一种频率跟随数字离散滤波器、实现方法及其应用转让专利

申请号 : CN201910650844.3

文献号 : CN110401431B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 黄显国徐永吴银来

申请人 : 江苏康众数字医疗科技股份有限公司

摘要 :

本发明公开了一种频率跟随数字离散滤波器、实现方法及其应用,数字离散滤波器包括采样与量化模块,用于将原始信号转化为频率信号;离散化模块,用于对频率信号进行离散化操作,得到离散化的频率信号;同步反馈模块,用于根据响应延迟将离散滤波器的输出信号转化为参考信号,并将参考信号反馈到比较模块中;比较模块,用于将离散化的频率信号与反馈的参考信号进行差分比较,得到离散化频率差分信号;跟随滤波模块,用于对离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号,进而得到并输出离散滤波器的输出信号。本发明的滤波器引入反馈参考信号,调节系统跟随的响应速度,缓慢触发频率变化,实现频率的完全匹配。

权利要求 :

1.一种频率跟随数字离散滤波器,其特征在于,包括以下模块:采样与量化模块,用于将原始输入信号转化为频率信号;

离散化模块,用于对采样与量化模块输出的频率信号进行离散化操作,得到离散化的频率信号;

同步反馈模块,用于根据响应延迟将离散滤波器的输出信号转化为参考信号,并将所述参考信号反馈到离散滤波器的比较模块中;

比较模块,用于将离散化模块输出的离散化的频率信号与同步反馈模块反馈的参考信号进行差分比较,得到离散化频率差分信号;

跟随滤波模块,用于对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号,进而得到并输出离散滤波器的输出信号。

2.根据权利要求1所述的频率跟随数字离散滤波器,其特征在于,还包括参数模块,用于向所述离散化模块输入预设离散分布参数σ以及向所述跟随滤波模块输入跟随因子μ。

3.根据权利要求2所述的频率跟随数字离散滤波器,其特征在于,所述预设离散分布参数σ为1。

4.根据权利要求2所述的频率跟随数字离散滤波器,其特征在于,所述跟随因子μ用于限制所述信号跟随变化幅度信号:ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,μ为跟随因子,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号,t'为进行差分比较的起始时间,Δt为响应延迟时间。

5.根据权利要求4所述的频率跟随数字离散滤波器,其特征在于,所述跟随因子μ通过以下公式计算得到:其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。

6.一种频率跟随数字离散滤波器的实现方法,其特征在于,包括以下步骤:S1、采样原始输入信号,并将其转化为频率信号;

S2、对所述频率信号进行离散化操作,得到离散化的频率信号;

S3、将所述离散化的频率信号与同步反馈的参考信号进行差分比较,得到离散化频率差分信号,其中,所述参考信号由离散滤波器的输出信号根据响应延迟转化得到;

S4、对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号;

S5、根据信号跟随变化幅度信号得到并输出离散滤波器的输出信号。

7.根据权利要求6所述的实现方法,其特征在于,若步骤S3中得到的离散化频率差分信号为正,则步骤S5中所述离散滤波器的输出信号为所述离散化的频率信号减去信号跟随变化幅度信号的差值;

若步骤S3中得到的离散化频率差分信号为负,则步骤S5中所述离散滤波器的输出信号为所述离散化的频率信号加上信号跟随变化幅度信号的和值。

8.根据权利要求6所述的实现方法,其特征在于,所述信号跟随变化幅度信号通过以下公式计算得到:ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号,μ为跟随因子,通过以下公式计算得到:其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。

9.一种图像通信处理模块,其特征在于,包括如权利要求1-5中任意一项所述的频率跟随数字离散滤波器。

10.一种图像处理方法,其特征在于,利用如权利要求1-5中任意一项所述的频率跟随数字离散滤波器进行图像频率同步采集处理。

说明书 :

一种频率跟随数字离散滤波器、实现方法及其应用

技术领域

[0001] 本发明涉及滤波器领域,特别涉及一种频率跟随数字离散滤波器、实现方法及其应用。

背景技术

[0002] 一个特定频率的信号从输出源开始,因输出质量、路径中衰减及干扰等各种原因,到接收端时往往出现失真现象,对接收端的信号响应处理系统提出设计挑战;常规解决办
法是在接收端设计某种滤波器,以减小失真带来的影响。
[0003] 一个现实的问题是,针对信号频率连续变化或不断抖动,往往伴随着与当前时刻具体频率相关的校准与处理过程,在实时信号响应系统中这一处理过程几乎难以实现。即
使侦测并使用与之相关的信号频率作为反馈,如果短时间内信号频率变化幅度越大,调用
与当前时刻具体频率相关的校准与处理时,因信号采样延迟所计算的最终处理结果,误差
也会越大。同时,为完成信号校准和处理,连续信号频率需要强大的实时计算能力和空间存
储能力,这对硬件方面提出了很高的要求。

发明内容

[0004] 为了解决现有技术中信号校准需要过高的硬件条件支撑的问题,本发明提供了一种频率跟随数字离散滤波器、实现方法及其应用,技术方案如下:
[0005] 一方面,本发明提供了一种频率跟随数字离散滤波器,包括以下模块:
[0006] 采样与量化模块,用于将原始输入信号转化为频率信号;
[0007] 离散化模块,用于对采样与量化模块输出的频率信号进行离散化操作,得到离散化的频率信号;
[0008] 同步反馈模块,用于根据响应延迟将离散滤波器的输出信号转化为参考信号,并将所述参考信号反馈到离散滤波器的比较模块中;
[0009] 比较模块,用于将离散化模块输出的离散化的频率信号与同步反馈模块反馈的参考信号进行差分比较,得到离散化频率差分信号;
[0010] 跟随滤波模块,用于对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号,进而得到并输出离散滤波器的输出信号。
[0011] 进一步地,所述频率跟随数字离散滤波器还包括参数模块,用于向所述离散化模块输入预设离散分布参数σ以及向所述跟随滤波模块输入跟随因子μ。
[0012] 优选地,所述预设离散分布参数σ为1。
[0013] 进一步地,所述跟随因子μ用于限制所述信号跟随变化幅度信号:
[0014] ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,μ为跟随因子,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号。
[0015] 进一步地,所述跟随因子μ通过以下公式计算得到:
[0016] 其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。
[0017] 另一方面,本发明提供了一种频率跟随数字离散滤波器的实现方法,包括以下步骤:
[0018] S1、采样原始输入信号,并将其转化为频率信号;
[0019] S2、对所述频率信号进行离散化操作,得到离散化的频率信号;
[0020] S3、将所述离散化的频率信号与同步反馈的参考信号进行差分比较,得到离散化频率差分信号,其中,所述参考信号由离散滤波器的输出信号根据响应延迟转化得到;
[0021] S4、对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号;
[0022] S5、根据信号跟随变化幅度信号得到并输出离散滤波器的输出信号。
[0023] 进一步地,若步骤S3中得到的离散化频率差分信号为正,则步骤S5中所述离散滤波器的输出信号为所述离散化的频率信号减去信号跟随变化幅度信号的差值;
[0024] 若步骤S3中得到的离散化频率差分信号为负,则步骤S5中所述离散滤波器的输出信号为所述离散化的频率信号加上信号跟随变化幅度信号的和值。
[0025] 进一步地,所述信号跟随变化幅度信号通过以下公式计算得到:
[0026] ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号,μ为跟随因子,通过以下公
式计算得到:
[0027] 其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。
[0028] 再一方面,本发明提供了一种图像通信处理模块,包括如上所述的频率跟随数字离散滤波器。
[0029] 本发明还提供了一种如上所述的频率跟随数字离散滤波器在图像频率同步采集处理中的应用。
[0030] 本发明提供的频率跟随数字离散滤波器能够产生以下有益效果:
[0031] a、该滤波器引入了输出信号作为反馈参考信号,该反馈参考信号对比输入信号,能够提供频率变化的方向及大小,通过调节反馈延时,能增加或减小比较的延时,从而影响
系统跟随的响应速度;
[0032] b、其频率跟随策略能检测输入信号的快速变化,依据反馈信号提供的信息,并按照跟随因子所设计的步进特性,缓慢触发频率变化;能检测并屏蔽某些异常的高频抖动或
毛刺现象;
[0033] c、通过离散化操作,原来连续变化或因抖动产生频移的信号,被离散到某些特定的频率点上,如此一来,针对离散化频率点相关的匹配处理,可以做到非常简单和精确。

附图说明

[0034] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于
本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他
的附图。
[0035] 图1是本发明实施例提供的频率跟随数字离散滤波器的工作模型图;
[0036] 图2是本发明实施例提供的频率跟随数字离散滤波器的内部功能框图;
[0037] 图3是本发明实施例提供的原始输入脉冲方波信号图;
[0038] 图4是本发明实施例提供的对图3中的原始信号采样量化后的信号图;
[0039] 图5是本发明实施例提供的对图4中的量化信号离散化后的信号图;
[0040] 图6是本发明实施例提供的图5中的离散信号经比较、跟随滤波后的信号图。

具体实施方式

[0041] 为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是
本发明一部分的实施例,而不是全部的实施例。应当理解,此处描述的具体实施例仅仅用以
解释本申请,并不用于限定本申请。基于本发明中的实施例,本领域普通技术人员在没有做
出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
[0042] 需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。在本发明的描述
中,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示
或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解
为对本发明的限制。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本
发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和
“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元
的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有
清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0043] 本发明提供了一种离散化滤波器,当输入信号频率在连续域中变化时,该滤波器将过采样该频率,根据预设的离散分布参数,输出其滤波后频率;其工作模型如图1所示,其
中S(in)为原始输入信号,由于信号源自身的非稳态,叠加外部干扰,将导致到达该处理模
块的出现失真;最常见的表现为出现信号毛刺及以频率偏移和频率抖动;
[0044] S(out)为经过该滤波器后的输出信号,其为离散信号或方波信号;
[0045] S(out)信号将经过反馈同步,成为该滤波器的相关参考信号S(ref);
[0046] 与常规的滤波器设计不同之处在于:
[0047] 1)该滤波器引入了输出信号作为反馈参考信号,该反馈参考信号对比输入信号,能够提供频率变化的方向及大小,通过调节反馈延时,能增加或减小比较的延时,从而影响
系统跟随的响应速度;
[0048] 2)其频率跟随策略能检测输入信号的快速变化,依据反馈信号提供的信息,并按照跟随因子所设计的步进特性,缓慢触发频率变化;能检测并屏蔽某些异常的高频抖动或
毛刺现象;
[0049] 3)通过离散化操作,原来连续变化或因抖动产生频移的信号,被离散到某些特定的频率点上,如此一来,针对离散化频率点相关的匹配处理,可以做到非常简单和精确。
[0050] 在本发明的一个实施例中,提供了一种频率跟随数字离散滤波器,参见图2,所述离散滤波器包括以下模块:
[0051] 采样与量化模块,用于将原始输入信号转化为频率信号;
[0052] 离散化模块,用于对采样与量化模块输出的频率信号进行离散化操作,得到离散化的频率信号;
[0053] 同步反馈模块,用于根据响应延迟将离散滤波器的输出信号转化为参考信号,并将所述参考信号反馈到离散滤波器的比较模块中;
[0054] 比较模块,用于将离散化模块输出的离散化的频率信号与同步反馈模块反馈的参考信号进行差分比较,得到离散化频率差分信号;
[0055] 跟随滤波模块,用于对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号,进而得到并输出离散滤波器的输出信号。
[0056] 进一步地,所述频率跟随数字离散滤波器还包括参数模块,用于向所述离散化模块输入预设离散分布参数σ以及向所述跟随滤波模块输入跟随因子μ。
[0057] 优选地,所述预设离散分布参数σ为1。
[0058] 进一步地,所述跟随因子μ用于限制所述信号跟随变化幅度信号:
[0059] ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,μ为跟随因子,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号。
[0060] 进一步地,所述跟随因子μ通过以下公式计算得到:
[0061] 其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。
[0062] 另一方面,本发明提供了一种频率跟随数字离散滤波器的实现方法,包括以下步骤:
[0063] S1、采样原始输入信号,并将其转化为频率信号。
[0064] 以常用脉冲方波信号为例,假定输入信号S(in)是频率连续变化的方波信号的频率函数fin(t)(见附图3),该信号进入频率跟随离散滤波器后,滤波器FIR首先通过实时采样
或上升/下降沿的实时触发,可以侦测并量化计算S(in)信号得到频率函数f(t)(见附图4),
此处忽略量化噪声的影响。
[0065] S2、对所述频率信号进行离散化操作,得到离散化的频率信号。
[0066] 该频率函数f(t)经过等频离散化,可生成离散化后的频率函数F(t);为方便计算,可预设离散分布参数σ为1,则F(t)将被离散到正整数域1,2,3,…(见附图5)。
[0067] S3、将所述离散化的频率信号与同步反馈的参考信号进行差分比较,得到离散化频率差分信号,其中,所述参考信号由离散滤波器的输出信号根据响应延迟转化得到。
[0068] 离散化的频率信号F(t),与完成同步反馈的参考频率信号Fref(t’+Δt)进行差分比较,输出离散化频率信号Fout(t)将跟随Fref(t’+Δt)变化,其变化趋势由差分信号的正负
决定,即,若步骤S3中得到的离散化频率差分信号为正,则步骤S5中所述离散滤波器的输出
信号为所述离散化的频率信号减去信号跟随变化幅度信号的差值;若步骤S3中得到的离散
化频率差分信号为负,则步骤S5中所述离散滤波器的输出信号为所述离散化的频率信号加
上信号跟随变化幅度信号的和值。
[0069] S4、对所述离散化频率差分信号进行跟随滤波操作,得到信号跟随变化幅度信号。
[0070] 输出离散化频率信号Fout(t)的变化幅度由跟随因子和差分结果决定(μx(F(t)-Fref(t’+Δt)),当差分结果较大或频率变化过快时,由于跟随因子μ 的
限制,并不会立即反馈和跟随频率函数F(t)的变化,从而达到滤波目的,如图6所示。同时跟
随因子也决定着频率跟随的响应速度,对于信号传输过程中因干扰出现的偶发毛刺现象能
够直接过滤。所述信号跟随变化幅度信号通过以下公式计算得到:
[0071] ΔF=μ×(F(t)-Fref(t'+Δt)),其中,ΔF为离散滤波器的信号跟随变化幅度信号,F(t)为离散化的频率信号,Fref(t'+Δt)为反馈的参考信号,μ为跟随因子,通过以下公
式计算得到:
[0072] 其中,N为跟随系数,t'为进行差分比较的起始时间,Δt为响应延迟时间,F(x)为离散化的频率信号。
[0073] S5、根据信号跟随变化幅度信号得到并输出离散滤波器的输出信号。
[0074] 在输入信号S(in)的频率函数fin(t)刚进入滤波器FIR,到输出信号S(out)的频率信号Fout(t’)还未形成参考频率信号Fref(t’+Δt)的这段时间内,由于输入源仅有一路S
(in),没有S(ref),所以S(out)完全跟随S(in)的变化,只有离散化处理,而没有完整的跟随
滤波功能。
[0075] 本发明实施例还提供了一种图像通信处理模块,包括如上所述的频率跟随数字离散滤波器。
[0076] 本发明实施例还提供了一种如上所述的频率跟随数字离散滤波器在图像频率同步采集处理中的应用。
[0077] 该滤波器应用于图像的频率同步采集中,可实现对比度自动调节;同时,该滤波器消除了因外部频率同步信号抖动所产生的图像采集频率不一致性问题;对于影像校准也能
实现频率的完全匹配。
[0078] 本发明的频率跟随数字离散滤波器引入反馈参考信号,调节系统跟随的响应速度,缓慢触发频率变化,实现频率的完全匹配。
[0079] 以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。