一种纤维状镍铋电池及其制备方法转让专利

申请号 : CN201910665249.7

文献号 : CN110474023B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 彭慧胜王梦莹解松林

申请人 : 复旦大学

摘要 :

本发明属于纤维状电池技术领域,具体为一种纤维状镍铋电池及其制备方法。本发明在取向碳纳米管纤维上原位电化学沉积铋和还原氧化石墨烯的三维复合材料作为负极,将还原氧化石墨烯‑镍‑氧化镍的复合材料裹进碳纳米管纤维中作为正极,最后组装为纤维状镍铋电池。该纤维状电池具有高能量密度、高功率密度和高安全性;其能量密度为43.35 Wh/kg或者26.01 mWh/cm3,功率密度为6600 W/kg或者3.96 W/cm3,循环1万圈后,仍有96%的容量保持。本发明以水溶液为电解质易于实现工业放大以解决纤维状电子器件在实际使用中安全稳定性差、能量密度低等问题。本发明为制备高性能的水系纤维状电池提供了一种新的途径。

权利要求 :

1. 一种纤维状镍铋电池的制备方法,其特征在于,具体步骤如下:第一、还原氧化石墨烯‑铋‑碳纳米管纤维负极的制备通过化学气相沉积法合成可纺的碳纳米管阵列,催化剂使用Fe / Al2O3,碳源为乙烯,气相载体为氩气和氢气的混合气体;随后,从碳纳米管阵列中拉出取向碳纳米管薄膜,叠加铺排于玻璃基底上,纺成取向碳纳米管纤维;

用Hummer法制备氧化石墨烯;在烧杯中加入体积浓度为0.01   0.09 mg/mL的氧化石~

墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1  0.5mol/L,在磁力搅拌器上搅拌成~

溶液,加入10  100mmol/L的五水硝酸铋,用NaOH溶液调节PH至4.5 5.5,得到电镀液;

~ ~

以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞‑氧化汞电极为参比电极,用上述制备的电镀液进行恒电压电镀;电镀电压为‑0.9V ‑1.6V,电镀时间为1   10min,得到还~ ~

原氧化石墨烯‑铋‑碳纳米管纤维;将其放在去离子水中浸泡,除去表面电解液;在热台上烘干;

第二、还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维正极的制备通过湿化学溶胶凝胶法制备氧化镍;在烧杯中加入体积浓度为0.5 1.5mg/mL的氧化~

石墨烯水溶液,加入氧化镍,使其浓度为1 5mg/mL,在40 60 ℃超声10 30 min,得到氧化~ ~ ~

石墨烯、氧化镍混合溶液;然后加入浓度为95%的水合肼,水合肼与上述混合溶液体积比为

1:100   1:400;在40 60 ℃下继续搅拌8 12 h;将上述混合溶液离心,得到的沉淀物用去~ ~ ~

离子水和乙醇清洗多次,在40 60 ℃真空干燥箱中过夜得到还原氧化石墨烯‑氧化镍复合~

物;将上述得到的复合物在400  600℃管式炉中氩气环境下退火1   5 h,得到还原氧化石~ ~

墨烯‑镍‑氧化镍复合物;

将上述5   15 mg复合物溶解在1   5 mL的乙醇中,在40 60 ℃下超声10 30min;将~ ~ ~ ~

上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来,得到还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维;

第三、纤维状镍铋电池的制备

以上述制备得到的还原氧化石墨烯‑铋‑碳纳米管纤维为负极,还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维为正极进行匹配,并以氢氧化钾水溶液为电解质得到纤维状镍铋电池。

2. 根据权利要求1所述的制备方法,其特征在于,步骤一中,氧化石墨烯水溶液浓度为

0.02~ 0.05mg/mL,乙二胺四乙酸二钠盐浓度为0.1 ~ 0.2mol/L,Bi(NO3)3·5H2O的浓度为

40   60mmol/L;以取向碳纳米管纤维为工作电极,恒电压电镀时间为1   5 min。

~ ~

3. 根据权利要求1所述的制备方法,其特征在于,步骤二中,氧化石墨烯水溶液浓度为

0.5 1.0 mg/mL,氧化镍浓度为1   2mg/mL,退火温度为500  600 ℃,退火时间为1   2 ~ ~ ~ ~

h,乙醇中复合物浓度为4   8mg/mL。

~

4. 如权利要求1  3之一所述制备方法得到的纤维状镍铋电池,其特征在于,以具有三~

维结构的还原氧化石墨烯‑铋‑碳纳米管纤维为负极,以具有分层导电结构的还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维为正极;以氢氧化钾水溶液为电解质。

说明书 :

一种纤维状镍铋电池及其制备方法

技术领域

[0001] 本发明属于纤维状电池技术领域,具体涉及一种纤维状镍铋电池及其制备方法。

背景技术

[0002] 随着可穿戴电子设备、信息技术、物联网的不断发展,纤维状能量储存器件得到了广泛的关注和快速的发展。对于纤维状能量储存器件的实际应用而言,高能量密度、功率密
度和安全性是三个关键因素。比如,随着更多数量的新型的可穿戴电子设备被整合到电子
织物中,能量储能器件也得相应地具备高的能量密度和功率密度才能满足其能量需求。纤
维状能量储存器件通常被缝到衣服中,因此在使用过程中必须具备高的安全性。
[0003] 目前,纤维状能量储存器件主要包括纤维状超级电容器和纤维状电池两大类。其中,虽然纤维状超级电容器具备较高功率密度和安全性,但是能量密度较低;纤维状电池,
比如锂离子纤维状电池尽管具有较高的能量密度,但是功率密度较低,且大多采用传统的
有机电解液体系,这决定了其在可穿戴应用时面临了很大的安全风险。因此,制备同时具备
高能量密度、功率密度和安全性的纤维状能量储存器件仍然面临很大的挑战。

发明内容

[0004] 本发明的目的是提供一种同时具备高能量密度、功率密度和高安全性的纤维状镍铋电池及其制备方法。
[0005] 本发明提供的纤维状镍铋电池,以具有三维结构的还原氧化石墨烯‑铋‑碳纳米管纤维为负极,以具有分层导电结构的还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维为正极;通
过匹配正负极容量,最终得到性能稳定的纤维状镍铋电池。
[0006] 本发明所述的纤维状镍铋电池的制备方法,具体步骤如下。
[0007] 第一、还原氧化石墨烯‑铋‑碳纳米管纤维负极的制备
[0008] 通过化学气相沉积法合成可纺的碳纳米管阵列,催化剂使用Fe (1~2nm)/ Al2O3 (10±2 nm),碳源为乙烯,气相载体为氩气和氢气的混合气体。随后,从碳纳米管阵列中拉
出取向碳纳米管薄膜,叠加铺排于玻璃基底上,最后纺成取向碳纳米管纤维;
[0009] 用Hummer法制备氧化石墨烯。在烧杯中加入体积浓度为0.01   0.09 mg/mL的氧~
化石墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1  0.5mol/L,在磁力搅拌器上搅
~
拌成溶液后,加入一定量的五水硝酸铋(Bi(NO3)3·5H2O)(10 ~50mmol/L),用NaOH溶液调节
PH至5 6,得到电镀液;
~
[0010] 以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞‑氧化汞电极为参比电极,以及上述制备的溶液作为电镀液进行恒电压电镀。电镀电压为‑0.9V ‑1.6V之间,电镀时间
~
为1   10min。将电镀后得到的还原氧化石墨烯‑铋‑碳纳米管纤维在去离子水中浸泡除去
~
表面电解液后,在热台上烘干。
[0011] 第二、还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维正极的制备
[0012] 通过湿化学溶胶凝胶法制备氧化镍。在烧杯中加入体积浓度为0.5   1.5 mg/mL~
的氧化石墨烯水溶液,加入氧化镍,使其浓度为1   5mg/mL,在40 60 ℃超声10 30 min。然
~ ~ ~
后加入一定量(与上述溶液体积比为1:100   1:400)的95%水合肼,在40 60 ℃下继续搅拌
~ ~
8 12 h。将上述混合溶液离心,得到的沉淀物用去离子水和乙醇清洗多次,在40 60 ℃真空
~ ~
干燥箱中过夜得到还原氧化石墨烯‑氧化镍复合物。将上述得到的复合物在400  600 ℃管
~
式炉中氩气环境下退火1   5 h,得到还原氧化石墨烯‑镍‑氧化镍复合物;
~
[0013] 将上述得到的复合物(5   15 mg)溶解在乙醇中(1   5 mL),在40 60 ℃下超声~ ~ ~
10 30min。将上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来后得到还原氧化
~
石墨烯‑镍‑氧化镍碳纳米管纤维。
[0014] 第三、纤维状镍铋电池的制备
[0015] 以上述制备的还原氧化石墨烯‑铋‑碳纳米管纤维为负极,还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维为正极进行匹配,并以氢氧化钾水溶液为电解质,组装得到纤维状镍铋
电池。
[0016] 步骤一中,优选氧化石墨烯水溶液浓度为0.02 0.05 mg/mL,更优选为0.03 mg/~
mL;优选乙二胺四乙酸二钠盐浓度为0.1~0.2mol/L,更优选为0.1mol/L;优选Bi(NO3)3·
5H2O的浓度为10~100 mmol/L,更优选为50 mmol/L;优选溶液PH为4~7,更优选PH为5;优选
取向碳纳米管纤维为工作电极;优选恒电压电镀法电镀电压为‑1.2V  ‑1.5V,更优选电镀
~
电压为‑1.4V;优选恒电压电镀时间为2   5 min,更优选电镀时间为5 min。
~
[0017] 步骤二中,优选氧化石墨烯水溶液浓度为0.5 1.0 mg/mL,更优选为1.0 mg/mL;~
优选氧化镍浓度为1   2mg/mL,更优选为1.5 mg/mL;优选95%水合肼体积比为1:100   1:
~ ~
300,更优选为1:200;优选退火温度为500  600 ℃,更优选为600 ℃;优选退火时间为1   
~ ~
2 h,更优选为1h;优选乙醇中复合物浓度为4   8mg/mL,更优选为5mg/mL。
~
[0018] 本发明中,由于采用电化学共沉积法,得到的负极材料还原氧化石墨烯‑铋‑碳纳米管纤维具备精细三维结构,大大提高了电子的传递效率和离子扩散速度。
[0019] 本发明中,由于采用部分热还原的方法,得到的正极材料还原氧化石墨烯‑镍‑氧化镍纳米管纤维具有多级导电结构,进一步促进了碳纳米管纤维与活性材料之间的电子传
输效率的提高;并且由于还原氧化石墨烯的引入,一方面提高了导电性能,另一方面也提高
了活性材料与导电材料之间的接触面积,从而提高了活性材料的利用率。
[0020] 本发明中,以氢氧化钾溶液为电解液,纤维状镍铋电池的的能量密度高达3
43.35Wh/kg或者26.01mWh/cm(根据正负极活性材料的质量总和,纤维总体积来计算),这
3
大约是商业薄片锂离子电池的两倍;功率密度高达6600 W/kg或者3.96 W/cm ,比超级电容
器的功率密度还要高。此外,该纤维状镍铋电池具有极高的循环稳定性,充放电循环1万圈
后仍有96%的能量保持。

附图说明

[0021] 图1为纤维状镍铋电池示意图。
[0022] 图2为还原氧化石墨烯‑铋‑碳纳米管纤维负极的制备过程示意图。
[0023] 图3为还原氧化石墨烯‑铋‑碳纳米管纤维负极放电过程中电子传输和离子扩散示意图。
[0024] 图4为负极纤维截面SEM照片。
[0025] 图5为还原氧化石墨烯‑镍‑氧化镍复合物照片。其中,(a)为SEM照片,(b)为TEM照片。
[0026] 图6为氧化镍、还原氧化石墨烯‑氧化镍和还原氧化石墨烯‑镍‑氧化镍复合物的XRD图。
[0027] 图7为铋SEM照片、含不同浓度氧化石墨烯溶液的电镀液得到的纤维负极的充放电性能图。
[0028] 图8为还原氧化石墨烯‑铋‑碳纳米管纤维在不同电流密度下充放电性能图,含不同浓度氧化石墨烯溶液的电镀液得到的纤维负极的倍率性能。
[0029] 图9为铋‑碳纳米管纤维和还原氧化石墨烯‑铋‑碳纳米管纤维的循环稳定性能图。
[0030] 图10为氧化镍、还原氧化石墨烯‑氧化镍和还原氧化石墨烯‑镍‑氧化镍‑碳纳米管纤维在5 A/g电流密度下的充放电性能图。
[0031] 图11为还原氧化石墨烯‑镍‑氧化镍‑碳纳米管纤维在不同电流密度下的充放电性能图,氧化镍、还原氧化石墨烯‑氧化镍和还原氧化石墨烯‑镍‑氧化镍‑碳纳米管纤维电极
的倍率性能图。
[0032] 图12为还原氧化石墨烯‑镍‑氧化镍‑碳纳米管纤维电极的循环稳定性能图。
[0033] 图13为纤维状镍铋电池在不同电压范围下的循环伏安曲线图,正负极纤维的充放电匹配示意图。
[0034] 图14为纤维状镍铋电池在不同电流密度下的充放电曲线图。
[0035] 图15为纤维状镍铋电池的循环稳定性示意图。

具体实施方式

[0036] (1)取向碳纳米管纤维的制备。
[0037] 通过化学气相沉积法合成碳纳米管阵列,催化剂使用Fe (1~2nm)/ Al2O3 (10±2 nm),碳源为乙烯,气相载体为氩气和氢气的混合气体。随后,从碳纳米管阵列中拉出取向碳
纳米管薄膜,叠加铺排于玻璃基底上,最后纺成取向碳纳米管纤维。
[0038] (2)负极电镀液的配制。
[0039] 用Hummer法制备得到氧化石墨烯。在烧杯中加入体积浓度分别为0 mg/mL、0.03 mg/mL的氧化石墨烯水溶液,加入乙二胺四乙酸二钠,使其浓度为0.1mol/L,在磁力搅拌器
上搅拌成溶液后,加入一定量的五水硝酸铋(50mmol/L),用NaOH溶液调节PH至5.3,得到不
同浓度的电镀液。
[0040] (3)纤维负极的制备。
[0041] 以取向碳纳米管纤维为工作电极,石墨棒为对电极,汞‑氧化汞电极为参比电极,以及上述制备的溶液作为电镀液进行恒电压电镀。电镀电压为‑1.2 V,电镀时间分别为1 
min、2min、5 min、10 min。将电镀后得到的还原氧化石墨烯‑铋‑碳纳米管纤维在去离子水
中浸泡除去表面电解液后,在热台上烘干得到纤维负极,如图3。
[0042] (4)还原氧化石墨烯‑镍‑氧化镍复合物的制备。
[0043] 通过湿化学溶胶凝胶法制备氧化镍。在烧杯中加入体积浓度为1mg/mL的氧化石墨烯水溶液,加入氧化镍,使其浓度为1 mg/mL,在60 ℃超声30 min。然后加入一定量(与上述
溶液体积比为1:200)的95%水合肼,在60 ℃下继续搅拌12 h。将上述混合溶液离心,得到的
沉淀物用去离子水和乙醇清洗多次,在60 ℃真空干燥箱中过夜得到还原氧化石墨烯‑氧化
镍复合物。将上述得到的复合物在600 ℃管式炉中氩气环境下退火1h,得到还原氧化石墨
烯‑镍‑氧化镍复合物,如图4。
[0044] (5)还原氧化石墨烯‑镍‑氧化镍碳纳米管纤维的制备。
[0045] 将上述得到的复合物(5mg、7mg、10mg)溶解在乙醇中(2mL),在60 ℃下超声10 min。将上述得到的溶液均匀滴加到取向碳纳米管薄膜上,并卷起来后得到还原氧化石墨
烯‑镍‑氧化镍碳纳米管纤维。
[0046] (6)纤维状镍铋电池的制备。
[0047] 将上述制备得到的正负极进行匹配,并以1 M氢氧化钾水溶液为电解质得到纤维状镍铋电池。
[0048] (7)正负极和纤维电池的测试
[0049] 正负极的结构通过扫描电子显微镜(SEM,Hitachi FESEM S4800,工作电压1kV),来表征的。电极和电池的电化学性能在1M 氢氧化钾水溶液中测试。
[0050] 本发明中,纤维状镍铋电池的的能量密度高达43.35 Wh/kg或者26.01 mWh/cm3(根据正负极活性材料的质量总和,纤维总体积来计算),这大约是商业薄片锂离子电池的
3
两倍;功率密度高达6600 W/kg或者3.96 W/cm ,比超级电容器的功率密度还要高。此外,该
纤维状镍铋电池具有极高的循环稳定性,充放电循环1万圈后仍有96%的能量保持。