开关电容型三相交错并联双向宽增益直流变换器转让专利

申请号 : CN201910514781.9

文献号 : CN110198124B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王志本张云张伟

申请人 : 河北汇能欣源电子技术有限公司

摘要 :

本发明公开了一种开关电容型三相交错并联双向宽增益直流变换器,所述直流变换器包括:电感L1、功率开关Q1、功率开关Q4和电容Ch1组成了基本Buck/Boost网络,电感L2、功率开关Q2、电容C1、功率开关Q6、电容Ch2和电感L3、功率开关Q3、电容C2、功率开关Q8、电容Ch3构成了拓展Buck/Boost网络。本发明利用开关电容技术进行升降压,实现了宽范围升降压的同时避免了因增大增益而造成功率开关极端占空比运行的问题,且所有功率开关的电压应力均为高压侧电压的1/3,低电压应力的功率管具有较低的通态电阻。

权利要求 :

1.一种开关电容型三相交错并联双向宽增益直流变换器,其特征在于,所述直流变换器包括:

低压侧电压源Ulow的正极性端连接电感L1的一端、电感L2的一端、电感L3的一端,储能/滤波电容Clow的正极性端;电感L1的另一端连接功率开关Q1的漏极,功率开关Q4的源极,功率开关Q4的漏极接电容Ch1的正极性端、功率开关Q5的源极;

电感L2的另一端连接功率开关Q2的漏极、电容C1的负极性端,电容C1的正极性端接功率开关Q5的漏极、功率开关Q6的源极,功率开关Q6的漏极接功率开关Q7的源极、电容Ch2的正极性端;

电感L3的另一端连接功率开关Q3的漏极、电容C2的负极性端,电容C2的正极性端连接功率开关Q7的漏极、功率开关Q8的源极,功率开关Q8的漏极接电容Ch3的正极性端;电容Ch1、电容Ch2、电容Ch3、电容Clow的负极性端、功率开关Q1、功率开关Q2、功率开关Q3的源极均接地;电容Ch3的输出电压为高压侧电压源Uhigh;

电感L1、功率开关Q1、功率开关Q4和电容Ch1组成了基本Buck/Boost网络,电感L2、功率开关Q2、电容C1、功率开关Q6、电容Ch2和电感L3、功率开关Q3、电容C2、功率开关Q8、电容Ch3构成了拓展Buck/Boost网络;

其中,功率开关Q1、Q2和Q3的驱动信号S1、S2和S3相互移相120°;功率开关Q4、Q6和Q8的驱动信号S4、S6和S8相互移相120°,并且分别与S1、S2和S3互补,功率开关Q5和Q7的驱动信号S5、S7分别与S2和S3相同。

2.根据权利要求1所述的一种开关电容型三相交错并联双向宽增益直流变换器,其特征在于,所述变换器在升压模式下的电压增益为3/(1-dBoost),在降压模式下的电压增益为dBuck/3。

3.根据权利要求1所述的一种开关电容型三相交错并联双向宽增益直流变换器,其特征在于,电感L1、电感L2、电感L3的三相电感平均电流相等,为低压侧平均电流Ilow的1/3。

4.根据权利要求1所述的一种开关电容型三相交错并联双向宽增益直流变换器,其特征在于,

功率开关Q1-Q8的电压应力为高压侧电压Uhigh的1/3。

说明书 :

开关电容型三相交错并联双向宽增益直流变换器

技术领域

[0001] 本发明涉及宽增益双向直流变换器应用领域,尤其涉及一种电动汽车用开关电容型三相交错并联双向宽增益直流变换器。

背景技术

[0002] 随着新能源的发展,电力电子技术的创新,双向直流变换器在直流微网、不间断电源、电动汽车等领域得到了广泛的应用。双向直流变换器通过接口不同电压等级的储能系统实现能量双向流动,尤其在新能源电动汽车中,发挥着重要的作用。由高比能量的蓄电池和高比功率的超级电容组成的复合能量源电动汽车是新能源汽车的重要组成部分,蓄电池长期维持直流母线电压稳定,而电动汽车工况复杂,为了减小对蓄电池的冲击,高频的动态能量需要超级电容进行快速吸收或释放。超级电容的快速动态响应既能很好地实现电动汽车加减速过程,也能减少蓄电池的高频充放电电流,以延长蓄电池使用寿命。为了充分利用超级电容的容量,发挥超级电容比功率大的特性,必须进一步拓宽超级电容吸收释放功率的极限范围,同时要动态匹配宽范围变化的超级电容电压和稳定的高压直流母线电压。因此,接口超级电容和高压直流母线间的双向直流变换器需具备高电压增益和宽电压增益特点。
[0003] 目前双向直流变换器存在较大的约束是对电气隔离的需求。在一些要求电气隔离的应用场合,较多采用双向有源全桥移相直流变换器。这类变换器虽然安全可靠,但是器件数目多,电压应力高,体积较大,经济成本高。当对电气隔离没有要求时,传统Buck/Boost双向直流变换器,以及在此基础上进行拓展的拓扑,都可以应用在需要功率双向流动的不同场合。每种变换器在电压增益、器件数量和电压应力等方面都各有优缺点。

发明内容

[0004] 针对传统双向直流变换器存在的缺点,以及电动汽车系统超级电容组对直流变换器的性能要求,本发明实施例提出了一种适用于电动汽车中超级电容用的双向宽增益直流变换器拓扑,该拓扑具有宽电压增益范围,能够解决电动汽车实际运行工况中,由于超级电容宽范围吸收释放功率而引起的超级电容电压与稳定的直流母线电压之间的动态失配问题。此外,拓扑的三相交错并联结构既能减小低压侧电流纹波,又能大幅降低功率开关电压应力,且所提拓扑具有输入输出绝对共地和易于扩展的特性,因此具有更宽的应用场合,详见下文描述:
[0005] 一种开关电容型三相交错并联双向宽增益直流变换器,所述直流变换器包括:
[0006] 低压侧电压源Ulow的正极性端连接电感L1的一端、电感L2的一端、电感L3的一端,储能/滤波电容Clow的正极性端;电感L1的另一端连接功率开关Q1的漏极,功率开关Q4的源极,功率开关Q4的漏极接电容Ch1的正极性端、功率开关Q5的源极;
[0007] 电感L2的另一端连接功率开关Q2的漏极、电容C1的负极性端,电容C1的正极性端接功率开关Q5的漏极、功率开关Q6的源极,功率开关Q6的漏极接功率开关Q7的源极、电容Ch2的正极性端;
[0008] 电感L3的另一端连接功率开关Q3的漏极、电容C2的负极性端,电容C2的正极性端连接功率开关Q7的漏极、功率开关Q8的源极,功率开关Q8的漏极接电容Ch1的正极性端;电容Ch1、电容Ch2、电容Ch3、电容Clow的负极性端、功率开关Q1、功率开关Q2、功率开关Q3的源极均接地;电容Ch3的输出电压为高压侧电压源Uhigh;
[0009] 电感L1、功率开关Q1、功率开关Q4和电容Ch1组成了基本Buck/Boost网络,电感L2、功率开关Q2、电容C1、功率开关Q6、电容Ch2和电感L3、功率开关Q3、电容C2、功率开关Q8、电容Ch3构成了拓展Buck/Boost网络。
[0010] 其中,功率开关Q1、Q2和Q3的驱动信号S1、S2和S3相互移相120°;功率开关Q4、Q6和Q8的驱动信号S4、S6和S8相互移相120°,并且分别与S1、S2和S3互补,功率开关Q5和Q7的驱动信号S5、S7分别与S2和S3相同。
[0011] 进一步地,所述变换器在升压模式下的电压增益为3/(1-dBoost),在降压模式下的电压增益为dBuck/3。
[0012] 所述三相电感平均电流相等,为低压侧平均电流Ilow的1/3。所述功率开关Q1-Q8的电压应力为高压侧电压Uhigh的1/3。
[0013] 本发明提供的技术方案的有益效果是:
[0014] 1、本发明利用开关电容技术进行升降压,实现了宽范围升降压的同时避免了因增大增益而造成功率开关极端占空比运行的问题,且所有功率开关的电压应力均为高压侧电压的1/3,低电压应力的功率管具有较低的通态电阻;
[0015] 2、本发明拓扑中的功率开关全部采用低通态电阻的可控功率管,提高双向变换器的运行可靠性的同时通过同步整流提高了能量转换效率;
[0016] 3、本发明的低压侧电感采用三相交错并联调制技术有效地降低了低压侧电流纹波,输入输出绝对共地的设计使得变换器工作更加安全可靠,非常适合作为电动汽车中超级电容与车载高压直流母线间电压变换的场合。

附图说明

[0017] 图1为开关电容型三相交错并联宽增益双向直流变换器的结构示意图;
[0018] 图2为所提拓扑升压模式下主要特征波形的示意图:
[0019] 其中,(a)0
[0020] 图3为所提拓扑降压模式下主要特征波形的示意图;
[0021] 其中,(a)0
[0022] 图4为开关电容型三相交错并联宽增益升压直流变换器等效回路图;
[0023] (a)S1S2S3S4S5S6S7S8=10100110;(b)S1S2S3S4S5S6S7S8=10000101;
[0024] (c)S1S2S3S4S5S6S7S8=11001001;(d)S1S2S3S4S5S6S7S8=01011001;
[0025] (e)S1S2S3S4S5S6S7S8=01111010;(f)S1S2S3S4S5S6S7S8=00110110;
[0026] (g)S1S2S3S4S5S6S7S8=00010101;(h)S1S2S3S4S5S6S7S8=11101010。
[0027] 图5为开关电容型三相交错并联宽增益降压直流变换器等效回路图。
[0028] (a)S1S2S3S4S5S6S7S8=01011001;(b)S1S2S3S4S5S6S7S8=01111010;
[0029] (c)S1S2S3S4S5S6S7S8=00110110;(d)S1S2S3S4S5S6S7S8=10100110;
[0030] (e)S1S2S3S4S5S6S7S8=10000101;(f)S1S2S3S4S5S6S7S8=11001001;
[0031] (g)S1S2S3S4S5S6S7S8=11101010;(h)S1S2S3S4S5S6S7S8=00010101。
[0032] 上述附图中主要符号名称:
[0033] Uhigh为开关电容型三相交错并联宽增益双向直流变换器高压侧端口电压(升压模式时的输出电压、降压模式时的输入电压);Ulow为开关电容型三相交错并联宽增益双向直流变换器低压侧端口电压(升压模式时的输入电压、升压模式时的输出电压);ihigh为开关电容型三相交错并联宽增益双向直流变换器高压侧电流(升压模式时的输出电流、降压模式时的输入电流);ilow为开关电容型三相交错宽增益双向直流变换器低压侧电流(升压模式时的输入电流、降压模式时的输出电流)。
[0034] L1、L2、L3为储能、滤波电感;Clow为低压侧滤波电容;Ch3为高压侧滤波电容;C1、C2、Ch1、Ch2分别为开关电容;Q1-Q8分别为变换器的功率开关;iL1、iL2、iL3为电感电流;S1-S8为功率开关Q1-Q8的驱动信号;UQ1-UQ8为功率开关Q1-Q8的电压;dBoost为升压模式时主功率开关Q1-Q3的占空比;dBuck为降压模式时主功率开关Q4-Q8的占空比。

具体实施方式

[0035] 为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
[0036] 通过对背景技术进行分析可知,开关电容型变换器结构简单,控制方便,易于拓展,电容通过不同的回路充电和放电来传递能量获得高电压增益,开关器件的电压应力也较低。
[0037] 因此,基于电动汽车应用背景,提出了一种开关电容型三相交错并联宽增益双向直流变换器。
[0038] 实施例1
[0039] 一、拓扑结构
[0040] 本发明实施例所提出的开关电容型交错并联双向直流变换器的拓扑结构如图1所示。从图1可以看出,本发明实施例所提出的拓扑结构主要包括:
[0041] 一个基本Buck/Boost网络(L1、Q1、Q4和Ch1)与两个拓展Buck/Boost网络(L2、Q2、C1、Q6、Ch2和L3、Q3、C2、Q8、Ch3),功率开关Q5、Q7以及低压侧储能/滤波电容Clow。功率开关Q1、Q2和Q3的驱动信号S1、S2和S3相互移相120°,功率开关Q4、Q6和Q8的驱动信号S4、S6和S8相互移相120°,并且分别与S1、S2和S3互补,功率开关Q5和Q7的驱动信号S5、S7分别与S2和S3相同。Ulow表示低压侧电压源,在本文中的应用背景中,主要为超级电容。Uhigh表示高压侧电压源,在本文中的应用背景中,主要为400V的车载高压直流母线。同时,该变换器中的每个电源和功率开关都可进行能量的双向流动,因此该拓扑既可以运行在升压模式,也可以运行在降压模式,从而实现高压侧与低压侧能量的双向流通。
[0042] 图2、图3分别为所提变换器在升压和降压两种运行模式的主要特征波形,分为占空比0
[0043] 二、宽电压增益
[0044] 1)升压模式
[0045] 当所提出的变换器处于升压运行模式时,即功率从低压侧传输到高压侧,此时功率开关Q1-Q3为主功率开关管,Q4-Q8为副管(同步整流管),驱动信号S1-S8的占空比满足d1=d2=d3=d5=d7=dBoost,d4=d6=d8=1-dBoost。当各元器件都处于理想工作模式,并且电感电流IL1、IL2和IL3都连续,变换器处于连续导通模式(CCM),此时所提出的变换器在该模式下的工作波形如图2所示,对应的拓扑电流流通路径如图4(a)-(h)所示。
[0046] 对电感L1、L2和L3分别利用伏秒平衡法则,可得电压关系如下:
[0047]
[0048] 变换器稳态运行状态下的电容电压关系如下:
[0049]
[0050] 结合式(1)、(2)可得升压模式下电容的电压应力以及高压侧输出电压Uhigh与低压输入电压Ulow之间的关系:
[0051]
[0052] 2)降压模式
[0053] 当所提出的变换器处于降压运行模式时,即能量从低压侧流向高压侧,此时功率开关Q4-Q5为主管,Q1-Q3为副管(同步整流管),d4=d6=d8=dBuck,d1=d2=d3=d5=d7=1-dBuck。当各元器件都处于理想工作模式,并且电感电流IL1、IL2和IL3都连续,变换器处于连续导通模式(CCM),此时所提出的变换器在该模式下的工作波形如图3所示,对应的拓扑电流流通路径如图5(a)-(h)所示。对电感L1、L2和L3分别利用伏秒平衡法则,可得电压关系如下:
[0054]
[0055] 结合式(2)、(4)可得降压模式下电容的电压应力以及低压侧输出电压Ulow与高压输入电压Uhigh之间的关系:
[0056]
[0057] 综上,所提变换器在升压模式下的电压增益为3/(1-dBoost),在降压模式下的电压增益为dBuck/3,具有较宽的电压增益范围。
[0058] 三、电压电流应力
[0059] 根据图4、图5和式(3)、式(5),可以推出功率开关Q1-Q8的电压应力为:
[0060]
[0061] 由电容的安秒平衡原理,分别对变换器升压模式和降压模式下的电流路径进行分析,可得功率开关Q1-Q3的平均电流为:
[0062]
[0063] 其中,d为驱动信号S1的占空比,电感L1-L3的平均电流为:
[0064] IL1=IL2=IL3=Ilow/3  (8)
[0065] 由(8)可得三相电感平均电流相等,为低压侧平均电流Ilow的1/3。
[0066] 四、低电流纹波
[0067] 根据电感电流微分形式,每相电感的电流纹波如下:
[0068]
[0069] 由于三相电感交错并联,互相移相120°,低压侧电流纹波不是简单的三相纹波之和,具有如下的关系。
[0070]
[0071] 由(10)可知,低压侧电流纹波在占空比1/3,2/3处最低为0。
[0072] 上述理论推导可得,本发明实施例提出的直流变换器升压比是传统双向Buck/Boost直流变换器的3倍,为3/(1-dBoost),降压比是传统双向Buck/Boost直流变换器的1/3,为dBuck/3,功率开关Q1-Q8的电压应力皆为传统双向Buck/Boost直流变换器的1/3,为高压侧电压Uhigh的1/3,低压侧电流纹波较传统的双向Buck/Boost直流变换器也有效地降低,而且三相电感电流自动均流,平均值相等。
[0073] 综合以上分析,本发明实施例提出的开关电容型三相交错并联宽增益双向直流变换器应用于电动汽车中超级电容与车载高压直流母线接口时,当工作在升压(Boost)状态时满足对宽范围升压的需求;当工作在降压(Buck)状态满足对宽范围降压的需求,从而满足电动汽车中超级电容宽范围变化的电压与车载高压直流母线间电压动态匹配的要求。
[0074] 实施例2
[0075] 下面以图1所示的开关电容型三相交错并联宽增益双向直流变换器拓扑,图2、图3的升/降压稳定运行时的主要特征波形以及图4、5的拓扑等效回路图,对本发明实施例的原理进行说明。根据占空比范围,分为三种情形,总计八种运行状态,下面分别对变换器升压、降压模式进行说明。
[0076] 一、升压模式
[0077] 开关电容型三相交错并联双向直流变换器运行在升压模式时,此时所提出的变换器在该状态下的特征波形如图2所示,对应的拓扑电流流通路径如图4所示。
[0078] 状态1:当S1S2S3S4S5S6S7S8=10100110时,功率开关Q1、Q3正向导通,Q6、Q7反向导通,功率开关Q2、Q4、Q5、Q8关断,拓扑的电流流通路径如图4(a)所示。Ulow给L1和L3充电储能,同时Ulow、L2和C1给C2和Ch2充电,Ch3给负载供电。
[0079] 状态2:当S1S2S3S4S5S6S7S8=10000101时,功率开关Q1正向导通,Q6、Q8反向导通,功率开关Q2、Q3、Q4、Q5、Q7关断,拓扑的电流流通路径如图4(b)所示。Ulow给L1充电储能,同时Ulow、L2、C1给Ch2充电,Ulow、L3、C2给Ch3和负载供电。
[0080] 状态3:当S1S2S3S4S5S6S7S8=11001001时,功率开关Q1、Q2正向导通,Q5、Q8反向导通,功率开关Q3、Q4、Q6、Q7关断,拓扑的电流流通路径如图4(c)所示。Ulow给L1和L2充电储能,同时Ch1通过Q5、Q2给C1充电,Ulow、L3、C2给Ch3和负载供电。
[0081] 状态4:当S1S2S3S4S5S6S7S8=01011001时,功率开关Q2正向导通,Q4、Q5、Q8反向导通,功率开关Q1、Q3、Q6、Q7关断,拓扑的电流流通路径如图4(d)所示。Ulow给L2充电储能,同时Ulow、L1给C1和Ch1充电,Ulow、L3、C2给Ch3和负载供电。
[0082] 状态5:当S1S2S3S4S5S6S7S8=01111010时,功率开关Q2、Q3正向导通,Q4、Q5、Q7反向导通,功率开关Q1、Q6、Q8关断,拓扑的电流流通路径如图4(e)所示。Ulow给L2和L3充电储能,同时Ulow、L1给C1和Ch1充电,Ch2通过Q7、Q3给C2充电,Ch3给负载供电。
[0083] 状态6:当S1S2S3S4S5S6S7S8=00110110时,功率开关Q3正向导通,Q4、Q6、Q7反向导通,功率开关Q1、Q2、Q5、Q8关断,拓扑的电流流通路径如图4(f)所示。Ulow给L3充电储能,同时Ulow、L1给Ch1充电,Ulow、L2、C1给C2和Ch2充电,Ch3给负载供电。
[0084] 状态7:当S1S2S3S4S5S6S7S8=00010101时,功率开关Q4、Q6、Q8反向导通,功率开关Q1、Q2、Q3、Q5、Q7关断,拓扑的电流流通路径如图4(g)所示。Ulow、L1给Ch1充电,Ulow、L2、C1给Ch2充电,Ulow、L3、C2给Ch3和负载供电。
[0085] 状态8:当S1S2S3S4S5S6S7S8=11101010时,功率开关Q1、Q2、Q3正向导通,Q5、Q7反向导通,功率开关Q4、Q6、Q8关断,拓扑的电流流通路径如图4(h)所示。Ulow给L1、L2和L3充电储能,同时Ch1给C1充电,Ch2给C2充电,Ch3给负载供电。
[0086] 二、降压(Buck)模式
[0087] 开关电容型三相交错并联双向直流变换器运行在降压模式时,此时所提出的变换器在该状态下的特征波形如图3所示,对应的拓扑电流流通路径如图5所示。
[0088] 状态1:当S1S2S3S4S5S6S7S8=01011001时,功率开关Q2正向导通,Q4、Q5、Q8反向导通,功率开关Q1、Q3、Q6、Q7关断,拓扑的电流流通路径如图5(a)所示。Uhigh给C2、L3和负载充电储能,同时L2放电给负载供电,C1通过Q5、Q4、Q2给L1和负载供电,Ch1通过Q4放电给L1和负载。
[0089] 状态2:当S1S2S3S4S5S6S7S8=01111010时,功率开关Q2、Q3正向导通,Q4、Q5、Q7反向导通,功率开关Q1、Q6、Q8关断,拓扑的电流流通路径如图5(b)所示。C2通过Q7、Q3给Ch2充电,L2和L3放电给负载供电,C1通过Q5、Q4、Q2给L1和负载供电,Ch1通过Q4放电给L1和负载。
[0090] 状态3:当S1S2S3S4S5S6S7S8=00110110时,功率开关Q3正向导通,Q4、Q6、Q7反向导通,功率开关Q1、Q2、Q5、Q8关断,拓扑的电流流通路径如图5(c)所示。C2通过Q7、Q6、Q3给C1、L2和负载充电,Ch2通过Q6给C1、L2和负载充电,L3通过Q3放电给负载供电,Ch1通过Q4给L1和负载供电。
[0091] 状态4:当S1S2S3S4S5S6S7S8=10100110时,功率开关Q1、Q3正向导通,Q6、Q7反向导通,功率开关Q2、Q4、Q5、Q8关断,拓扑的电流流通路径如图5(d)所示。C2通过Q7、Q6、Q3给C1、L2和负载充电,Ch2通过Q6给C1、L2和负载充电,L1通过Q1放电给负载供电。
[0092] 状态5:当S1S2S3S4S5S6S7S8=10000101时,功率开关Q1正向导通,Q6、Q8反向导通,功率开关Q2、Q3、Q4、Q5、Q7关断,拓扑的电流流通路径如图5(e)所示。Uhigh通过Q8给C2、L3和负载充电,Ch2通过Q6给C1、L2和负载充电,L1通过Q1放电给负载供电。
[0093] 状态6:当S1S2S3S4S5S6S7S8=11001001时,功率开关Q1、Q2正向导通,Q5、Q8反向导通,功率开关Q3、Q4、Q6、Q7关断,拓扑的电流流通路径如图5(f)所示。Uhigh通过Q8给C2、L3和负载充电,C1通过Q5、Q2给Ch1充电,L1和L2放电给负载供电。
[0094] 状态7:当S1S2S3S4S5S6S7S8=11101010时,功率开关Q1、Q2、Q3正向导通,Q5、Q7反向导通,功率开关Q4、Q6、Q8关断,拓扑的电流流通路径如图5(g)所示。C1通过Q5、Q2给Ch1充电,C2通过Q7、Q3给Ch3充电,L1、L2和L3放电给负载供电。
[0095] 状态8:当S1S2S3S4S5S6S7S8=00010101时,功率开关Q4、Q6、Q8反向导通,功率开关Q1、Q2、Q3、Q5、Q7关断,拓扑的电流流通路径如图5(h)所示。Ch1通过Q4放电给L1和负载,Ch2通过Q6给C1、L2和负载充电,Uhigh通过Q8给C2、L3和负载充电。
[0096] 通过电感和电容在不同开关状态的充放电路径,能量从输入端传递到输出端,并获得宽范围的升压比或降压比。通过对升压(Boost)、降压(Buck)模式运行原理的分析,本发明实施例提出的开关电容型三相交错并联宽增益双向直流变换器,应用在电动汽车中时,当工作在升压(Boost)状态进行宽范围升压;当工作在降压(Buck)状态进行宽范围降压。通过升压、降压模式的切换,满足电动汽车复合能量源能量双向流动的需求,而且满足电动汽车复合能量源系统超级电容组与车载高压直流母线间升、降压的应用场合。
[0097] 综上所述,本发明实施例提出的开关电容型三相交错并联宽增益双向直流变换器,满足电动汽车复合能量源中超级电容组与车载高压直流母线间升、降压的应用要求,通过全可控功率管的同步整流运行可提升变换器的能量转换效率,且功率器件电压电流应力小,低压侧电流纹波低,非常适合电动汽车中对高效、宽范围增益、低电流纹波双向直流变换器需求的应用场合。
[0098] 本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
[0099] 本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
[0100] 以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。