对应的周期性信号;
[0009] ii)关于每个齿周期Ti,针对每个齿i,确定侧方N-1个周期的居中和(centered sum)Ti(N-1)的值;
[0010] iii)确定各居中和Ti(N-1)的局部梯度 的量度;
[0011] iv)相对于所有齿周期计算梯度平均值
[0012] v)基于所述梯度平均值 与在步骤iii)中相对于齿计算出的局部梯度之差,计算关于齿角周期的误差值τ。
[0013] 所述局部梯度 可以根据以下公式中的一个来计算:
[0014] 所述梯度平均值可以根据以下公式中的一个来计算:
[0015]
[0016] 或者
[0017]
[0018] 所述方法可以包括以下步骤:确定精细误差值 所述精细误差是在步骤ii)中计算出的居中和Ti(N-1)的实际值与其理想值 之差,所述理想值是通过对在步骤v)中确定的误差τ的值低于阈值的侧方齿的居中和 的值进行线性插值而确定的。
[0019] 所述理想值 可以针对以下方程中的一个来计算:
[0020] 或者其中, 和 分别是相对于前侧齿的居中和的值和相对于后侧齿的居中和的
值,idxbefore、idxafter分别是所述前侧齿的索引和后侧齿的索引,并且i是当前齿的索引,并且 是所确定的前侧齿与后侧齿之间的步增的平均值。
[0021] 所述方法可以在停机、松开油门或减速条件下执行。

附图说明

[0022] 下面参照附图通过示例对本发明进行描述,在附图中:
[0023] 图1a示出了用于确定曲轴旋转的装置;
[0024] 图1b示出了来自图1a的装置的输出信号;
[0025] 图2示出了理想曲轴信号与实际曲轴信号;
[0026] 图3例示了确定居中和的方法;
[0027] 图4示出了在减速期间关于各齿/脉冲的Ti59曲线;
[0028] 图5示出了 相对于 的关系;
[0029] 图6示出了精选示例中使用的表;
[0030] 图7和图8示出了从具有不规则性的编程曲轴角轮廓获得的结果,以及利用所要求保护的方法计算出的结果的表和标绘图。
[0031] 图1a示出了用于确定曲轴位置的已知装置。附接至曲轴或其部分的齿形轮或嵌齿轮(cog)1(包括多个齿2)如箭头A所示旋转。挨着所述轮定位的(例如,霍尔效应)传感器3随着曲轴旋转检测齿的存在和通过,并且关联电路4输出如图1b所示的信号。脉冲(周期性)输出信号包括对应于每个经过齿的脉冲。
[0032] 图2示出了理想曲轴信号(a)相对于实际曲轴信号(b)的示意图。对于有60个齿的齿形轮,齿(以及因此的脉冲,即,脉冲周期)之间的角(节距)间隔应恰好为6°。然而,在实际齿形轮的情况下,因为齿形轮不是完美的,所以齿之间的间隔以及因此来自传感器输出电路的脉冲周期之间的间隔将在6°左右变化-齿之间的间隙5和齿宽6将由于例如制造公差而改变。因此,总的来说,齿之间的角间隔可能略有不同。
[0033] 在一个方面,提供了这样一种方法,其确定齿周期或角节距/间隔,并因此还利用基于N-1(例如,59,其中,N=60)个齿上的累积齿周期的方法确定齿形(曲轴)轮的一个或更多个齿中的误差/不规则性,其中,N是曲轴轮上的齿的数量(例如,60)。优选地,该方法在发动机减速阶段期间实施,无需燃料喷射,以避免燃料分散/扰动和非循环状况影响。

具体实施方式

[0034] 假设一个具有60个齿的旋转曲轴轮,对于每个齿,59个周期的居中和(称作 )针对齿“i”来进行计算并通过下式给出:
[0035]
[0036] 换句话说,针对特定齿(位置),相对于旋转齿形轮中的齿i的居中和是关于前30个齿的前齿周期的总和以及后29个齿周期的总和。因此,术语居中和应当同样如此解释。要注意的是,在其它示例或实施方式中,居中和可以是关于前29个齿的前周期的总和以及后30个周期的总和。对于具有奇数编号齿的齿形曲轴轮或齿轮,居中和可以在当前齿周期之前和之后具有相同数量的周期。因此,对于具有N个齿的轮,居中和可以被视为大约前N/2个齿周期和大约后N/2个齿周期,其中,所述前N/2个周期和后N/2周期加起来为N-1个齿周期。
[0037] 图3a和图3b例示了针对齿(或齿周期)“i”的居中和。图3a的轮示出了多个齿,这些齿也可以被视为来自如图1中的传感器排布结构的信号输出。图3b表示传感器输出,并因此是对应于图3b的线性表示;要注意的是,并未示出所有齿。居中和是两个分量的总和:相对于Ti的前齿周期(用附图标号A表示),以及相对于Ti的后齿周期(表示为B)。A和B相当于上面等式右侧的两个项。通常,周期A大约是前N/2个齿的周期的总和,周期B是随后的后N/2个齿的周期的总和。周期C是一个完整的曲轴回转。Ti(即,当前齿或所考虑齿的齿周期)+A+B=C(即,C=1个曲轴回转/周期)
[0038] 因此,另选地,例如针对60个齿轮的轮用公式表示, 可以被定义为一个曲轴回转时间减去当前齿周期Ti:
[0039]
[0040] 因此,通过确定每个齿(当前齿除外)的N-1个周期的总和周期,并且将其从一个完整的曲轴回转时段去掉,相对于当前齿的周期可以确定为Ti59。
[0041] 对于完美轮(没有误差,没有间隙齿)并且没有发动机非循环状况,在减速阶段,会不断增加。
[0042] 但在实际情况下,由于间隙、齿误差以及发动机非循环状况,这种增加是不规律的。图4示出了在减速期间关于每个齿/脉冲的Ti59曲线。在y轴上是相对于齿数的Ti59-在该示例中,有60个齿,但是它们被计数为总和。通常,随着曲轴减速,该周期增加。如可以看出的,存在许多凹口(notch)7,这些凹口7由不完美的(非理想的)因此不规则的齿和相应而生的齿周期造成。
[0043] 在下一个步骤中,执行对每个(第i个)齿处的局部 步增或差异的确定。按照单位时间,这可以被视为梯度。
[0044] 的步增为:
[0045]
[0046] 另选地,该步增可以被确定为
[0047]
[0048] 一般来说,对于N个齿,上述两个方程可以被表达为
[0049]
[0050]
[0051] 术语局部梯度应同样地解释。要注意的是,上述方程是指连续值的差异而不是相对于时间的差异(变化)。然后,计算针对60个齿(对应于一个曲轴轮回转)的均值,平均步增。
[0052]
[0053] 一般来说,这可以被表达为:
[0054]
[0055] 或者另选地:
[0056]
[0057] 被视为针对连续齿的 个点之间的平均步增。因此, 与所测得的之间的差异是偏差标准τ,其是针对当前齿i的齿周期/节距/角间隔误差的量度。
[0058]
[0059] 因此,偏差标准τ可以被用作齿误差的量度。
[0060] 图5示出了 相对于 的关系。 的标绘图(10)由线8表示,并且各个由十字9表示。因此,该图示出了齿的偏差标准或不规则性τ。
[0061] 精选实施方式
[0062] 接下来的方法给出了对齿误差的改进且更准确的确定。在图6a中示出了τ的连续值(相对于旋转曲轴轮中的连续齿)的表。在该示例中,阵列表示120个连续时间(齿)周期,例如,对应于60个齿的轮的两个曲轴轮回转。图6a示出了一个索引表,其中连续齿具有单调递增的索引值(0,1,2,3,…)。在它们下面示出了τ的值。
[0063] 在一个精选实施方式中,该误差根据实际值 与指定为 的其理想值(如果齿是规则的)之间的差值来确定。这在图6c中示出,下文中将对其进行更详细的说明。
[0064] 返回至图6b,示出了连续齿周期的表和计算出的τ值。如果考虑要确定其误差的当前齿(i=n),比方说齿编号11,那么选择其误差τ的值相对较小的两个齿(或更精确地说,齿周期),两侧各一个,即,侧齿(周期)11。齿编号/周期19具有相对小的值τ=6,齿周期/编号24具有相对小的值τ=6。然后使用这些点来找出该一般区域(即,在齿编号19附近)中的步增的平均值,这个更准确的平均步增值被指定为
[0065] 换句话说,从当前齿起,利用小τ值搜索之后的齿(周期)和之前的齿(周期)(但不是离当前索引太远)。连同这一起,确定这些齿/齿周期的索引值。如图6的表所示,连续齿/齿周期的索引是最简单形式的单调递增整数。指定在当前齿/周期之后找到的齿/周期索引(idx_after)并且指定在当前齿之后找到的齿/齿周期的索引值(idx_before)。
[0066] 在图6a和图6b的示例中,为了计算齿/齿周期编号22的区域中的理想步增,如果齿22是规则的(在节距或周期中没有误差),那么步增 (理想的 )使用 并且使用(作为基准)来确定该值。通用方程为:
[0067]
[0068] 这从图5中可以看出。在针对齿22的示例中,这变成了
[0069]
[0070] 返回参照图5,值 是该区域的平均步增 的更精确的确定。该值被用于确定误差的进一步精细的值,如下面将要说明的。因此,总而言之,通过选择当前齿两侧的两个点(τ的标准较低),可以将校正的 确定为
[0071] 图6c示出了针对连续齿I的 的标绘图,与图4相似。示出了 的实际值(换句话说,其中i=n),但理想值 位于线Z上,其是连接针对当前齿n两侧的齿(具有索引idx before和idx after)的 值的线。选择这些侧齿为的是具有低的τ值,然后通过线性插值求出 的值。精细误差是 与 之间的差。 的值根据 确定,如下文所述。
[0072] 因此,根据 作为 的理想值 (针对该齿的理想值)可以如所给出的进行计算。
[0073]
[0074] 最后,可以通过以下方程计算针对每个齿的曲轴周期误差(us)
[0075]
[0076] 该周期误差可以转换成节距角/间隔,因此可以获得每个齿的实际角。
[0077]
[0078] 而且按节距因子
[0079]
[0080] 图7的表示出了利用上述方法获得的利用编程曲轴轮模式(不规则)的测试结果。在具有实际驱动和曲轴安装条件的车辆上进行进一步测试。图8示出了根据上述方法针对编号齿计算的单个曲轴角的标绘图,其中实际角度在编程曲轴角轮廓中具有不规则性,如线11所示。
[0081] 结果表明,所有环境条件都具有良好的重复性和很小的分散性。该方法使得能够确定曲轴齿误差(TEC)。其对发动机速度变化的敏感度低于其它现有技术方法。该方法不需要采集链修改,可以很容易地在许多应用中实现,并且使得能够在不影响发动机速度变化的情况下进行误差识别,而且其不那么复杂,因此需要较少的CPU负载消耗。