一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用转让专利

申请号 : CN201910304813.2

文献号 : CN110002762B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 刘超段锁张继红

申请人 : 武汉理工大学

摘要 :

本发明属于发光材料领域,具体涉及一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用,硼锗酸盐玻璃包括以下摩尔百分含量的组分:Ge:13.5%‑18.5%,B:6.5%‑15.5%,Zn:0.1%‑5.3%,Ca:0.1%‑2.5%,Pb:0.3%‑2.3%,Cs:1.3%‑4.6%,Na:1.6%‑6.5%,Br:1.6%‑6.5%,O:53%‑59%,Yb:0.1%‑4.0%。本发明的硼锗酸盐玻璃,通稀土离子Yb3+调控CsPbBr3纳米晶的荧光峰,随着Yb3+掺杂浓度的提高,CsPbBr3纳米晶的荧光峰呈现蓝移趋势。

权利要求 :

1.一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,其特征在于:包括以下摩尔百分含量的组分:Ge:14.0%-16.0%,B:11.2%-13.2%,Zn:1.0%-2.2%,Ca:0.8%-2.0%,Pb:

0.8%-1.5%,Cs:2.2%-4.0%,Na:2.0%-5.0%,Br:2.0%-5.0%,O:53.0%-59.0%,Yb:

2.0%-4.0%;采用的Ge源为GeO2,B源为B2O3或H3BO3,Zn源为ZnO,Ca源为CaO或CaCO3,Pb源为PbO,Cs源为Cs2O或Cs2CO3,Na源和Br源为NaBr,Yb源为Yb2O3;所述CsPbBr3纳米晶的荧光峰在

479-530nm范围内可调;

所述Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的制备方法包括以下步骤:(1)按照玻璃组分设计的摩尔百分比称取原料,混合均匀;

(2)将混合均匀后的原料在1150-1350℃温度下熔融,均化成型后得到透明玻璃;

(3)将制得的透明玻璃在450-570℃温度下进行热处理,热处理时间为1-10h,得到所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃。

3+

2.根据权利要求1所述的Yb 和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,其特征在于:包括以下摩尔百分含量的组分:Ge:15.0%-16.0%,B:12.2%-13.2%,Zn:1.5%-1.8%,Ca:

0.8%-1.1%,Pb:0.8%-1.1%,Cs:2.9%-3.5%,Na:3.6%-4.0%,Br:3.6%-4.0%,O:

55.0%-57.0%,Yb:2.0%-2.2%。

3.根据权利要求1所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,其特征在于:包括以下摩尔百分含量的组分:Ge:14.0%-15.0%,B:11.2%-12.2%,Zn:1.5%-1.8%,Ca:

0.8%-1.1%,Pb:0.8%-1.1%,Cs:2.9%-3.5%,Na:3.6%-4.0%,Br:3.6%-4.0%,O:

55.0%-57.0%,Yb:2.8%-3.1%。

4.根据权利要求1所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,其特征在于:包括以下摩尔百分含量的组分:Ge:14.0%-16.0%,B:11.2%-13.2%,Zn:1.6%,Ca:0.9%,Pb:

0.9%,Cs:3.1%,Na:3.8%,Br:3.8%,O:56.7%,Yb:2.0%-4.0%。

5.一种如权利要求1-4任一项所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的应用,其特征在于:将所述Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃应用于信息显示设备背景光源的发光组件、光伏器件的光谱转换组件或荧光指示设备发光组件中。

说明书 :

3+

一种Yb 和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法

和应用

技术领域

[0001] 本发明属于发光材料领域,具体涉及一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃、其制备方法和应用。

背景技术

[0002] 半导体纳米晶是一种准零维的半导体纳米晶颗粒。当半导体材料的晶粒尺寸逐渐减小时,大块材料的连续能带结构变成分立能级结构。随着纳米晶尺寸的逐渐减小,其禁带宽度逐渐增大,其荧光光谱呈现蓝移趋势。可以通过调控析晶过程,控制纳米晶的尺寸,进而调控其荧光波长范围。
[0003] CsPbBr3钙钛矿型材料是直接带隙半导体材料,其带隙能为2.30eV。CsPbBr3纳米晶的荧光主要为绿光。CsPbBr3纳米晶的制备方法有很多,主要包括在溶液中合成的化学法和熔融-热处理法。化学法合成的CsPbBr3纳米晶发光效率高,合成工艺简单,但是该方法合成的CsPbBr3纳米晶容易团簇沉淀,在极性溶液中容易分解,其化学稳定性和热稳定性均较差,而玻璃基质可以为CsPbBr3纳米晶提供稳定的基底环境,提高其化学稳定性和热稳定性。
[0004] 如何调控CsPbBr3纳米晶的荧光峰,实现更宽范围的发光是亟待解决的一个问题。可以通过调整热处理温度和时间来控制玻璃的析晶过程,进而控制析出的 CsPbBr3纳米晶的尺寸,实现对其荧光峰的调控。除此之外,通过稀土离子掺杂也可以影响玻璃的析晶过程,进而实现对纳米晶荧光峰的调控。

发明内容

[0005] 本发明的目的之一在于提供一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,通稀土离子Yb3+调控CsPbBr3纳米晶的荧光峰,使CsPbBr3纳米晶的荧光峰呈现蓝移趋势。
[0006] 本发明的目的之二在于提供一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的制备方法,工艺简单,易操作。
[0007] 本发明的目的之三在于提供一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的应用,玻璃基质中的CsPbBr3纳米晶比化学合成的CsPbBr3纳米晶具有更好的稳定性。通过Yb3+调控其荧光,可以实现更宽范围的荧光发射。
[0008] 本发明实现目的之一所采用的方案是:一种Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,包括以下摩尔百分含量的组分:Ge:13.5%-18.5%,B:6.5%-15.5%,Zn:0.1%-5.3%,Ca:0.1%-2.5%,Pb:0.3%-2.3%,Cs:1.3%-4.6%,Na:1.6%-6.5%, Br:1.6%-
6.5%,O:53.0%-59.0%,Yb:0.1%-4.0%。
[0009] 本发明中,采用的Ge源为GeO2,B源为B2O3或H3BO3,Zn源为ZnO, Ca源为CaO或CaCO3,Pb源为PbO,Cs源为Cs2O或Cs2CO3,Na源和Br源为NaBr,Yb源为Yb2O3。
[0010] 本发明中所述Yb3+掺杂硼锗酸盐玻璃的各元素以氧化物或卤化物的形式存在。所起的作用分别为:GeO2和B2O3为网络形成体,ZnO、CaO、Cs2O、PbO 和NaBr为网络外体,Cs2O、PbO和NaBr作为CsPbBr3纳米晶的引入体,Yb2O3作为Yb3+的引入体。各原料的含量需控制在一定的范围内。
[0011] 本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,通过热处理使玻璃基质析出CsPbBr3纳米晶,其尺寸可控,可以获得可见光波段一定范围的发光,玻璃基质为纳米晶提供了稳定的基底环境,提高了其热稳定性和化学稳定性。在热处理温度和热处理时间一定时,通过稀土离子Yb3+的掺杂调控CsPbBr3纳米晶荧光峰,随着Yb3+掺杂浓度的提高,CsPbBr33+ 3+
纳米晶荧光峰呈现蓝移趋势。Yb 在析晶过程中起到了成核剂的作用,随着Yb 掺杂浓度的提高,样品中析晶增多,但是相关元素的总量是有限的,析晶增多限制了其晶粒尺寸长大,所以其荧光峰呈现蓝移趋势。荧光光谱的位置可以侧面反映纳米晶的尺寸。荧光光谱蓝移,说明纳米晶尺寸变小。荧光光谱红移,说明纳米晶尺寸变大。原因是由于量子限域效应,改变半导体纳米晶的尺寸,可以改变其带隙宽度。而荧光来源于不同能级间的辐射跃迁,改变带隙宽度,就会改变辐射跃迁释放的能量,能量和光的波长对应,能量越高,波长越短。所以说荧光光谱蓝移说明晶粒尺寸变小。
[0012] 优选地,包括以下摩尔百分含量的组分:Ge:14.0%-16.0%,B:11.2%-13.2%, Zn:1.0%-2.2%,Ca:0.8%-2.0%,Pb:0.8%-1.5%,Cs:2.2%-4.0%,Na:2.0%-5.0%, Br:2.0%-5.0%,O:53.0%-59.0%,Yb:2.0%-4.0%。
[0013] 优选地,包括以下摩尔百分含量的组分:Ge:15.0%-16.0%,B:12.2%-13.2%, Zn:1.5%-1.8%,Ca:0.8%-1.1%,Pb:0.8%-1.1%,Cs:2.9%-3.5%,Na:3.6%-4.0%, Br:3.6%-4.0%,O:55.0%-57.0%,Yb:2.0%-2.2%。
[0014] 优选地,包括以下摩尔百分含量的组分:Ge:14.0%-15.0%,B:11.2%-12.2%, Zn:1.5%-1.8%,Ca:0.8%-1.1%,Pb:0.8%-1.1%,Cs:2.9%-3.5%,Na:3.6%-4.0%, Br:3.6%-4.0%,O:55.0%-57.0%,Yb:2.8%-3.1%。
[0015] 优选地,包括以下摩尔百分含量的组分:Ge:13.5%-14%,B:6.5%-11.2%, Zn:1.5%-1.8%,Ca:0.8%-1.1%,Pb:0.8%-1.1%,Cs:2.9%-3.5%,Na:3.6%-4.0%, Br:
3.6%-4.0%,O:55.0%-57.0%,Yb:3.8%-4.0%。
[0016] 优选地,包括以下摩尔百分含量的组分:Ge:14.0%-16.0%,B:11.2%-13.2%, Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%,Na:3.8%,Br:3.8%,O:56.7%, Yb:2.0%-4.0%。
[0017] 优选地,所述CsPbBr3纳米晶的荧光峰在479-530nm范围内可调。
[0018] 本发明实现目的之二所采用的方案是:一种所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的制备方法,包括以下步骤:(1)按照玻璃组分设计的摩尔百分比称取原料,混合均匀;
[0019] (2)将混合均匀后的原料在1150-1350℃温度下熔融,均化成型后得到透明玻璃;
[0020] (3)将制得的透明玻璃在450-570℃温度下进行热处理,热处理时间为 1-10h,得到所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃。
[0021] 本发明实现目的之三所采用的方案是:一种所述的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃的应用,将所述Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃应用于信息显示设备背景光源的发光组件、光伏器件的光谱转换组件或荧光指示设备发光组件中。
[0022] 具体的,本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃在LED显示和太阳能电池等领域具有潜在应用前景和价值。
[0023] 本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,将稀土离子Yb3+引入玻璃基质,通过Yb3+调控玻璃的析晶过程,进而调控纳米晶的尺寸,最终实现对CsPbBr3纳米晶的荧光峰的调控。通稀土离子Yb3+调控CsPbBr3纳米晶的荧光峰,随着Yb3+掺杂浓度的提高,CsPbBr3纳米晶的荧光峰呈现蓝移趋势。
[0024] 本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃通过热处理使玻璃基质析出CsPbBr3纳米晶,其尺寸可控,可以获得可见光波段一定范围的发光,玻璃基质为纳米晶提供了稳定的基底环境,提高了其热稳定性和化学稳定性。
[0025] 本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃在热处理温度和热处理时间一定的情况下,随着Yb3+掺杂浓度的提高,CsPbBr3纳米晶的荧光波长变短,出现蓝移趋势,3+
说明随着Yb 掺杂浓度的提高,其尺寸逐渐减小。
[0026] 本发明的制备方法工艺简单,易操作,整个制备过程在空气气氛中进行,无需特殊装置,所需设备简单。本发明通过热处理从硼锗酸盐玻璃基质中析出了 CsPbBr3纳米晶,提高了其化学稳定性和热稳定性。
[0027] 本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,在信息显示设备背景光源的发光组件、光伏器件的光谱转换组件或荧光指示设备发光组件中具有应用前景,与传统发光量子点CdSe/CdS和有机染料罗丹明6G相比,CsPbBr3纳米晶在光学性能上更加出色,CsPbBr3纳米晶的发光纯度更高,玻璃基质中的CsPbBr3纳米晶比化学合成的CsPbBr3纳米晶具有更好的稳定性;另外,通过Yb3+调控其荧光,可以实现更宽范围的荧光发射。CsPbBr3纳米晶在钙钛矿太阳能电池中可以作为吸光材料,其成本低于硅基太阳能电池。

附图说明

[0028] 图1为实施例1中Yb3+调控CsPbBr3纳米晶荧光峰的荧光光谱图;
[0029] 图2为实施例2中Yb3+调控CsPbBr3纳米晶荧光峰的荧光光谱图;
[0030] 图3为实施例3中Yb3+调控CsPbBr3纳米晶荧光峰的荧光光谱图。

具体实施方式

[0031] 为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
[0032] 实施例1
[0033] 分别按以下原子摩尔百分比称取原料:
[0034] 1)Ge:16.0%,B:13.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:0%;
[0035] 2)Ge:15.0%,B:12.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:2.0%;
[0036] 3)Ge:14.0%,B:11.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:4.0%;
[0037] 按照以下步骤制备分别制备上述三组Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃:
[0038] 1)按照玻璃组分设计的摩尔百分比称取原料,置于混料瓶中,加入适量的乙醇以及适当大小比例的氧化锆混料球,湿混球磨10h以上,使原料充分混合均匀;
[0039] 2)混合均匀后将原料从混料瓶转移到蒸发皿中,并将蒸发皿置于鼓风式干燥箱中烘干,烘干后将原料从蒸发皿再转移到刚玉坩埚中,将盛有原料的刚玉坩埚放入电熔炉,在1150-1350℃温度范围内熔融30-40min;
[0040] 3)熔融后,将刚玉坩埚中熔融的玻璃液沿着固定方向尽快倾倒到不锈钢板模具的夹槽中,然后使用另一块钢板挤压使其快速冷却,然后立刻将所得的玻璃样品转移到退火炉中保温一段时间,以减少玻璃样品中的热应力,然后随炉冷却至室温,完全冷却后得到透明玻璃;
[0041] 4)将透明玻璃放入热处理炉中,在470℃的温度下处理10h,然后随炉冷却到室温,使玻璃基质析出CsPbBr3纳米晶,得到Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,对获得的玻璃进行精密抛光,然后进行测试。
[0042] 图1为本实施例中样品在400nm激发下的荧光光谱图,激发光源为溴钨灯。从图1中可见,在热处理温度和时间一定时,CsPbBr3纳米晶的荧光峰随着Yb3+掺杂浓度提高而蓝移,其荧光峰峰位从511nm蓝移到479nm,故其荧光峰峰位在479-511nm范围内可调。
[0043] 实施例2
[0044] 分别按以下原子摩尔百分比称取原料:
[0045] 1)Ge:16.0%,B:13.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:0%;
[0046] 2)Ge:15.0%,B:12.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:2.0%;
[0047] 3)Ge:14.0%,B:11.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%,Na:3.8%,Br:3.8%,O:56.7%,Yb:4.0%;
[0048] 按照以下步骤制备分别制备上述三组Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃:(1)按照玻璃组分设计的摩尔百分比称取原料,置于混料瓶中,加入适量的乙醇以及适当大小比例的氧化锆混料球,湿混球磨10h以上,使原料充分混合均匀;
[0049] 2)混合均匀后将原料从混料瓶转移到蒸发皿中,并将蒸发皿置于鼓风式干燥箱中烘干,烘干后将原料从蒸发皿再转移到刚玉坩埚中,将盛有原料的刚玉坩埚放入电熔炉,在1150-1350℃温度范围内熔融30-40min;
[0050] 3)熔融后,将刚玉坩埚中熔融的玻璃液沿着固定方向尽快倾倒到不锈钢板模具的夹槽中,然后使用另一块钢板挤压使其快速冷却,然后立刻将所得的玻璃样品转移到退火炉中保温一段时间,以减少玻璃样品中的热应力,然后随炉冷却至室温,完全冷却后得到透明玻璃;
[0051] 4)将透明玻璃放入热处理炉中,在510℃的温度下处理10h,然后随炉冷却到室温,是玻璃基质析出CsPbBr3纳米晶,得到Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,对获得的玻璃进行精密抛光,然后进行测试。
[0052] 图2为本实施例中样品在460nm激发下的荧光光谱图,激发光源为溴钨灯。从图2中可见,在热处理温度和时间一定时,CsPbBr3纳米晶的荧光峰随着Yb3+掺杂浓度提高而蓝移,其荧光峰峰位从523nm蓝移到518nm,其荧光峰峰位在 518-523nm范围内可调。
[0053] 实施例3
[0054] 分别按以下原子摩尔百分比称取原料:
[0055] 1)Ge:16.0%,B:13.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%,Na:3.8%,Br:3.8%,O:56.7%,Yb:0%;
[0056] 2)Ge:15.0%,B:12.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:2.0%;
[0057] 3)Ge:14.0%,B:11.2%,Zn:1.6%,Ca:0.9%,Pb:0.9%,Cs:3.1%, Na:3.8%,Br:3.8%,O:56.7%,Yb:4.0%;
[0058] 按照以下步骤制备分别制备上述三组Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃:(1)按照玻璃组分设计的摩尔百分比称取原料,置于混料瓶中,加入适量的乙醇以及适当大小比例的氧化锆混料球,湿混球磨10h以上,使原料充分混合均匀;
[0059] 2)混合均匀后将原料从混料瓶转移到蒸发皿中,并将蒸发皿置于鼓风式干燥箱中烘干,烘干后将原料从蒸发皿再转移到刚玉坩埚中,将盛有原料的刚玉坩埚放入电熔炉,在1150-1350℃温度范围内熔融30-40min;
[0060] 3)熔融后,将刚玉坩埚中熔融的玻璃液沿着固定方向尽快倾倒到不锈钢板模具的夹槽中,然后使用另一块钢板挤压使其快速冷却,然后立刻将所得的玻璃样品转移到退火炉中保温一段时间,以减少玻璃样品中的热应力,然后随炉冷却至室温,完全冷却后得到透明玻璃;
[0061] 4)将透明玻璃放入热处理炉中,在540℃的温度下处理10h,然后随炉冷却到室温,是玻璃基质析出CsPbBr3纳米晶,得到Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃对获得的玻璃进行精密抛光,然后进行测试。
[0062] 图3为本实施例中样品在460nm激发下的荧光光谱图,激发光源为溴钨灯。从图中可见,在热处理温度和时间一定时,CsPbBr3纳米晶的荧光峰随着Yb3+掺杂浓度提高而蓝移,其荧光峰峰位从530nm蓝移到520nm,其荧光峰峰位在 520-530nm范围内可调。
[0063] 综上可知,本发明的Yb3+和CsPbBr3纳米晶掺杂的硼锗酸盐玻璃,通过热处理使玻璃基质析出CsPbBr3纳米晶,其尺寸可控,可以获得可见光波段一定范围的发光,玻璃基质为纳米晶提供了稳定的基底环境,提高了其热稳定性和化学稳定性。在热处理温度热处理时间一定时,通过稀土离子Yb3+的掺杂调控CsPbBr3纳米晶荧光峰,随着Yb3+掺杂浓度的提高,CsPbBr3纳米晶荧光峰呈现蓝移趋势。
[0064] 以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。