用于铣削淬硬钢的硬质合金刀片及其制备方法转让专利

申请号 : CN201910303840.8

文献号 : CN110042294B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈飞林孝良高荣根高江雄

申请人 : 株洲华锐精密工具股份有限公司

摘要 :

本发明提供了一种用于铣削淬硬钢的硬质合金刀片及其制备方法,刀片包括基体和涂覆在基体上的涂层,基体包括如下质量百分含量的组分:6~10%Co,含量为Co的8~10%的晶粒抑制剂Ta+Cr,余量为WC;涂层为TixAl1‑xN层、AlyCr(0.9~1)‑yWSiN层,以及TiSiN层组成的复合涂层;其中,x=0.4~0.5,y=0.5~0.7。制备方法为先用快冷烧结法制备硬质合金的基体,再用电弧离子镀的方法在基体表面沉积上述复合涂层。本发明提供的制备方法成本低廉,适合大规模生产,制备得到的硬质合金刀片在铣削淬硬钢时的耐磨性和抗崩刃性良好。

权利要求 :

1.一种用于铣削淬硬钢的硬质合金刀片,包括基体和涂覆在基体上的涂层,其特征在于,所述基体包括Co,晶粒抑制剂Ta+Cr,以及WC;

其中,Co含量为6~10%,晶粒抑制剂Ta+Cr含量为Co的8~10%,余量为WC;

其中,Ta+Cr分别以TaC和Cr3C2的形式添加;Cr在Ta+Cr中的质量分数占比为50~100%;

所述基体中Co的比饱和磁化强度与Co的质量百分含量之比为0.75~0.85;所述基体的矫顽磁力为21~28kA/m;

所述涂层为TixAl1-xN层、AlyCr(0.9~1)-yWSiN层,以及TiSiN层组成的复合涂层;其中,x=

0.4~0.5,y=0.5~0.7;

所述TixAl1-xN层厚度为0.5~1.0μm;所述AlyCr(0.9~1)-yWSiN层厚度为1.5~2.5μm;所述TiSiN层厚度为0.3~0.8μm。

2.根据权利要求1所述用于铣削淬硬钢的硬质合金刀片,其特征在于,所述WC原料的FSSS粒度为0.8μm,Hcp值为23~25kA/m。

3.根据权利要求1所述用于铣削淬硬钢的硬质合金刀片,其特征在于,所述AlyCr(0.9~1)-yWSiN层中W、Si的添加量不超过10wt%。

4.一种如权利要求1~3中任意一项所述的硬质合金刀片的制备方法,其特征在于,包括如下步骤:(1)用快冷烧结法制备硬质合金的基体;

所述快冷烧结法具体为按原料配比进行配料,再进行球磨、喷雾干燥和压制,然后在氩气气氛下以1410℃~1440℃的温度烧结1h,再以60~105℃/min的冷却速度快冷至800℃,最后在2h内冷至室温;其中,氩气压力为500~1000kPa;

(2)用电弧离子镀的方法在步骤(1)制备得到的基体表面依次沉积TixAl1-xN层、AlyCr(0.9~1)-yWSiN层,以及TiSiN层;其中,x=0.4~0.5,y=0.5~0.7。

5.根据权利要求4所述制备方法,其特征在于,所述球磨的球料比为5~10:1,球磨时间为46~48h。

6.根据权利要求4所述制备方法,其特征在于,所述球磨的球磨介质为酒精。

说明书 :

用于铣削淬硬钢的硬质合金刀片及其制备方法

技术领域

[0001] 本发明涉及金属切削加工领域,特别涉及一种用于铣削淬硬钢的硬质合金刀片及其制备方法。

背景技术

[0002] 硬质合金兼具高硬度和高强度,被广泛应用于各种工业领域,如金属切削行业。在切削加工的各类工件中,淬硬钢因具有较高的硬度,属于难切削材料。典型的淬硬钢工件切削硬度范围为55~68HRC,从加工的角度看,淬硬钢主要的切削特点如下:(1)硬度高、强度高,几乎没有塑性;(2)切削力大、切削温度高;(3)不易产生积屑瘤;(4)刀刃易崩碎、磨损;(5)导热系数低。因此对淬硬钢进行加工不仅要求刀具材料有很好的耐磨性,对其高温性能和抗崩刃性也有很高的要求。
[0003] 目前工业上车削、磨削淬硬钢工件常使用CBN刀具材料,但铣削仍多采用硬质合金材质。使用传统硬质合金材质加工淬硬钢时往往寿命不长,以下专利对现有材质进行了针对性的改善:专利US20080050186A1涉及一种用于对>45HRC硬度的淬硬钢、工具钢、硬铸铁和不锈钢进行铣削的切削刀片,该刀片包含基体和涂层。基体包含5.4~6.3wt%Co,0.7~1.0wt%(Ta+Nb),5.0~7.0wt%Ti,其余为WC。其中Ta、Nb、Ti以碳化物或者碳化物的混合物的形式添加。涂层包括均匀的AlxTi1-xN层,其中x=0.6~0.67,厚度为1~3.8μm。该技术生产的刀片虽然硬度较高,但由于Ta、Nb、Ti的添加量较高,刀片韧性较差,在高进给量的铣削情况下易发生崩刃现象。专利US20090098355A1提供了一种用于铣削的涂层切削刀片及其制备方法,其中基体成分包括7.5~8.6wt%Co、总量0.5~2.8wt%的(Ti+Ta+Nb)和余量的WC。涂层包括最内层厚度≤1μm的等轴晶TiCxNyOz层,0.7≤x+y+z≤1;第二层厚度为2~4μm由柱状晶组成的TiCxNyOz层,0.7≤x+y+z≤1;第三层厚度为2~4μm的α-Al2O3层,α-Al2O3在(10-12)、(10-14)或(0006)方向上有强织构。该技术制备的刀片采用CVD涂层,涂层残余热应力较大,涂层易剥落,刀片寿命不长,容易发生崩刃和破损现象。
[0004] 因此,有必要提供一种耐磨性良好,铣削淬硬钢过程中不易发生崩刃的硬质合金刀片。

发明内容

[0005] 针对现有技术存在的刀面磨损较大,易崩刀等问题,本发明提供了一种用于铣削淬硬钢的硬质合金刀片及其制备方法,其目的是为了通过调整合金成分,选择合适的制备工艺,搭配合适的涂层,实现合金耐磨性和抗崩刃性的良好匹配,同时降低生产成本提高生产效率,使之更适合大规模工业生产。
[0006] 为了达到上述目的,本发明提供如下技术方案:
[0007] 一种用于铣削淬硬钢的硬质合金刀片,包括基体和涂覆在基体上的涂层,所述基体包括Co,晶粒抑制剂Ta+Cr,以及WC;
[0008] 其中,Co含量为6~10%,晶粒抑制剂Ta+Cr含量为Co的8~10%,余量为WC;
[0009] 其中,Ta+Cr分别以TaC和Cr3C2的形式添加;Cr在Ta+Cr中的质量分数占比为50~100%;
[0010] 所述基体中Co的比饱和磁化强度与Co的质量百分含量之比为0.75~0.85;所述基体的矫顽磁力为21~28kA/m;
[0011] 所述涂层为TixAl1-xN层、AlyCr(0.9~1)-yWSiN层,以及TiSiN层组成的复合涂层;其中,x=0.4~0.5,y=0.5~0.7。
[0012] 优选地,所述WC原料的FSSS粒度为0.8μm,Hcp值为23~25kA/m。
[0013] 优选地,所述TixAl1-xN层厚度为0.5~1.0μm;所述AlyCr(0.9~1)-yWSiN层厚度为1.5~2.5μm;所述TiSiN层厚度为0.3~0.8μm。
[0014] 优选地,所述AlyCr(0.9~1)-yWSiN层中W、Si的添加量不超过10wt%。
[0015] 本发明还提供一种上述硬质合金刀片的制备方法,包括如下步骤:
[0016] (1)用快冷烧结法制备硬质合金的基体;
[0017] 所述快冷烧结法具体为按原料配比进行配料,再进行球磨、喷雾干燥和压制,然后在氩气气氛下以1410℃~1440℃的温度烧结1h,再以60~105℃/min的冷却速度快冷至800℃,最后在2h内冷至室温;其中氩气压力为500~1000KPa;
[0018] (2)用电弧离子镀的方法在步骤(1)制备得到的基体表面依次沉积TixAl1-xN层、AlyCr(0.9~1)-yWSiN层,以及TiSiN层;其中x=0.4~0.5,y=0.5~0.7。
[0019] 优选地,所述球磨的球料比为5~10:1,球磨时间为46~48h。
[0020] 优选地,所述球磨的球磨介质为酒精。
[0021] 本发明提供的用于铣削淬硬钢的硬质合金刀片的基体中,Ta+Cr作为晶粒抑制剂添加。Ta和Cr都可以抑制WC晶粒的长大,两种元素复合添加可以增大抑制效果,从而获得细小的WC晶粒,提高基体强度和硬度;且Ta的添加还可以提高基体高温性能,增强刀片的抗塑性变形能力。但Ta和Cr在Co中的溶解度有限(1250℃时,Ta为3wt%,Cr为12wt%),超过溶解度的添加量会析出晶粒度较大的Ta和Cr的脆性碳化物,即使未超过溶解度,靠近溶解度极限的添加量也会降低WC+fcc-Co两相区的C含量范围,不利于生产中C含量的控制。本发明中选择的抑制剂添加量可以在提高基体硬度、强度和高温性能的同时,尽可能降低Ta和Cr的脆性碳化物析出,同时便于生产中C含量的控制。
[0022] 本发明提供的用于铣削淬硬钢的硬质合金刀片的基体中,Co的比饱和磁化强度与Co的质量百分含量之比为0.75~0.85,优选为0.78~0.80;比饱和磁化强度(Com%),可以间接反映合金中的C含量,在Co含量一定的情况下,Com%越高表示C含量越高,反之则C含量越低。低的C含量表明Co中固溶了更多的W原子,可以获得较好的固溶强化效果,提高基体强度和硬度。但过低的C含量会使基体中产生脆性η相,对力学性能产生不利影响。本发明通过控制C含量使Co的比饱和磁化强度与Co的质量百分含量之比处于0.75~0.85之间可以最大程度发挥固溶强化效果,同时有效避免η相的生成。
[0023] Hc表示合金的矫顽磁力,可以间接反映合金中WC的晶粒度,在Co饱和磁化强度一定的情况下,Hc越高WC晶粒度越小,反之则WC晶粒度越大。本方案中的基体控制Hc在21~28kA/m,优选22~27kA/m。这可以保证基体中WC晶粒细小,获得高硬度和良好的耐磨性。
[0024] 本发明提供的用于铣削淬硬钢的硬质合金刀片的涂层,为由TixAl1-xN层、AlyCr(0.9~1)-yWSiN层,以及TiSiN层组成的复合涂层。其中TixAl1-xN层作为打底层提高与基体的结合力。AlyCr(0.9~1)-yWSiN层是主要的功能层,其继承了AlCrN涂层的高红硬性和良好的高温抗氧化性,同时加入少量的W和Si,W可以减少摩擦系数,Si则可以进一步细化晶粒提高硬度,但添加过多的W和Si会降低涂层中Al、Cr的含量,反过来影响涂层的红硬性和高温抗氧化性能。TiSiN层作为最外层,是在TiN的基础上添加少量Si,可以兼具TiN的低摩擦系数和一定硬度。涂层厚度主要影响耐磨性和残余应力。较厚的涂层具有更好的耐磨性,但涂层过厚会使其积蓄的残余压应力过高,诱发内裂纹的产生致使涂层失效。本发明选择的涂层成分和组合,符合淬硬钢工件的加工特点,同时通过调整厚度至上述范围,确保获得耐磨性好,寿命长的涂层。
[0025] 本发明提供的用于铣削淬硬钢的硬质合金刀片的基体通过快冷烧结法制备。快冷的冷却方式可以抑制冷却时Co向表面迁移,防止表面Co花的形成;还可以抑制WC的二次析出,最大程度保留粘结相中的固溶强化效果,并抑制fcc-Co向hcp-Co转变,提高基体韧性。快冷分两步进行,从烧结温度至800℃采用更快的降温速率,因为尽管W-C-Co的共晶温度在
1300℃左右,但由于降温速率较快,液固相变迟滞,在共晶温度下仍存在少量液相,需要一定的过冷度才能使液相完全转变为固相;而在800℃以下可以适当降低降温速率以降低生产成本。
[0026] 本发明的上述方案有如下的有益效果:
[0027] 本发明提供的用于铣削淬硬钢的硬质合金刀片由基体和涂层组成,基体的高硬度、高强度和良好的高温性能提供了良好的抗塑性变形能力,涂层的高硬度提供了良好的耐磨性,基体与涂层之间结合力良好,使刀片具备了硬钢铣削强调的良好耐磨性和抗崩刃性。
[0028] 本发明提供的制备硬质合金刀片的方法,所需原料和设备均为工业生产常见,成本较低;所述工艺简单可控,适用于大规模工业生产。

附图说明

[0029] 图1为本发明实施例1制备的硬质合金刀片涂层的SEM图谱(a、TiSiN层;b、AlyCr(0.9~1)-yWSiN层;c、TixAl1-xN层);
[0030] 图2为本发明实施例1制备的硬质合金刀片基体的SEM图谱(d、粘结相Co;e、硬质相WC;f、晶粒抑制剂Ta的固溶体)。

具体实施方式

[0031] 为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
[0032] 实施例1
[0033] 一种本发明的硬质合金刀片(材质A、B),刀片型号为APMT1135PDER,包括硬质合金基体和覆盖于基体上的涂层。选用目前市面上用于铣削淬硬钢的牌号(材质C、D)对比,基体和对比例的原料规格、成分和物理性能如下表1所示:
[0034] 表1本发明(材质A、B)和对比例(材质C、D)的原料规格、成分和物理性能[0035]
[0036] 其中材质A、B的基体通过传统粉末冶金方法制备,以5:1的球料比球磨48h;液相烧结温度为1410℃,保温时间1h,液相烧结过程中充入Ar气600KPa,冷却时以80℃/min冷至800℃,随后冷至室温。涂层方面,材质A、B涂覆有Ti0.4Al0.6N+Al0.7Cr0.2WSi+TiSiN,厚度分别为0.6、1.7和0.4μm,通过电弧离子镀方法制备;材质C、D涂覆有Ti0.6Al0.4N+Al0.55Cr0.4WSiN,厚度分别为1.0和2.5μm。
[0037] 使用4种材质一起进行切削实验,比较相同切削时间的磨损量大小,结果如表2所示。相同铣削时间下,现有技术的材质D磨损量大于本发明的材质A、B,且材质C、D存在崩刃现象。
[0038] 表2实施例1的切削参数及结果
[0039]
[0040]
[0041] 实施例2
[0042] 一种本发明的硬质合金刀片(材质E、F),刀片型号为APMT1135PDER,包括硬质合金基体和覆盖于基体上的涂层。选用现有技术的材质G、H进行对比,基体和对比例的原料规格、成分和物理性能如下表3所示:
[0043] 表3本发明(材质E、F)和对比例(材质G、H)的原料规格、成分和物理性能[0044]
[0045] 各材质的基体通过传统粉末冶金方法制备,以5:1的球料比球磨46h;液相烧结温度为1430℃,保温时间1h,液相烧结过程中充入Ar气900KPa,冷却时以100℃/min冷至800℃,随后冷至室温。涂层方面,材质E、F涂覆Ti0.5Al0.5N+Al0.5Cr0.45WSi+TiSiN,厚度分别为0.8、2.0和0.3μm,通过电弧离子镀方法制备;材质G、H涂覆有Ti0.6Al0.4N+Al0.7Cr0.25WSiN,厚度为1.0和2.5μm。
[0046] 使用材质E、F与材质G、H一起进行切削实验,比较相同切削时间的磨损量大小,结果如表4所示。相同铣削时间下,现有技术的材质G、H磨损量大于本发明的材质E、F,且材质H在切削时发生崩刃。
[0047] 表4实施例2的切削参数及结果
[0048]
[0049]
[0050] 实施例3
[0051] 一种本发明的硬质合金刀片(材质I、J),刀片型号为APMT1135PDER,包括硬质合金基体和覆盖于基体上的涂层。选择现有技术的材质K、L进行对比,基体和对比例的原料规格、成分和物理性能如下表5所示:
[0052] 表5本发明(材质I、J)和对比例(材质K、L)的原料规格、成分和物理性能[0053]
[0054] 其中各材质基体均通过传统粉末冶金方法制备,以10:1的球料比球磨48h;液相烧结温度为1440℃,保温时间1h,液相烧结过程中充入Ar气890KPa,冷却时以90℃/min冷至800℃,随后冷至室温。涂层方面,材质I、J涂覆Ti0.5Al0.5N+Al0.6Cr0.3WSi+TiSiN,厚度分别为
0.9、1.9和0.5μm,通过电弧离子镀方法制备;材质K涂覆有Ti0.4Al0.6N,厚度为4.0μm;材质L涂覆Ti0.5Al0.5N+Al0.7Cr0.3N,厚度分别为1.0和3.0μm。
[0055] 使用4种材质一起进行切削实验,比较相同切削时间的磨损量大小,结果如表6所示。相同铣削时间下,现有技术的材质K、L磨损量大于本发明的材质I、J。
[0056] 表6实施例3的切削参数及结果
[0057]
[0058]
[0059] 实施例4
[0060] 一种本发明的硬质合金刀片(材质M),刀片型号为RPMW1003MO,包括硬质合金基体和覆盖于基体上的涂层。选择现有技术的材质N进行对比,基体和对比例的原料规格、成分和物理性能如下表7所示:
[0061] 表7本发明(材质M)和对比例(材质N)的原料规格、成分和物理性能
[0062]
[0063] 两种材质的基体通过传统粉末冶金方法制备,以5:1的球料比球磨48h;液相烧结温度为1410℃,保温时间1h,液相烧结过程中充入Ar气900KPa。冷却时材质I以100℃/min冷至800℃,随后冷至室温;材质J以40℃/min冷至800℃,随后冷至室温。涂层方面,材质I、J均涂覆Ti0.4Al0.6N+Al0.6Cr0.3WSi+TiSiN,厚度分别为1.0、2.5和0.7μm,通过电弧离子镀方法制备。
[0064] 使用两种材质一起进行切削实验,比较相同切削时间的磨损量大小,结果如表8所示。相同铣削时间下,现有技术的材质N磨损量大于本发明的材质M。
[0065] 表8实施例4的切削参数及结果
[0066]
[0067] 以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。