一种电磁微泵装置及其泵液方法转让专利

申请号 : CN201910414539.4

文献号 : CN110242533B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 许明孙森陈国金

申请人 : 杭州电子科技大学

摘要 :

本发明公开了一种电磁微泵装置及其泵液方法。现有的微泵结构复杂成本较高,且难以控制流量。本发明一种电磁微泵装置,包括驱动缸、切换式活塞和流量调节机构。驱动缸包括缸体、电磁线圈、第一楔子和第二楔子。缸体的两端分别开设有进液口、出液口。缸体的出液口处设置有流量调节机构。电磁线圈设置在缸体的一端。第一楔子、第二楔子的内端与缸体内腔的两端分别固定。切换式活塞包括第一楔杆、第二楔杆、活塞体、永磁铁、固定块和切换滑块。活塞体内开设有定流道腔、动流道腔、第一传动通道、第一楔通道、第二传动通道和第二楔通道。本发明通过电磁力周期的控制泵的动作,驱动安全、体积小、低功耗且具有高的响应速度。

权利要求 :

1.一种电磁微泵装置,包括驱动缸、切换式活塞和流量调节机构;其特征在于:所述的驱动缸包括缸体、电磁线圈、第一楔子和第二楔子;缸体的两端分别开设有进液口、出液口;

缸体的出液口处设置有流量调节机构;所述的电磁线圈设置在缸体的一端;所述第一楔子、第二楔子的内端与缸体内腔的两端分别固定;第一楔子、第二楔子的中心轴线分别位于缸体的中心轴线的两侧;

所述的切换式活塞包括第一楔杆、第二楔杆、活塞体、永磁铁、固定块和切换滑块;活塞体设置在缸体内,且与缸体构成滑动副;活塞体靠近电磁线圈的一侧固定有永磁铁;所述的活塞体内开设有定流道腔、动流道腔、第一传动通道、第一楔通道、第二传动通道和第二楔通道;定流道腔与动流道腔连通;第一楔通道、第二楔通道与第一楔子、第二楔子分别对齐;

第一传动通道的两端与动流道腔的一端、第一楔通道分别连通;第二传动通道的两端与动流道腔的另一端、第二楔通道分别连通;

所述的固定块固定在定流道腔内;固定块上开设有多个第一流道槽;所述的切换滑块设置在动流道腔内,且与动流道腔构成滑动副;切换滑块上开设有多个第二流道槽;各第一流道槽与各个第二流道槽分别对应;第一楔杆、第二楔杆分别设置在第一楔通道、第二楔通道内;第一楔杆、第二楔杆的内端与切换滑块的两端分别固定。

2.根据权利要求1所述的一种电磁微泵装置,其特征在于:所述的切换滑块具有两个极限位置,分别为复位极限位置和泵液极限位置;切换滑块处于复位极限位置的状态下,切换滑块抵住第二传动通道的端部,各第二流道槽与各第一流道槽分别对齐;切换滑块处于泵液极限位置的状态下,切换滑块抵住第一传动通道的端部,各第二流道槽与各第一流道槽分别错开。

3.根据权利要求1所述的一种电磁微泵装置,其特征在于:所述的流量调节机构包括流量控制滑块、转动内圈、调节座、限位弹簧、调节驱动组件和底盖;所述的底盖固定在缸体的出液口处;底盖开设有通液口;调节座与底盖固定;转动内圈与调节座构成转动副;转动内圈的内侧固定有弧形凸轮条;沿着转动内圈的周向,弧形凸轮条的工作轮廓到转动内圈中心轴线的距离逐渐减小;流量控制滑块与调节座构成滑动副;限位弹簧的两端与流量控制滑块的一端、调节座分别固定;流量控制滑块的另一端抵住弧形凸轮条的工作轮廓;流量控制滑块上开设有流速调节孔;流量控制滑块上的流速调节孔与底盖上的通液孔位置对应。

4.根据权利要求3所述的一种电磁微泵装置,其特征在于:所述的通液孔及流速调节孔均呈长圆孔状;流速调节孔、通液孔的长度方向平行于流量控制滑块与调节座的相对滑动方向。

5.根据权利要求3所述的一种电磁微泵装置,其特征在于:所述的调节驱动组件包括步进电机、控制齿轮和内齿轮;所述转动内圈的内侧固定有内齿轮;控制齿轮支承在缸体内,且与内齿轮啮合;步进电机与缸体固定,且输出轴与控制齿轮固定。

6.根据权利要求1所述的一种电磁微泵装置,其特征在于:所述第一楔子、第二楔子的外端均设置有倾斜朝向缸体中心轴线的倾斜导向面;所述第一楔杆、第二楔杆的外端设置有分别倾斜朝向第一楔子、第二楔子的斜面。

7.根据权利要求1所述的一种电磁微泵装置,其特征在于:各第一流道槽依次间隔排列,且相邻两个第一流道槽的间距大于第一流道槽的槽宽。

8.根据权利要求1所述的一种电磁微泵装置,其特征在于:所述的切换滑块与固定块接触。

9.根据权利要求1所述的一种电磁微泵装置,其特征在于:还包括进液管和出液管;缸体的进液口与进液管的输出口连通;进液管的输入口与油箱连通;缸体的出液口与出液管的输入口通过流量调节机构连接。

10.如权利要求1所述的一种电磁微泵装置的泵液方法,其特征在于:步骤一、电磁线圈通入正向电流,使得活塞体向缸体的出液口移动,直到第一楔子伸入活塞体的第一楔通道,切换滑块在第一楔子的推动下滑动;切换式活塞的两侧连通;

步骤二、封闭流量调节机构中的流道;电磁线圈通入反向电流,使得活塞体向缸体的进液口移动;直到第二楔子伸入活塞体的第二楔通道,切换滑块在第二楔子的推动下滑动,切换式活塞的两侧被隔断;

步骤三、开启流量调节机构中的流道,电磁线圈通入正向电流,使得活塞体向缸体的出液口移动,直到第一楔子伸入活塞体的第一楔通道,切换滑块在第一楔子的推动下滑动;切换式活塞的两侧连通;

活塞体移动的过程中,切换式活塞与缸体的出液口之间的液压油被推出缸体的出液口,实现泵液,油箱中的液压油被抽入切换式活塞与缸体的进液口之间;

步骤四、重复执行步骤二和三,实现持续的间断性泵液。

说明书 :

一种电磁微泵装置及其泵液方法

技术领域

[0001] 本发明属于微流控制系统技术领域,具体涉及一种电磁微泵装置及其泵液方法。

背景技术

[0002] 微流控制系统已经应用到很多领域中,其中有两大重要装置,一个是微阀,另一个是微泵,微阀主要控制微流控系统的执行,相当于开关的作用。微泵则是主要确定微流体的运动方式。微型泵目前在医学中的应用越来越多,例如药物的输送,DNA合成和微量流体的供给,精确控制等等。现有的微泵结构复杂成本较高,且难以控制流量。

发明内容

[0003] 本发明的目的在于提供一种电磁微泵装置及其泵液方法。
[0004] 本发明一种电磁微泵装置,包括驱动缸、切换式活塞和流量调节机构。所述的驱动缸包括缸体、电磁线圈、第一楔子和第二楔子。缸体的两端分别开设有进液口、出液口。缸体的出液口处设置有流量调节机构。所述的电磁线圈设置在缸体的一端。所述第一楔子、第二楔子的内端与缸体内腔的两端分别固定。第一楔子、第二楔子的中心轴线分别位于缸体的中心轴线的两侧。
[0005] 所述的切换式活塞包括第一楔杆、第二楔杆、活塞体、永磁铁、固定块和切换滑块。活塞体设置在缸体内,且与缸体构成滑动副。活塞体靠近电磁线圈的一侧固定有永磁铁。所述的活塞体内开设有定流道腔、动流道腔、第一传动通道、第一楔通道、第二传动通道和第二楔通道。定流道腔与动流道腔连通。第一楔通道、第二楔通道与第一楔子、第二楔子分别对齐。第一传动通道的两端与动流道腔的一端、第一楔通道分别连通。第二传动通道的两端与动流道腔的另一端、第二楔通道分别连通。
[0006] 所述的固定块固定在定流道腔内。固定块上开设有多个第一流道槽。所述的切换滑块设置在动流道腔内,且与动流道腔构成滑动副。切换滑块上开设有多个第二流道槽。各第一流道槽与各个第二流道槽分别对应。第一楔杆、第二楔杆分别设置在第一楔通道、第二楔通道内。第一楔杆、第二楔杆的内端与切换滑块的两端分别固定。
[0007] 进一步地,所述的切换滑块具有两个极限位置,分别为复位极限位置和泵液极限位置。切换滑块处于复位极限位置的状态下,切换滑块抵住第二传动通道的端部,各第二流道槽与各第一流道槽分别对齐。切换滑块处于泵液极限位置的状态下,切换滑块抵住第一传动通道的端部,各第二流道槽与各第一流道槽分别错开。
[0008] 进一步地,所述的流量调节机构包括流量控制滑块、转动内圈、调节座、限位弹簧、调节驱动组件和底盖。所述的底盖固定在缸体的出液口处。底盖开设有通液口。调节座与底盖固定。转动内圈与调节座构成转动副。转动内圈的内侧固定有弧形凸轮条。沿着转动内圈中心轴线的周向,弧形凸轮条的工作轮廓到转动内圈中心轴线的距离逐渐减小。流量控制滑块与调节座构成滑动副。限位弹簧的两端与流量控制滑块的一端、调节座分别固定。流量控制滑块的另一端抵住弧形凸轮条的工作轮廓。流量控制滑块上开设有流速调节孔。流量控制滑块上的流速调节孔与底盖上的通液孔位置对应。
[0009] 进一步地,所述的通液孔及流速调节孔均呈长圆孔状。流速调节孔、通液孔的长度方向平行于流量控制滑块与调节座的相对滑动方向。
[0010] 进一步地,所述的调节驱动组件包括步进电机、控制齿轮和内齿轮。所述转动内圈的内侧固定有内齿轮。控制齿轮支承在缸体内,且与内齿轮啮合。步进电机与缸体固定,且输出轴与控制齿轮固定。
[0011] 进一步地,所述第一楔子、第二楔子的外端均设置有倾斜朝向缸体中心轴线的倾斜导向面。所述第一楔杆、第二楔杆的外端设置有分别倾斜朝向第一楔子、第二楔子的斜面。
[0012] 进一步地,各第一流道槽依次间隔排列,且相邻两个第一流道槽的间距大于第一流道槽的槽宽。
[0013] 进一步地,所述的切换滑块与固定块接触。
[0014] 进一步地,本发明一种电磁微泵装置还包括进液管和出液管。缸体的进液口与进液管的输出口连通。进液管的输入口与油箱连通。缸体的出液口与出液管的输入口通过流量调节机构连接。
[0015] 该电磁微泵装置的泵液方法如下:
[0016] 步骤一、电磁线圈通入正向电流,使得活塞体向缸体的出液口移动,直到第一楔子伸入活塞体的第一楔通道,切换滑块在第一楔子的推动下滑动;切换式活塞的两侧连通。
[0017] 步骤二、封闭流量调节机构中的流道。电磁线圈通入反向电流,使得活塞体向缸体的进液口移动。直到第二楔子伸入活塞体的第二楔通道,切换滑块在第二楔子的推动下滑动,切换式活塞的两侧被隔断。
[0018] 步骤三、开启流量调节机构中的流道,电磁线圈通入正向电流,使得活塞体向缸体的出液口移动,直到第一楔子伸入活塞体的第一楔通道,切换滑块在第一楔子的推动下滑动;切换式活塞的两侧连通。
[0019] 活塞体移动的过程中,切换式活塞与缸体的出液口之间的液压油被推出缸体的出液口,实现泵液,油箱中的液压油被抽入切换式活塞与缸体的进液口之间。
[0020] 步骤四、重复执行步骤二和三,实现持续的间断性泵液。
[0021] 本发明具有的有益效果是:
[0022] 1、本发明通过电磁力周期的控制泵的动作,驱动安全、体积小、低功耗且具有高的响应速度。
[0023] 2、本发明的电磁微阀可控制其出液口的大小,从而控制泵送液体的流量。
[0024] 3、本发明的非机械式微泵将非机械能转变为微流体的动能,没有运动部件,结构简单、流量连续稳定。
[0025] 4、本发明制造成本低,有别于其他微阀需要的高制造问题。

附图说明

[0026] 图1为本发明的整体结构示意图;
[0027] 图2为本发明中切换式活塞的爆炸图;
[0028] 图3为本发明中活塞体的示意图;
[0029] 图4为本发明中流量调节机构的立体图;
[0030] 图5为本发明中流量调节机构的爆炸图;
[0031] 图6为本发明复位时的示意图;
[0032] 图7为本发明泵液时的示意图。

具体实施方式

[0033] 以下结合附图对本发明作进一步说明。
[0034] 如图1所示,一种电磁微泵装置包括驱动缸、切换式活塞、流量调节机构108、进液管113和出液管114。驱动缸包括缸体107、电磁线圈101、第一楔子103和第二楔子104。缸体107的两端分别开设有进液口、出液口。缸体107的进液口与进液管113的输出口连通。进液管113的输入口与油箱连通。缸体107的出液口与出液管114的输入口通过流量调节机构108连接。电磁线圈101绕置在缸体107开设有进液口的那端。电磁线圈101通电能够产生磁场,且控制电路方向能够改变磁场方向。第一楔子103、第二楔子104的内端与缸体107内腔出口端端面、进口端端面分别固定。第一楔子103、第二楔子104的中心轴线平行于缸体107的中心轴线,且分别位于缸体107的中心轴线的两侧。第一楔子103、第二楔子104的外端均设置有倾斜朝向缸体107中心轴线的倾斜导向面。
[0035] 如图1、2和3所示,切换式活塞包括第一楔杆105、第二楔杆106、活塞体109、永磁铁110、固定块111和切换滑块112。活塞体109设置在缸体107内,且与缸体107构成滑动副。活塞体109靠近电磁线圈101的侧面上嵌有两块永磁铁110。两块永磁铁110分别位于活塞体
109中心轴线的两侧,且朝向电磁线圈101的磁极相同。
[0036] 活塞体109内开设有定流道腔201、动流道腔202、第一传动通道203、第一楔通道204、第二传动通道205和第二楔通道206。定流道腔201与动流道腔202位于活塞体109的中心位置,且相互连通,共同贯穿活塞体109。第一楔通道204、第二楔通道206与第一楔子103、第二楔子104分别对齐。第一传动通道203的两端与动流道腔202的一端、第一楔通道204分别连通。第二传动通道205的两端与动流道腔202的另一端、第二楔通道206分别连通。
[0037] 固定块111固定在定流道腔201内。固定块111上开设有n个第一流道槽207,n=4。各第一流道槽207依次间隔排列,且相邻两个第一流道槽207的间距大于第一流道槽207的槽宽。切换滑块112设置在动流道腔202内,且与动流道腔202构成沿第一传动通道203、第二传动通道205轴线方向滑动的滑动副。切换滑块112与固定块111接触。切换滑块112上开设有n个第二流道槽208。n个第一流道槽207与n个第二流道槽208分别对应。
[0038] 切换滑块112具有两个极限位置,分别为复位极限位置和泵液极限位置。切换滑块112处于复位极限位置的状态下,切换滑块112抵住第二传动通道205的端部,n个第二流道槽208与n个第一流道槽207分别对齐,活塞体109两侧的液压油通过第一流道槽207、第二流道槽208相互连通。切换滑块112处于泵液极限位置的状态下,切换滑块112抵住第一传动通道203的端部,n个第二流道槽208与n个第一流道槽207分别错开,切换滑块112上的实体堵住n个第一流道槽207的一端,使得活塞体109两侧的液压油相互隔离。
[0039] 第一楔杆105、第二楔杆106分别设置在第一楔通道204、第二楔通道206内。第一楔杆105、第二楔杆106的内端与切换滑块112的两端分别固定,外端设置有分别倾斜朝向第一楔子103、第二楔子104的斜面。
[0040] 当活塞体109滑动至与缸体107内腔出口端端面接触时,第一楔子103与第一楔杆105接触,且第一楔子103通过第一楔杆105将切换滑块112推动至第一个极限位置,n个第二流道槽208与n个第一流道槽207分别对齐。当活塞体109滑动至与缸体107内腔进口端端面接触时,第二楔子104与第二楔杆106接触,且第二楔子104通过第二楔杆106将切换滑块112推动至第二个极限位置,n个第二流道槽208与n个第一流道槽207分别错开。
[0041] 流量调节机构108包括流量控制滑块302、转动内圈303、调节座304、限位弹簧306、调节驱动组件和底盖305。底盖305固定在缸体107的出液口处。底盖305开设有通液口。通液孔呈长圆孔状。调节座304与底盖305固定。转动内圈303与调节座304构成转动副。转动内圈303的内侧固定有弧形凸轮条。沿着转动内圈303中心轴线的周向,弧形凸轮条的工作轮廓到转动内圈303中心轴线的距离逐渐减小。流量控制滑块302与调节座304构成滑动副。限位弹簧306的两端与流量控制滑块302的一端、调节座304分别固定。流量控制滑块302的另一端呈箭头状,且抵住弧形凸轮条的工作轮廓。流量控制滑块302上开设有流速调节孔。流速调节孔呈长圆孔状。流量控制滑块302上的流速调节孔与底盖305上的通液孔位置对应。流速调节孔、通液孔的长度方向平行于流量控制滑块302与调节座304的相对滑动方向。调节驱动组件包括步进电机102、控制齿轮301和内齿轮。转动内圈303的内侧固定有内齿轮。控制齿轮301支承在缸体内,且与内齿轮啮合。步进电机102与缸体107固定,且输出轴与控制齿轮301固定。
[0042] 当转动内圈303在调节驱动组件的驱动下转动时,弧形凸轮条发生转动,流量控制滑块302与弧形凸轮条的接触位置发生变化,使得流量控制滑块302滑动。流量控制滑块302的滑动使得流量控制滑块302上的流速调节孔与底盖305上的通液孔的相交面积发生变化,缸体107到出液管114的流道截面积发生变化,从而调节缸体107向出液管114输出液压油的流速。
[0043] 该电磁微泵装置的泵液方法如下:
[0044] 步骤一、电磁线圈101通入正向电流,使电磁线圈101对两块永磁铁110产生排斥力。活塞体109向缸体107的出液口移动,直到第一楔子103伸入活塞体109的第一楔通道204,切换滑块112在第一楔子103的推动下到达复位极限位置;切换式活塞的两侧连通。
[0045] 步骤二、如图6所示,步进电机102转动,流量控制滑块302的滑动,使得流量控制滑块302上的流速调节孔与底盖305上的通液孔错开,流量调节机构108呈封闭状态。电磁线圈101通入反向电流,使电磁线圈101对两块永磁铁110产生吸引力。活塞体109向缸体107的进液口移动。直到第二楔子104伸入活塞体109的第二楔通道206,切换滑块112在第二楔子104的推动下到达泵液极限位置;切换式活塞的两侧不连通。此时,切换式活塞与缸体107的出液口之间充满液压油。
[0046] 步骤三、如图7所示,步进电机102转动,流量控制滑块302的滑动,使得流量控制滑块302上的流速调节孔与底盖305上的通液孔部分重叠,流量调节机构108的通道截面积达到预设大小。电磁线圈101通入正向电流,使电磁线圈101对两块永磁铁110产生排斥力。活塞体109向缸体107的出液口移动,直到第一楔子103伸入活塞体109的第一楔通道204,切换滑块112在第一楔子103的推动下到达复位极限位置;切换式活塞的两侧连通。
[0047] 活塞体109移动的过程中,切换式活塞与缸体107的出液口之间的液压油被推出缸体107的出液口,实现泵液,油箱中的液压油被抽入切换式活塞与缸体107的进液口之间。
[0048] 步骤四、重复执行步骤二和三,实现间断性持续泵液。