一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在光催化中的应用转让专利

申请号 : CN201810092155.0

文献号 : CN110093624B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 巩金龙陈梦馨王拓李澄澄李盎

申请人 : 天津大学

摘要 :

本发明公开了一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在光催化中的应用,用化学浴沉积的方法在CIGS基底上生长出CdS薄膜,在此基础上,通过原子层沉积的方法在CdS薄膜上依次沉积Al2O3和TiO2薄膜,之后通过直流溅射的方法在TiO2上溅射少量Pt颗粒,然后将这个电极作为光阴极,在光照的条件下施加一定偏压,原位生长光电沉积的Pt颗粒,完成整个电极的制备,且方法简便易行,可控性强,产氢效率高。

权利要求 :

1.一种可控助剂和界面修复的铜铟镓硒电极,其特征在于:在CIGS基底上化学浴沉积生长出的CdS薄膜,在CdS薄膜上原子层依次沉积Al2O3薄膜和TiO2薄膜,在TiO2薄膜上直流溅射Pt颗粒,再以其为基础原位生长光电沉积Pt助催化剂;

所述的CIGS基底厚度为1-1.5μm,晶粒尺寸为0.8-1.2μm,Ga与(Ga+In)的摩尔比为0.3;

所述的CdS薄膜厚度为45-55nm,所述的Al2O3薄膜厚度为9-10nm,所述的TiO2薄膜厚度为9-

10nm,所述的Pt助催化剂层的Pt颗粒粒径为2.5nm。

2.根据权利要求1所述的一种可控助剂和界面修复的铜铟镓硒电极,其特征在于:所述的CIGS基底厚度为1.0-1.2μm,晶粒尺寸为0.8-1μm;所述的CdS薄膜厚度为48-50nm,所述的Al2O3薄膜厚度为9nm,所述的TiO2薄膜厚度为9nm,所述的Pt助催化剂层的Pt颗粒粒径为

2.5nm。

3.一种如权利要求1-2任一项所述可控助剂和界面修复的铜铟镓硒电极的制备方法,其特征在于:包括以下步骤:步骤(1)将CIGS基底放入前驱体溶液中,在50-60℃下反应5-15min,淋洗、干燥后得到在CIGS基底上生长的均匀的CdS薄膜;

所述的前驱体溶液为醋酸镉、硫脲和氨水的混合溶液,所述的醋酸镉、硫脲和氨(NH3)的摩尔浓度比为(0.006—0.075):(0.375—0.5):(1.5—2);

步骤(2)将步骤(1)得到的样品置于原子层沉积系统的腔体内进行沉积,所用的前驱体为三甲基铝(Ⅲ)和水,沉积的周期数为2-15周期,实现在CdS薄膜上均匀包覆一层Al2O3薄膜;接着进行再次沉积,所用的前驱体为四异丙醇钛(IV)和水,沉积的周期数为700周期,实现在Al2O3薄膜上均匀包覆一层TiO2薄膜;

步骤(3)将步骤(2)获得的CIGS/CdS/Al2O3/TiO2薄膜叠层结构放入磁控溅射系统,以金属铂作为靶材,采用磁控溅射法在其表面沉积在少量的Pt颗粒;所述的靶材金属铂的质量纯度为99.99%,工作气体为纯度为99.99%的氩气,工作压强为1-3Pa,溅射电流为8-20mA,溅射时间为15-25s;

步骤(4)配置氯铂酸溶液,调节pH至7;

步骤(5)将步骤(3)中获得的样品作为光阴极,置于步骤(4)所得的溶液中,在-0.5V偏压下,原位生长光电沉积的Pt颗粒,沉积时间为1-10min,淋洗、干燥后得到可控助剂和界面修复的铜铟镓硒电极。

4.根据权利要求3所述的制备方法,其特征在于:所述的步骤(1)中CIGS基底的制备方法为:先利用磁控溅射的方法在钠钙玻璃上溅射得到厚度为800nm的Mo金属层,溅射压力为

1Pa,溅射功率为120W,溅射时间为10min,该Mo金属层的电阻率为8×10-5Ω · cm ;之后利用三步共蒸发的方法在Mo金属层上沉积CIGS薄膜,三步共蒸发方法的温度与时间控制为:第一步温度为350℃,沉积时间为5min,第二步温度为500℃,沉积时间为10min,第三步温度为500℃,沉积时间为15min。

5.根据权利要求3所述的制备方法,其特征在于:所述的CIGS基底厚度为1-1.5μm,晶粒尺寸为0.8-1.2μm,Ga与(Ga+In)的摩尔比为0.3;所述的CdS薄膜厚度为45-55nm,所述的Al2O3薄膜厚度为9-10nm,所述的TiO2薄膜厚度为9-10nm,所述的Pt助催化剂层的Pt颗粒粒径为2.5nm。

6.根据权利要求5所述的制备方法,其特征在于:所述的CIGS基底厚度为1.2μm,晶粒尺寸为1μm;所述的CdS薄膜厚度为50nm,所述的Al2O3薄膜厚度为9nm,所述的TiO2薄膜厚度为

9nm。

7.根据权利要求3所述的制备方法,其特征在于:所述的步骤(4)中氯铂酸溶液的浓度为1-2mmol/L。

8.一种如权利要求1所述的可控助剂和界面修复的铜铟镓硒电极在光电化学池光解水制氢中的应用,其特征在于:该电极作为工作电极,铂片电极作为对电极,银/氯化银电极为参比电极组装成光电化学池,进行光电性质及光解水制氢性能测试,电解液为1mol/L的磷2

酸缓冲溶液,工作电极光照面积为0.5cm ,在0V偏压下,电极的光生电压为0.59-0.63V,光电转换效率为5.5-5.8%,光电流密度为21-26mA/cm2。

9.根据权利要求8所述的可控助剂和界面修复的铜铟镓硒电极在光电化学池光解水制氢中的应用,其特征在于:所述的电极的光生电压为0.63V,光电转换效率为5.8%,光电流2

密度为26mA/cm。

说明书 :

一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在

光催化中的应用

技术领域

[0001] 本发明属于半导体电极技术领域,具体涉及一种可控助剂和界面修复的铜铟镓硒电极及其制备方法和在光催化中的应用。

背景技术

[0002] 由于黄铜矿材料较大的光吸收系数和带隙可调的特性而得到广泛研究1。其中,铜铟镓硒(CIGS)作为吸收层材料,在能源和环境领域得到了广泛应用2。而CIGS/CdS异质结在薄膜太阳能电池3和光解水制氢电极4上备受人们关注。
[0003] 研究表明电极表面产氢助剂的负载形式以及CdS材料与电极保护层材料的界面电子传输对电极性能有至关重要的作用。在光解水电极领域,电极表面Pt助剂的负载可以加快表面产氢动力学5,减少复合,增加固液界面的电子传输;引入稳定保护层材料TiO2可以隔绝溶液与CdS接触发生腐蚀失活,同时合适的能带位置可以一定程度上提高电子的传输6。然而,传统的光电沉积负载Pt助剂的方式,无法可控调节助剂在电极表面的负载形式,造成界面复合增加和影响透光率7;同时,CdS与TiO2材料界面存在缺陷能级,缺陷能级的存在会捕获光生电子,造成电极性能的下降,尤其是光生电压和电极的填充因子8。
[0004] 因此,制备助催化剂可控负载和界面缺陷修复的铜铟镓硒电极是亟待解决的科学技术难题。目前,还没有先例成功制备出助催化剂可控负载和界面缺陷修复的铜铟镓硒电极。
[0005] 1 a)H.Kumagai,T.Minegishi,N.Sato,T.Yamada,J.Kubota and K.Domen,J.Mater.Chem.A,2015,3,8300-8307;b)A.Azarpira,M.Lublow,A.Steigert,P.Bogdanoff,D.Greiner,C.A.Kaufmann,M.Krüger,U.Gernert,R.van de Krol,A.Fischer and T.Schedel-Niedrig,Adv.Energy Mater.,2015,5,1402148.
[0006] 2 J.Luo,Z.Li,S.Nishiwaki,M.Schreier,M.T.Mayer,P.Cendula,Y.H.Lee,K.Fu,A.Cao,M.K.Nazeeruddin,Y.E.Romanyuk,S.Buecheler,S.D.Tilley,L.H.Wong,A.N.Tiwari and M. Adv.Energy Mater.,2015,5,1501520.
[0007] 3 A. P.Reinhard,F.Pianezzi,P.Bloesch,A.R.Uhl,C.Fella,L.Kranz,D.Keller,C.Gretener,H.Hagendorfer,D.Jaeger,R.Erni,S.Nishiwaki,S.Buecheler and A.N.Tiwari,Nat.Mater.,2013,12,1107-1111.
[0008] 4 T.J.Jacobsson,V. M.Edoff and T.Edvinsson,Sol.Energy Mater.Sol.Cells,2015,134,185-193.
[0009] 5 a)S.W.Boettcher,E.L.Warren,M.C.Putnam,E.A.Santori,D.Turner-Evans,M.D.Kelzenberg,M.G.Walter,J.R.McKone,B.S.Brunschwig,H.A.Atwater and N.S.Lewis,J.Am.Chem.Soc.,2011,133,1216-1219;b)J.R.McKone,A.P.Pieterick,H.B.Gray and N.S.Lewis,J.Am.Chem.Soc.,2013,135,223-231.
[0010] 6 a).W.-T.Sun,Y.Yu,H.-Y.Pan,X.-F.Gao,Q.Chen  and  L.-M.Peng,J.Am.Chem.Soc.,2008,130,1124-1125;b)A.Paracchino,V.Laporte,K.Sivula,M.and E.Thimsen,Nat.Mater.,2011,10,456-461.
[0011] 7 Y.Chen,K.Sun,H.Audesirk,C.Xiang and N.S.Lewis,Energy Environ.Sci.,2015,8,1736-1747.
[0012] 8 M.G.Walter,E.L.Warren,J.R.McKone,S.W.Boettcher,Q.Mi,E.A.Santori and N.S.Lewis,Chem.Rev.,2010,110,6446-6473.

发明内容

[0013] 本发明的目的在于克服现有技术的不足,提供一种可控助剂和界面修复的铜铟镓硒电极,能够实现Pt助催化剂的可控负载和电极结构内部界面缺陷修复。
[0014] 本发明的另一个目的是,提供一种可控助剂和界面修复的铜铟镓硒电极的制备方法,首先用化学浴沉积的方法在CIGS基底上生长出CdS薄膜,在此基础上,通过原子层沉积的方法在CdS薄膜上依次沉积Al2O3和TiO2薄膜,之后通过直流溅射的方法在TiO2上溅射少量Pt颗粒,然后将这个电极作为光阴极,在光照的条件下施加一定偏压,原位生长光电沉积的Pt颗粒,完成整个电极的制备,且方法简便易行,可控性强,产氢效率高。
[0015] 本发明的另一个目的是,提供一种可控助剂和界面修复的铜铟镓硒电极在光催化剂中的应用,该铜铟镓硒电极用于光阴极,可以稳定地进行光解水反应,应用前景广阔。
[0016] 本发明是通过以下技术方案实现的:
[0017] 一种可控助剂和界面修复的铜铟镓硒电极,在铜铟镓硒(CIGS)基底上化学浴沉积生长出的硫化镉(CdS)薄膜,在CdS薄膜上原子层依次沉积Al2O3薄膜和TiO2薄膜,在TiO2薄膜上直流溅射Pt颗粒,再以其为基础原位生长光电沉积Pt助催化剂;
[0018] 所述的CIGS基底厚度为1-1.5μm,晶粒尺寸为0.8-1.2μm,Ga与(Ga+In)的摩尔比为0.3;所述的CdS薄膜厚度为45-55nm,所述的Al2O3薄膜厚度为9-10nm,所述的TiO2薄膜厚度为9-10nm,所述的Pt助催化剂层的Pt颗粒粒径为2.5nm。
[0019] 在上述技术方案中,所述的CIGS基底厚度优选为1.0-1.2μm,晶粒尺寸优选为0.8-1μm;所述的CdS薄膜厚度优选为48-50nm,所述的Al2O3薄膜厚度优选为8-9nm,所述的TiO2薄膜厚度优选为8-9nm,所述的Pt助催化剂层的Pt颗粒粒径为2.5nm。
[0020] 一种可控助剂和界面修复的铜铟镓硒电极的制备方法,包括以下步骤:
[0021] (1)将CIGS基底放入前驱体溶液中,在50-60℃下反应5-15min,淋洗、干燥后得到在CIGS基底上生长的均匀的CdS薄膜;
[0022] 所述的前驱体溶液为醋酸镉、硫脲和氨水的混合溶液,所述的醋酸镉、硫脲和氨(NH3)的浓度比为(0.006-0.075):(0.375-0.5):(1.5-2)(即摩尔浓度比);
[0023] (2)将步骤(1)得到的样品置于原子层沉积系统的腔体内进行沉积,所用的前驱体为三甲基铝(Ⅲ)和水,沉积的周期数为2-15周期,实现在CdS薄膜上均匀包覆一层Al2O3薄膜;接着进行再次沉积,所用的前驱体为四异丙醇钛(IV)和水,沉积的周期数为700周期,实现在Al2O3薄膜上均匀包覆一层TiO2薄膜;
[0024] (3)将步骤(2)获得的CIGS/CdS/Al2O3/TiO2薄膜叠层结构放入磁控溅射系统,以金属铂作为靶材,采用磁控溅射法在其表面沉积在少量的Pt颗粒;所述的靶材金属铂的质量纯度为99.99%,工作气体为纯度为99.99%的氩气,工作压强为1-3Pa,溅射电流为8-20mA,溅射时间为15-25s;
[0025] (4)配置氯铂酸溶液,用盐酸将pH调节至7;
[0026] (5)将步骤(3)中获得的样品作为光阴极,置于步骤(4)所得的溶液中,在-0.5V(与银-氯化银电极对比)偏压下,原位生长光电沉积的Pt颗粒,沉积时间为1-10min,淋洗、干燥后得到可控助剂和界面修复的铜铟镓硒电极(CIGS/CdS/Al2O3/TiO2/Pt叠层电极)。
[0027] 在上述技术方案中,步骤(1)中所述的CIGS基底的制备方法为:先利用磁控溅射的方法在钠钙玻璃上溅射得到厚度为800nm的Mo金属层,溅射压力为1Pa,溅射功率为120W,溅-5射时间为10min,该Mo金属层的电阻率约为8×10 Ω.cm;之后利用三步共蒸发的方法在Mo金属层上沉积CIGS薄膜,三步共蒸发方法的温度与时间控制为:第一步温度为350℃,沉积时间为5min,第二步温度为500℃,沉积时间为10min,第三步温度为500℃,沉积时间为
15min。
[0028] 在上述技术方案中,所述的CIGS基底厚度为1-1.5μm,晶粒尺寸为0.8-1.2μm,Ga与(Ga+In)的摩尔比为0.3;所述的CdS薄膜厚度为45-55nm,所述的Al2O3薄膜厚度为9-10nm,所述的TiO2薄膜厚度为9-10nm,所述的Pt助催化剂层的Pt颗粒粒径为2.5nm。
[0029] 在上述技术方案中,所述的CIGS基底厚度优选为1.2μm,晶粒尺寸优选为1μm;所述的CdS薄膜厚度优选为50nm,所述的Al2O3薄膜厚度优选为9nm,所述的TiO2薄膜厚度优选为9nm。
[0030] 在上述技术方案中,步骤(4)中所述的氯铂酸溶液的浓度为1-2mmol/L。
[0031] 在上述技术方案中,所述的步骤(4)中的沉积温度为150-300℃,前驱体三甲基铝的通入时间为0.05-0.1s,对应载气清洗时间为5-20s,前驱体水的通入时间为0.01-1s,对应载气清洗时间为10-30s;前驱体四异丙醇钛的通入时间为0.1-1s,对应载气清洗时间为5-20s,前驱体水的通入时间为0.01-1s,对应载气清洗时间为10-30s。
[0032] 一种可控助剂和界面修复的铜铟镓硒电极在光电化学池光解水制氢中的应用,该电极作为工作电极,铂片电极作为对电极,银/氯化银电极为参比电极组装成光电化学池,进行光电性质及光解水制氢性能测试,电解液为1mol/L的磷酸缓冲溶液,工作电极光照面积为0.5cm2,在0V(与可逆氢电极对比)偏压下,电极的光生电压为0.59-0.63V,光电转换效率为5.5-5.8%,光电流密度为21-26mA/cm2。
[0033] 在上述技术方案中,所述的电极的光生电压优选为0.63V,光电转换效率优选为5.8%,光电流密度优选为26mA/cm2。
[0034] 本发明的优点和有益效果为:
[0035] (1)本发明的铜铟镓硒电极首次通过两步法对Pt助催化剂进行形貌性能可控的负载,以及光阴极的内部界面缺陷修复,且方法简便易行,可控性强,产氢效率高。
[0036] (2)本发明铜铟镓硒电极的制备方法通过调节化学浴的温度和时间,可以控制合成出的具有一定厚度并且致密无孔的CdS薄膜。
[0037] (3)本发明铜铟镓硒电极的制备方法通过设置原子层沉积的温度、时间和周期数,可以调节Al2O3和TiO2的厚度。
[0038] (4)本发明铜铟镓硒电极的制备方法通过两步法沉积Pt助催化剂,得到高效产氢的CIGS光阴极。
[0039] (5)本发明铜铟镓硒电极用于光阴极,可以稳定地进行光解水反应,应用前景广阔。

附图说明

[0040] 图1是本发明铜铟镓硒电极截面的扫描电子显微镜照片。
[0041] 图2是本发明铜铟镓硒电极表面的扫描电子显微镜照片。
[0042] 图3是CIGS/CdS/Al2O3/TiO2/Pt叠层电极和CIGS/CdS/TiO2/Pt叠层电极的光电流-电位曲线图。
[0043] 图4是模拟太阳光照射下,制备的一步法溅射负载Pt助催化剂的电极和两步法负载Pt助催化剂的电极的电位-电流图。
[0044] 图5是制备的一步法溅射负载Pt助催化剂的电极和两步法负载Pt助催化剂的电极的透射电镜图以及粒径统计数据图,其中:(a)为一步法溅射负载Pt助催化剂的电极的透射电镜图、(b)为两步法负载Pt助催化剂的电极的透射电镜图、(c)为从一步法溅射负载Pt助催化剂的电极的透射电镜图得到的粒径统计数据图、(d)为从两步法负载Pt助催化剂的电极的透射电镜图得到的粒径统计数据图。
[0045] 图6是制备的有Al2O3界面修复的CIGS电极和无Al2O3界面修复的CIGS电极的荧光光谱,其中(a)为制备的有Al2O3界面修复的CIGS电极和无Al2O3界面修复的CIGS电极的瞬态荧光光谱图、(b)为制备的有Al2O3界面修复的CIGS电极和无Al2O3界面修复的CIGS电极的稳态荧光光谱图。

具体实施方式

[0046] 为了使本技术领域的人员更好地理解本发明方案,下面结合附图与具体实施例进一步说明本发明的技术方案。需要说明的是:下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。以下实施例中所需要的原料均为市售化学纯试剂。CIGS基底所用的衬底钠钙玻璃(SLG),购于武汉晶格有限公司。扫描电镜为日本日立公司的S-4800型场发射扫描电镜;超高真空对靶磁控溅射仪为沈阳科学仪器研制中心有限公司制造的DPS-III型超高真空对靶磁控溅射镀膜机。所用的原子层沉积系统为申请人于2014年12月9日提交的申请号为201410749459.1的发明专利中所述的设备。
[0047] 首先利用磁控溅射的方法(参考文献为P.Jackson,R.Würz,U.Rau,J.Mattheis,M.Kurth,T. G.Bilger,J.H.Werner,Prog.Photovolt.Res.Appl.2007,15,507-519.)在钠钙玻璃上溅射得到厚度为800nm的Mo金属层,溅射压力为1Pa,溅射功率为120W,溅射时间为10min,该Mo金属层的电阻率约为8×10-5Ω.cm;之后利用三步共蒸发(参考文献为:D.Abou-Ras,G.Kostorz,D.Bremaud,M.Kaelin,F.V.Kurdesau,A.N.Tiwari,M.Doebeli,Thin Solid Films,2005,433,480–481.)的方法在Mo金属层上沉积CIGS薄膜,得到CIGS基底。三步法的温度与时间控制如下:第一步沉积温度为350℃,沉积时间为5min,第二步沉积温度为500℃,沉积时间为10min,第三步沉积温度为500℃,沉积时间为15min。
[0048] 实施例一
[0049] 1.一种界面修复的铜铟镓硒(CIGS)电极,按照下述步骤制备:
[0050] (1)配制化学浴沉积的前驱体溶液:称量0.3g醋酸镉和3.9g硫脲,溶于80mL水,再加入20mL氨水,得到0.006mol/L醋酸镉,0.5mol/L硫脲和2mol/L氨水的混合溶液;
[0051] (2)将CIGS基底放入上述中的前驱体溶液中,在60℃条件下反应15min,淋洗、干燥后,在CIGS基底上生长均匀的CdS薄膜,得到CIGS/CdS样品;
[0052] (3)将上述步骤(2)得到的CIGS/CdS样品置于原子层沉积系统的腔体内,所用的前驱体为三甲基铝(Ⅲ)和水,开启程序进行沉积,沉积的周期数为5周期,实现在CdS表面均匀包覆一层Al2O3薄膜,得到CIGS/CdS/Al2O3样品;
[0053] (4)将上述步骤(3)得到的CIGS/CdS/Al2O3样品置于原子层沉积系统的腔体内,前驱体四异丙醇钛(IV)和水,开启程序进行沉积,沉积的周期数为700周期,实现在Al2O3表面均匀包覆一层TiO2薄膜,得到CIGS/CdS/Al2O3/TiO2样品;
[0054] (5)将上述步骤(4)得到的CIGS/CdS/Al2O3/TiO2样品放入磁控溅射系统,调节溅射电流为8mA,沉积压力为1Pa,在TiO2薄膜上沉积少量的Pt颗粒;
[0055] (6)配置浓度为1mmol/L的氯铂酸溶液,用盐酸将pH调节至7;
[0056] (7)将步骤(5)中获得的样品作为光阴极,在-0.5V(与银-氯化银电极对比)偏压下,沉积5min,淋洗、干燥,得到完整的CIGS/CdS/Al2O3/TiO2/Pt叠层电极。
[0057] 2.一种无界面修复的铜铟镓硒电极,按照下述步骤制备:
[0058] (1)先合成出CIGS/CdS样品(方法同1的1-2步);
[0059] (2)将上述CIGS/CdS样品置于原子层沉积系统的腔体内,前驱体四异丙醇钛(IV)和水,开启程序进行沉积,沉积的周期数为700周期,实现在CdS表面均匀包覆一层TiO2薄膜,得到CIGS/CdS/TiO2样品。
[0060] (3)两步法沉积Pt助催化剂的方法同1中5-7步,得到电极CIGS/CdS/TiO2/Pt叠层电极。
[0061] 3.铜铟镓硒电极用于光电化学池光解水制氢
[0062] (1)将1、2制备的电极分别作为工作电极,铂片电极作为对电极,银/氯化银电极为参比电极组装成光电化学池,进行光电性质及光解水制氢性能测试。电解液为1mol/L的磷酸缓冲溶液,工作电极光照面积为0.5cm2;
[0063] (2)采用300W的氙灯搭配AM1.5G滤光片获得模拟太阳光,光电化学池工作电极处光强度经辐照计测试后为100mW/cm2。
[0064] 实验结果表明,合成出的CdS薄膜厚度约为50nm,Al2O3/TiO2层厚度为18nm,两步法(指发明内容中CIGS电极的制备方法的步骤5-7)获得的Pt颗粒大小约为2.5nm。图3为CIGS/CdS/Al2O3/TiO2/Pt电极和CIGS/CdS/TiO2/Pt电极作为光电阳极在可见光下的光电流-电压曲线。实验结果表明,在0V(与可逆氢电极对比)偏压下:CIGS/CdS/Al2O3/TiO2/Pt电极的光生电压为0.63V(与可逆氢电极对比);而CIGS/CdS/TiO2/Pt电极的光生电压为0.6V(与可逆氢电极对比)。由此证明,界面修复的CIGS电极相比于无界面修复的CIGS电极有明显的优势。图6是制备的有Al2O3界面修复的CIGS电极和无Al2O3界面修复的CIGS电极的瞬态荧光光谱和稳态荧光光谱,从图中可以看到,有Al2O3界面修复的CIGS电极表现出更高的电子寿命和更弱的荧光复合强度,说明界面修复的CIGS光阴极相比于无界面修复的CIGS光阴极有明显的优势。
[0065] 实施例二
[0066] 1.一种界面修复的铜铟镓硒(CIGS)电极,按照下述步骤制备:
[0067] 方法同实施例一中的1,不同的是步骤(3)中Al2O3沉积周期为2;
[0068] 2.无界面修复铜铟镓硒(CIGS)电极,按照下述步骤制备:
[0069] 方法同实施例一中2;
[0070] 3.铜铟镓硒电极用于光电化学池光解水制氢
[0071] 方法同实施例一中3。
[0072] 实验结果表明,在0V(与可逆氢电极对比)偏压下:CIGS/CdS/Al2O3/TiO2/Pt叠层电极的光电转换效率为5.8%;而CIGS/CdS/TiO2/Pt叠层电极的光电转换效率为5.1%。由此证明,界面修复的CIGS电极相比于无界面修复的CIGS电极有明显的优势。
[0073] 实施例三
[0074] 1.一种界面修复的铜铟镓硒(CIGS)电极,按照下述步骤制备:
[0075] 方法同实施例一中的1,不同的是步骤(3)中Al2O3沉积周期为10;
[0076] 2.无界面修复铜铟镓硒(CIGS)电极,按照下述步骤制备:
[0077] 方法同实施例一中2;
[0078] 3.铜铟镓硒电极用于光电化学池光解水制氢
[0079] 方法同实施例一中3。
[0080] 实验结果表明,在0V(与可逆氢电极对比)偏压下:CIGS/CdS/Al2O3/TiO2/Pt叠层电极的光生电压为0.59V(与可逆氢电极对比);而CIGS/CdS/TiO2/Pt叠层电极的光生电压为0.6V(与可逆氢电极对比)。由此证明,当Al2O3沉积周期为10时,活性发生了明显的下降。
[0081] 实施例四
[0082] 1.溅射负载Pt助催化剂的CIGS电极的制备
[0083] (1)先合成出CIGS/CdS/TiO2样品(方法同实施例一中2“无界面修复的CIGS电极”部分的1-2步);
[0084] (2)将CIGS/CdS/TiO2样品放入磁控溅射系统,调节溅射电流为8mA,沉积压力为1Pa,在TiO2薄膜上获得少量的Pt颗粒,得到CIGS电极。
[0085] 2.两步法负载Pt助催化剂的CIGS电极的制备
[0086] 方法同实施例一中2“无界面修复的CIGS电极”。
[0087] 3.CIGS电极用于光电化学池光解水制氢
[0088] 方法同实施例一中3。
[0089] 由图4的实验结果表明,在0V(与可逆氢电极对比)偏压下:溅射负载Pt助催化剂的CIGS电极的光电流密度为15mA/cm2;而两步法负载Pt助催化剂的CIGS电极的光电流密度为26mA/cm2。由此证明,两步法负载Pt助催化剂的方法比仅用溅射负载Pt助催化剂的方法有明显的优势。图5是制备的一步法溅射负载Pt助催化剂的电极和两步法负载Pt助催化剂的电极的透射电镜图以及粒径统计数据图,由图中可以看出两步法负载Pt助催化剂的电极的粒径大小更加均匀,集中在1.5-3.5nm。
[0090] 实施例五
[0091] 1.光电沉积负载Pt助催化剂的CIGS电极的制备
[0092] (1)先合成出CIGS/CdS/TiO2样品(方法同实施例一中2“无界面修复的CIGS电极”部分的1-2步);
[0093] (2)配置浓度为0.001mol/L的氯铂酸溶液,用盐酸将pH调节至7;
[0094] (3)将步骤(1)中获得的样品作为光阴极,在-0.5V(与银-氯化银电极对比)偏压下,沉积1min,淋洗、干燥,得到完整的CIGS/CdS/TiO2/Pt叠层电极。
[0095] 2.两步法负载Pt助催化剂的CIGS电极的制备
[0096] 方法同实施例一中2“无界面修复的CIGS电极”。
[0097] 3.CIGS电极用于光电化学池光解水制氢
[0098] 方法同实施例一中3。
[0099] 实验结果表明,在0V(与可逆氢电极对比)偏压下:光电沉积负载Pt助催化剂的CIGS电极的光电流密度为4mA/cm2;而两步法负载Pt助催化剂的CIGS电极的光电流密度为2
26mA/cm 。由此证明,两步法负载Pt主催化剂的方法比仅用光电沉积负载Pt助催化剂的方法有明显的优势。
[0100] 实施例六
[0101] 1.两步法负载Pt助催化剂的CIGS电极的制备
[0102] 方法同实施例一中2“无界面修复的CIGS电极”,不同的是在-0.5V(与银-氯化银电极对比)偏压下,沉积时间为2min。
[0103] 2.溅射负载Pt助催化剂的CIGS电极的制备
[0104] 方法同实施例四中1“溅射负载Pt助催化剂的CIGS电极的制备”。
[0105] 3.CIGS电极用于光电化学池光解水制氢
[0106] 方法同实施例一中3。
[0107] 实验结果表明,在0V(与可逆氢电极对比)偏压下:溅射负载Pt助催化剂的CIGS电极的光电流密度为15mA/cm2;而两步法负载Pt助催化剂的CIGS电极的光电流密度为21mA/cm2。由此证明,两步法负载Pt主催化剂的方法比仅用光电沉积负载Pt助催化剂的方法有明显的优势。
[0108] 实施例七
[0109] 1.两步法负载Pt助催化剂的CIGS电极的制备
[0110] 方法同实施例一中2“无界面修复的CIGS电极”,不同的是在-0.5V(与银-氯化银电极对比)偏压下,沉积时间为10min。
[0111] 2.溅射负载Pt助催化剂的CIGS电极的制备
[0112] 方法同实施例四中1中“溅射负载Pt助催化剂的CIGS电极的制备”。
[0113] 3.CIGS电极用于光电化学池光解水制氢
[0114] 方法同实施例一中3。
[0115] 实验结果表明,在0V(与可逆氢电极对比)偏压下:溅射负载Pt助催化剂的CIGS电极的光电流密度为15mA/cm2;而两步法负载Pt助催化剂的CIGS电极的光电流密度为22.5mA/cm2。由此证明,两步法负载Pt主催化剂的方法比仅用光电沉积负载Pt助催化剂的方法有明显的优势。
[0116] 尽管上面实施例结合附图对此发明进行了比较详细的描述,但此发明不局限于上述的具体实施方式,根据发明内容进行工艺参数的调整均可实现铜铟镓硒电极的制备,且表现出与上述实施例基本一致的性能。应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者在本发明启示下能够不花费创造性劳动作出的各种形式的变换均落入本发明的保护范围。