图像传感器、摄像头组件及移动终端转让专利

申请号 : CN201910941638.8

文献号 : CN110649057B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 唐城张弓张海裕杨鑫徐锐孙剑波蓝和李小涛王文涛

申请人 : OPPO广东移动通信有限公司

摘要 :

本申请公开了一种图像传感器、摄像头组件及移动终端。图像传感器包括多个像素,每个像素均包括隔离层、导光层、及光电转换元件。导光层形成在隔离层内,导光层的折射率大于隔离层的折射率。光电转换元件接收穿过导光层的光。本申请的图像传感器、摄像头组件及移动终端通过在像素的隔离层内增加折射率较高的导光层,使光线在隔离层与导光层组成的结构中发生全发射,从而避免相邻像素之间的光串扰问题。

权利要求 :

1.一种图像传感器,其特征在于,包括多个像素,多个所述像素包括多个全色像素和多个彩色像素;所述彩色像素具有比所述全色像素更窄的光谱响应,所述全色像素具有比所述彩色像素更大的满阱容量,每个所述像素均包括:隔离层;

导光层,所述导光层形成在所述隔离层内,所述导光层的折射率大于所述隔离层的折射率;及光电转换元件,所述光电转换元件接收穿过所述导光层的光。

2.根据权利要求1所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,所述导光层的折射率固定不变。

3.根据权利要求1所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,所述导光层的折射率逐渐增大。

4.根据权利要求1所述的图像传感器,其特征在于,所述图像传感器还包括光学隔离夹层,所述光学隔离夹层设置在相邻两个所述像素的所述隔离层之间。

5.根据权利要求1所述的图像传感器,其特征在于,每个所述像素均包括光电转换元件,每个所述光电转换元件均包括衬底及形成在所述衬底内的n势阱层。

6.根据权利要求5所述的图像传感器,其特征在于,所述全色像素的n势阱层的横截面的尺寸与所述彩色像素的n势阱层的横截面的尺寸相等;所述全色像素的n势阱层的深度大于所述彩色像素的n势阱层的深度。

7.根据权利要求5所述的图像传感器,所述全色像素的n势阱层的横截面的尺寸大于所述彩色像素的n势阱层的横截面的尺寸,所述全色像素的n势阱层的深度大于或等于所述彩色像素的n势阱层的深度。

8.根据权利要求7所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,每个所述像素的n势阱层的多个横截面的尺寸相等。

9.根据权利要求5所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,所述全色像素的n势阱层的横截面的尺寸逐渐增大,所述彩色像素的n势阱层的横截面的尺寸逐渐减小,所述全色像素的n势阱层的最小的横截面的尺寸大于或等于所述彩色像素的n势阱层的最大的横截面的尺寸。

10.根据权利要求5-9任意一项所述的图像传感器,其特征在于,所述全色像素的光电转换元件的深度与所述彩色像素的光电转换元件的深度相等。

11.根据权利要求5-9任意一项所述的图像传感器,其特征在于,每个所述像素均包括微透镜及滤光片,沿所述图像传感器的收光方向,所述微透镜、所述滤光片、所述隔离层、及所述光电转换元件依次设置。

12.根据权利要求11所述的图像传感器,其特征在于,沿所述图像传感器的收光方向,每个所述像素的隔离层的各个横截面的尺寸相等;或当所述全色像素的n势阱层的横截面的尺寸大于所述彩色像素的n势阱层的横截面的尺寸,且沿所述收光方向,每个所述像素的n势阱层的各个横截面的尺寸相等时,沿所述收光方向,所述全色像素的隔离层的横截面的尺寸逐渐增大,所述彩色像素的隔离层的横截面的尺寸逐渐减小;或当沿所述图像传感器的收光方向,所述全色像素的n势阱层的横截面的尺寸逐渐增大,所述彩色像素的n势阱层的横截面的尺寸逐渐减小时,沿所述收光方向,所述全色像素的隔离层的横截面的尺寸逐渐增大,所述彩色像素的隔离层的横截面的尺寸逐渐减小。

13.根据权利要求12所述的图像传感器,其特征在于,沿所述收光方向,每个所述像素的导光层的多个横截面的尺寸相等;或沿所述收光方向,每个所述像素的导光层的横截面的尺寸逐渐减小。

14.一种摄像头组件,其特征在于,包括:

镜头;及

权利要求1-13任意一项所述的图像传感器,所述图像传感器接收穿过所述镜头的光线以获取原始图像。

15.一种移动终端,其特征在于,包括:

壳体;及

权利要求14所述的摄像头组件,所述摄像头组件与所述壳体结合。

说明书 :

图像传感器、摄像头组件及移动终端

技术领域

[0001] 本申请涉及影像技术领域,特别涉及一种图像传感器、摄像头组件及移动终端。

背景技术

[0002] 手机等移动终端中往往装配有摄像头,以实现拍照功能。摄像头中设置有图像传感器。为了实现彩色图像的采集,图像传感器中通常包括二维阵列排布的多个像素。图像传感器工作时,相邻像素之间可能发生光串扰的问题。

发明内容

[0003] 本申请一个方面提供一种图像传感器。图像传感器包括多个像素,每个所述像素包括隔离层、导光层、及光电转换元件。所述导光层形成在所述隔离层内,所述导光层的折射率大于所述隔离层的折射率,所述光电转换元件接收穿过所述导光层的光。
[0004] 在另一方面,本申请还提供一种摄像头组件。摄像头组件包括镜头及图像传感器。所述图像传感器接收穿过所述镜头的光线以获取原始图像。所述图像传感器包括多个像
素,每个所述像素包括隔离层、导光层、及光电转换元件。所述导光层形成在所述隔离层内,所述导光层的折射率大于所述隔离层的折射率,所述光电转换元件接收穿过所述导光层的
光。
[0005] 在又一个方面,本申请还提供一种移动终端。移动终端包括壳体及摄像头组件,所述摄像头组件与所述壳体结合。所述摄像头组件包括镜头及图像传感器。所述图像传感器接收穿过所述镜头的光线以获取原始图像。所述图像传感器包括多个像素,每个所述像素
包括隔离层、导光层、及光电转换元件。所述导光层形成在所述隔离层内,所述导光层的折射率大于所述隔离层的折射率,所述光电转换元件接收穿过所述导光层的光。
[0006] 本申请实施方式的图像传感器、摄像头组件及移动终端,通过在像素的隔离层内增加折射率较高的导光层,使光线在隔离层与导光层组成的结构中发生全发射,从而避免
相邻像素之间的光串扰问题。
[0007] 本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。

附图说明

[0008] 本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
[0009] 图1是本申请实施方式中图像传感器的示意图;
[0010] 图2是本申请实施方式中一种像素电路的示意图;
[0011] 图3是不同色彩通道曝光饱和时间示意图;
[0012] 图4A是本申请实施方式中一种像素阵列的部分截面示意图;
[0013] 图4B是图4A的像素阵列中光电转换元件(或滤光片)的排布示意图;
[0014] 图5A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0015] 图5B是图5A的像素阵列中光电转换元件(或滤光片)的一个排布示意图;
[0016] 图5C是图5A的像素阵列中光电转换元件(或滤光片)的另一个排布示意图;
[0017] 图6A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0018] 图6B是图6A的像素阵列中滤光片的排布示意图;
[0019] 图6C是图6A的像素阵列中光电转换元件的排布示意图;
[0020] 图7A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0021] 图7B是图7A的像素阵列中滤光片的排布示意图;
[0022] 图7C是图7A的像素阵列中光电转换元件的排布示意图;
[0023] 图8A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0024] 图8B是图8A的像素阵列中滤光片的排布示意图;
[0025] 图8C是图8A的像素阵列中光电转换元件的排布示意图;
[0026] 图9A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0027] 图9B是图9A的像素阵列中光电转换元件(或滤光片)的排布示意图;
[0028] 图10A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0029] 图10B是图10A的像素阵列中光电转换元件(或滤光片)的一个排布示意图;
[0030] 图10C是图10A的像素阵列中光电转换元件(或滤光片)的另一个排布示意图;
[0031] 图11A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0032] 图11B是图11A的像素阵列中滤光片的排布示意图;
[0033] 图11C是图11A的像素阵列中光电转换元件的排布示意图;
[0034] 图12A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0035] 图12B是图12A的像素阵列中滤光片的排布示意图;
[0036] 图12C是图12A的像素阵列中光电转换元件的排布示意图;
[0037] 图13A是本申请实施方式中又一种像素阵列的部分截面示意图;
[0038] 图13B是图13A的像素阵列中滤光片的排布示意图;
[0039] 图13C是图13A的像素阵列中光电转换元件的排布示意图;
[0040] 图14是本申请实施方式中又一种像素阵列的部分截面示意图;
[0041] 图15是本申请实施方式中又一种像素阵列的部分截面示意图;
[0042] 图16是本申请实施方式中像素阵列及曝光控制线连接方式的示意图;
[0043] 图17是本申请实施方式中一种最小重复单元像素排布的示意图;
[0044] 图18是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0045] 图19是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0046] 图20是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0047] 图21是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0048] 图22是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0049] 图23是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0050] 图24是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0051] 图25是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0052] 图26是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0053] 图27是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0054] 图28是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0055] 图29是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0056] 图30是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0057] 图31是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0058] 图32是本申请实施方式中又一种最小重复单元像素排布的示意图;
[0059] 图33是本申请实施方式的摄像头组件的示意图;
[0060] 图34是本申请某些实施方式的图像采集方法的流程示意图;
[0061] 图35是相关技术中的图像采集方法的原理示意图;
[0062] 图36是本申请实施方式中光图像采集方法的一个原理示意图;
[0063] 图37是本申请实施方式中光图像采集方法的另一个原理示意图;
[0064] 图38至图41是本申请某些实施方式的图像采集方法的流程示意图;
[0065] 图42是本申请实施方式中光图像采集方法的又一个原理示意图;
[0066] 图43是本申请实施方式中光图像采集方法的再一个原理示意图;
[0067] 图44是本申请实施方式中光图像采集方法的再一个原理示意图;
[0068] 图45是本申请实施方式中光图像采集方法的再一个原理示意图;
[0069] 图46是本申请实施方式中光图像采集方法的再一个原理示意图;
[0070] 图47是本申请实施方式的移动终端的示意图。

具体实施方式

[0071] 下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申
请的实施方式的限制。
[0072] 请参阅图4A,本申请提供一种图像传感器10。图像传感器10包括多个像素。每个像素均包括隔离层1183、导光层1184、及光电转换元件117。导光层1184形成在隔离层1183内,导光层1184的折射率大于隔离层1183的折射率。光电转换元件117接收穿过导光层1184的光。
[0073] 请参阅图33,本申请还提供一种摄像头组件40。摄像头组件40包括镜头30和图像传感器10。图像传感器10接收穿过镜头30的光线以获取原始图像。图像传感器10包括多个
像素。每个像素均包括隔离层1183、导光层1184、及光电转换元件117。导光层1184形成在隔离层1183内,导光层1184的折射率大于隔离层1183的折射率。光电转换元件117接收穿过导光层1184的光。
[0074] 请参阅图47,本申请还提供一种移动终端60。移动终端60包括壳体50和摄像头组件40。摄像头组件40与壳体50结合。摄像头组件40包括镜头30和图像传感器10。图像传感器
10接收穿过镜头30的光线以获取原始图像。图像传感器10包括多个像素。每个像素均包括
隔离层1183、导光层1184、及光电转换元件117。导光层1184形成在隔离层1183内,导光层
1184的折射率大于隔离层1183的折射率。光电转换元件117接收穿过导光层1184的光。
[0075] 下面结合附图对本申请的实施例作进一步说明。
[0076] 在包含多二维像素阵列排布的多个像素的图像传感器中,当非垂直照射的光线在穿过某一个像素的微透镜与滤光片之后,可能会有部分光线入射到相邻像素的光电转换元
件上,从而导致光串扰。对于包含有多种色彩的像素的图像传感器,相邻像素间的光串扰会产生混色问题,进而影响成像质量。
[0077] 基于上述原因,如图4A所示,本申请提供一种图像传感器10,通过在每个像素中额外增设隔离层1183及折射率大于隔离层1183的折射率的导光层1184,使得穿过每个像素的微透镜1181和滤光片1182的光线在隔离层1183和导光层1184组成的结构中发生全反射,从
而避免相邻像素之间的光串扰问题。
[0078] 接下来首先介绍一下图像传感器10的基本结构。请参阅图1,图1是本申请实施方式中的图像传感器10的示意图。图像传感器10包括像素阵列11、垂直驱动单元12、控制单元
13、列处理单元14和水平驱动单元15。
[0079] 例如,图像传感器10可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)
感光元件。
[0080] 例如,像素阵列11包括以阵列形式二维排列的多个像素(图1中未示出),每个像素均包括光电转换元件117(图2所示)。每个像素根据入射在其上的光的强度将光转换为电
荷。
[0081] 例如,垂直驱动单元12包括移位寄存器和地址译码器。垂直驱动单元12包括读出扫描和复位扫描功能。读出扫描是指顺序地逐行扫描单位像素,从这些单位像素逐行地读
取信号。例如,被选择并被扫描的像素行中的每一像素输出的信号被传输到列处理单元14。
复位扫描用于复位电荷,光电转换元件117的光电荷被丢弃,从而可以开始新的光电荷的积累。
[0082] 例如,由列处理单元14执行的信号处理的是相关双采样(CDS)处理。在CDS处理中,取出从所选像素行中的每一像素输出的复位电平和信号电平,并且计算电平差。因而,获得了一行中的像素的信号。列处理单元14可以具有用于将模拟像素信号转换为数字格式的模数(A/D)转换功能。
[0083] 例如,水平驱动单元15包括移位寄存器和地址译码器。水平驱动单元15顺序逐列扫描像素阵列11。通过水平驱动单元15执行的选择扫描操作,每一像素列被列处理单元14
顺序地处理,并且被顺序输出。
[0084] 例如,控制单元13根据操作模式配置时序信号,利用多种时序信号来控制垂直驱动单元13、列处理单元14和水平驱动单元15协同工作。
[0085] 图2是本申请实施方式中一种像素电路110的示意图。图2中像素电路110应用在图1的每个像素中。下面结合图1和图2对像素电路110的工作原理进行说明。
[0086] 如图2所示,像素电路110包括光电转换元件117(例如,光电二极管PD)、曝光控制电路116(例如,转移晶体管112)、复位电路(例如,复位晶体管113)、放大电路(例如,放大晶体管114)和选择电路(例如,选择晶体管115)。在本申请的实施例中,转移晶体管112、复位晶体管113、放大晶体管114和选择晶体管115例如是MOS管,但不限于此。
[0087] 例如,参见图1和图2,转移晶体管112的栅极TG通过曝光控制线(图中未示出)连接垂直驱动单元12;复位晶体管113的栅极RG通过复位控制线(图中未示出)连接垂直驱动单
元12;选择晶体管114的栅极SEL通过选择线(图中未示出)连接垂直驱动单元12。每个像素
电路110中的曝光控制电路116(例如,转移晶体管112)与光电转换元件117电连接,用于转
移光电转换元件117经光照后积累的电势。例如,光电转换元件117包括光电二极管PD,光电二极管PD的阳极例如连接到地。光电二极管PD将所接收的光转换为电荷。光电二极管PD的
阴极经由曝光控制电路116(例如,转移晶体管112)连接到浮动扩散单元FD。浮动扩散单元
FD与放大晶体管114的栅极、复位晶体管113的源极连接。
[0088] 例如,曝光控制电路116为转移晶体管112,曝光控制电路116的控制端TG为转移晶体管112的栅极。当有效电平(例如,VPIX电平)的脉冲通过曝光控制线(图中未示出)传输到转移晶体管112的栅极时,转移晶体管112导通。转移晶体管112将光电二极管PD光电转换的电荷传输到浮动扩散单元FD。
[0089] 例如,复位晶体管113的漏极连接到像素电源VPIX。复位晶体管113的源极连接到浮动扩散单元FD。在电荷被从光电二极管PD转移到浮动扩散单元FD之前,有效复位电平的
脉冲经由复位线传输到复位晶体管113的栅极,复位晶体管113导通。复位晶体管113将浮动扩散单元FD复位到像素电源VPIX。
[0090] 例如,放大晶体管114的栅极连接到浮动扩散单元FD。放大晶体管114的漏极连接到像素电源VPIX。在浮动扩散单元FD被复位晶体管113复位之后,放大晶体管114经由选择
晶体管115通过输出端OUT输出复位电平。在光电二极管PD的电荷被转移晶体管112转移之
后,放大晶体管114经由选择晶体管115通过输出端OUT输出信号电平。
[0091] 例如,选择晶体管115的漏极连接到放大晶体管114的源极。选择晶体管115的源极通过输出端OUT连接到图1中的列处理单元14。当有效电平的脉冲通过选择线被传输到选择
晶体管115的栅极时,选择晶体管115导通。放大晶体管114输出的信号通过选择晶体管115
传输到列处理单元14。
[0092] 需要说明的是,本申请实施例中像素电路110的像素结构并不限于图3所示的结构。例如,像素电路110可以具有三晶体管像素结构,其中放大晶体管114和选择晶体管115的功能由一个晶体管完成。例如,曝光控制电路116也不局限于单个转移晶体管112的方式,其它具有控制端控制导通功能的电子器件或结构均可以作为本申请实施例中的曝光控制
电路,单个转移晶体管112的实施方式简单、成本低、易于控制。
[0093] 隔离层1183和导光层1184组成的结构可以应用在仅包含彩色像素(包括但不限于RGB)的图像传感器中,也可以应用在包含全色像素和彩色像素的图像传感器中,以提升图
像传感器的成像质量。然而,除了光串扰会影响图像传感器的成像质量以外,像素的曝光量也会影响图像传感器的成像质量。示例地,在包含全色像素和彩色像素的图像传感器中,不同色彩的像素单位时间接收的曝光量不同,在某些色彩饱和后,某些色彩还未曝光到理想
的状态。例如,曝光到饱和曝光量的60%-90%可以具有比较好的信噪比和精确度,但本申请的实施例不限于此。
[0094] 图3中以RGBW(红、绿、蓝、全色)四种像素为例说明。参见图3,图3中横轴为曝光时间、纵轴为曝光量,Q为饱和的曝光量,LW为全色像素W的曝光曲线,LG为绿色像素G的曝光曲线,LR为红色像素R的曝光曲线,LB为蓝色像素的曝光曲线。
[0095] 从图3中可以看出,全色像素W的曝光曲线LW的斜率最大,也就是说在单位时间内全色像素W可以获得更多的曝光量,在t1时刻即达到饱和。绿色像素G的曝光曲线LG的斜率
次之,绿色像素在t2时刻饱和。红色像素R的曝光曲线LR的斜率再次之,红色像素在t3时刻饱和。蓝色像素B的曝光曲线LB的斜率最小,蓝色像素在t4时刻饱和。在t1时刻,全色像素W已经饱和,而R、G、B三种像素曝光还未达到理想状态。
[0096] 相关技术中,RGBW四种像素的曝光时间是共同控制的。例如,每行像素的曝光时间是相同的,连接于同一曝光控制线,受同一曝光控制信号的控制。例如,继续参见图3,在0-t1时间段,RGBW四种像素都可以正常工作,但在此区间RGB由于曝光时间较短、曝光量较少,在图像显示时会造成亮度较低、信噪比较低、甚至色彩不够鲜艳的现象。在t1-t4时段,W像素由于饱和造成过度曝光,无法工作,曝光量数据已经无法真实反映目标。
[0097] 为使得图像传感器10具有更好的成像质量,除了通过增加隔离层1183和导光层1184来解决光串扰问题以外,还可以通过增大全色像素的满阱容量,使得全色像素的满阱
容量可以大于彩色像素的满阱容量,从而避免全色像素过早饱和的问题,提高图像拍摄质
量。
[0098] 需要说明的是,图3中的曝光曲线仅为一个示例,根据像素响应波段的不同,曲线的斜率和相对关系会有所变化,本申请不限于图3中所示的情形。例如,当红色像素R响应的波段比较窄时,红色像素R的曝光曲线斜率可能比蓝色像素B曝光曲线的斜率更低。
[0099] 图4A至图8C显示出了图1的像素阵列11中部分像素沿图像传感器10的收光方向截取的多种截面示意图、以及像素阵列11中的光电转换元件117(或滤光片1182)的排布示意
图。其中,全色像素和彩色像素均间隔设置,彩色像素具有比全色像素更窄的光谱响应。每个全色像素及每个彩色像素均包括微透镜1181、滤光片1182、隔离层1183、导光层1184及光电转换元件117。沿图像传感器10的收光方向,微透镜1181、滤光片1182、隔离层1183、及光电转换元件117依次设置。光电转换元件117包括衬底1171和形成在衬底1171内部的n势阱
层1172,n势阱层1172可以实现光到电荷的转换。隔离层1183设置在光电转换元件117的一
个表面(具体为衬底1171的一个表面)上,由于衬底1171不是完全平整的,滤光片1182难以
直接设置在衬底1171的表面上,在衬底1171的一个表面上设置隔离层1183,隔离层1183的
远离衬底1171的一面的平整度较高,便于滤光片1182设置该面上。滤光片1182设置在隔离
层1183的远离衬底1171的表面,滤光片1182可以使特定波段的光线通过。微透镜1181设置
在滤光片1182的远离隔离层1183的一侧,微透镜1181用于汇聚光线,可以将入射的光线更
多地引导至光电转换元件117。在隔离层1183内设置导光层1184,其中,导光层1184的折射率大于隔离层1183的折射率,且沿与收光方向垂直的方向,每个像素的隔离层1183、该像素的导光层1184、及该像素的隔离层1183依次设置,例如,沿与收光方向垂直的方向,全色像素W隔离层1183、该全色像素W的导光层1184、及该全色像素W的隔离层1183依次设置,彩色像素A的隔离层1183、该彩色像素A的导光层1184、及该彩色像素A的隔离层1183依次设置,彩色像素B的隔离层1183、该彩色像素B的导光层1184、及该彩色像素B的隔离层1183依次设置等;此种设计可以使得穿过滤光片1182的光线在隔离层1183和导光层1184组成的结构中
发生全反射,从而起到汇聚光线、让光线能够更多地进入对应的光电转换元件117的作用,避免出现相邻像素之间的光串扰问题。光电转换元件117的满阱容量与光电转换元件117的
n势阱层1172的体积有关,n势阱层1172的体积越大,满阱容量越大。图4A至图8C所示的任意一个实施例中,全色像素的n势阱层1172的体积均大于彩色像素的n势阱层1172的体积,从
而使得全色像素的满阱容量大于彩色像素的满阱容量,增大了全色像素饱和的曝光量Q,增长了全色像素达到饱和的时长,由此避免了全色像素过早饱和的问题,可以均衡全色像素
与彩色像素的曝光。如此,通过隔离层1183和导光层1184的设计、以及全色像素的满阱容量大于彩色像素的满阱容量的设计来改善图像传感器10的成像质量。
[0100] 例如,图4A和图4B分别是本申请一个实施例的像素阵列11的沿收光方向截取的截面示意图、以及多个光电转换元件117(或多个滤光片1182)的排布示意图。如图4A所示,沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;沿收光方向,每个像素(同一个像素)的导光层1184的多个横截面的尺寸也均相等;沿收光方向,每个像
素(同一个像素)的n势阱层1172的多个横截面的尺寸均相等;全色像素的n势阱层1172的横
截面的尺寸等于彩色像素的n势阱层1172的横截面的尺寸;全色像素的n势阱层1172的深度
H1大于彩色像素的n势阱层1172的深度H2。如此使得全色像素的n势阱层1172的体积大于彩
色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图4A所示的图像传感器10中,光线可以在隔离层1183和导光层1184组成的结构中实现全反射,避免
光串扰问题。
[0101] 在其他实施例中,图4A中的导光层1184的结构也可以是:沿收光方向,导光层1184的横截面的尺寸逐渐减小。
[0102] 需要说明的是,隔离层1183的横截面为沿垂直于收光方向的方向截取到的隔离层1183的截面,导光层1184的横截面为沿垂直于收光方向的方向截取到的导光层1184的截
面,n势阱层1172的横截面为沿垂直于收光方向的方向截取得到的n势阱层1172的截面。每
个像素的隔离层1183的横截面与该像素的n势阱层1172横截面的形状及尺寸均对应。横截
面可以是长方形、正方形、平行四边形、菱形、五边形、六边形等多边形,在此不作限制。
[0103] 沿收光方向,同一个像素的n势阱层1172(也可为隔离层1183或导光层1184)的多个横截面的尺寸均相等指的是:多个横截面具有相同的面积,且多个横截面中相对应的边
长均相等。全色像素的n势阱层1172的横截面的尺寸与彩色像素的n势阱层1172的横截面的
尺寸相等指的是:全色像素的n势阱层1172的横截面的面积与彩色像素的n势阱层1172的横
截面的面积相等。全色像素的n势阱层1172的横截面所形成形状的边长与对应的彩色像素
的n势阱层1172的横截面所形成形状的边长可以相等或不相等。例如,图4B所示的全色像素和彩色像素的n势阱层1172的横截面均为长方形,其包括长和宽,全色像素的n势阱层1172
的横截面的面积等于彩色像素的n势阱层1172的横截面的面积,全色像素的n势阱层1172的
横截面的长L全等于彩色像素的n势阱层1172的横截面的长L彩,全色像素的n势阱层1172的横截面的宽W全等于彩色像素的n势阱层1172的横截面的宽W彩。在其他例子中,L全可以不等于L彩,W全可以不等于W彩,只要满足全色像素的n势阱层1172的横截面的面积等于彩色像素的n势阱层1172的横截面的面积即可。下文对n势阱层1172(也可为隔离层1183或导光层1184)
的横截面、每个像素的n势阱层1172(也可为隔离层1183或导光层1184)的多个横截面的尺
寸均相等、全色像素的n势阱层1172的横截面的尺寸与彩色像素的n势阱层1172的横截面的
尺寸相等的解释与此处的解释相同。
[0104] 例如,图5A是本申请另一个实施例的像素阵列11的沿收光方向截取的截面示意图,图5B和图5C是图5A的像素阵列11中多个光电转换元件117(或多个滤光片1182)的两种
排布示意图。如图5A所示,沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;沿收光方向,每个像素(同一个像素)的导光层1184的多个横截面的尺寸也
均相等;沿收光方向,每个像素(同一个像素)的n势阱层1172的多个横截面的尺寸均相等;
全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸;全
色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如此使得全色像素
的n势阱层1172的体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大
的满阱容量。此外,图5A所示的图像传感器10中,光线可以在隔离层1183和导光层1184组成的结构中实现全反射,避免光串扰问题。
[0105] 当然,在其他实施例中,图5A中全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2;图5A中的导光层1184的结构也可以是:沿收光方向,导光层
1184的横截面的尺寸逐渐减小。
[0106] 需要说明的是,全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸指的是:全色像素的n势阱层1172的横截面的面积大于彩色像素的n势
阱层1172的横截面的面积,全色像素的n势阱层的横截面所形成形状的边长可以部分或全
部大于对应的彩色像素的n势阱层1172的横截面所形成形状的边长。示例地,如图5B所示,全色像素的n势阱层1172的横截面的长L全大于彩色像素的n势阱层1172的横截面的长L彩,全色像素的n势阱层1172的横截面的宽W全等于彩色像素的n势阱层1172的横截面的宽W彩;如图
5C所示,全色像素的n势阱层1172的横截面的长L全等于彩色像素的n势阱层1172的横截面的长L彩,全色像素的n势阱层1172的横截面的宽W全大于彩色像素的n势阱层1172的横截面的宽W彩。下文对全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截面的尺寸的解释与此处的解释相同。
[0107] 例如,图6A至图6C分别是本申请又一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图6A所示,沿收光方向,每个像素(同一个像素)的隔离层1183的多个横截面的尺寸均相等;
沿收光方向,每个像素(同一个像素)的导光层1184的多个横截面的尺寸也均相等;沿收光
方向,每个全色像素(同一个全色像素)的n势阱层1172的横截面的尺寸逐渐增大,每个彩色像素(同一个彩色像素)的n势阱层1172的横截面的尺寸逐渐减小,并且,全色像素的n势阱
层1172的最小的横截面的尺寸等于彩色像素的n势阱层1172的最大的横截面的尺寸;全色
像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图6B所示,虽然全
色像素的滤光片1182的横截面的尺寸与彩色像素的滤光片1182的横截面的尺寸相等(面积
和相对应的边长均相等),但如图6C所示,实际上全色像素光电转换元件117中的n势阱层
1172的横截面(除最小尺寸的横截面以外的横截面)尺寸是大于彩色像素光电转换元件117
中的n势阱层1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的体积大于彩色像
素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图6A所示的图像传感器10中,光线可以在隔离层1183和导光层1184组成的结构中实现全反射,避免光串
扰问题。
[0108] 在其他实施例中,图6A中全色像素的n势阱层1172的最小的横截面的尺寸也可以大于彩色像素的n势阱层的最大的横截面的尺寸,全色像素的n势阱层1172的深度H1也可以
大于彩色像素的n势阱层1172的深度H2,导光层1184的结构也可以是:沿收光方向,导光层
1184的横截面的尺寸逐渐减小。
[0109] 例如,图7A至图7C分别是本申请再一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图7A所示,沿收光方向,每个全色像素(同一个全色像素)的隔离层1183的多个横截面的尺
寸逐渐增大,每个彩色像素(同一个彩色像素)的隔离层1183的多个横截面的尺寸逐渐减
小;沿收光方向,每个全色像素的导光层1184和每个彩色像素的导光层1184的横截面的尺
寸均逐渐减小;沿收光方向,每个全色像素的n势阱层1172的横截面的尺寸逐渐增大,每个彩色像素的n势阱层1172的横截面的尺寸逐渐减小,并且,全色像素的n势阱层1172的最小
的横截面的尺寸等于彩色像素的n势阱层1172的最大的横截面的尺寸;全色像素的n势阱层
1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图7B所示,虽然全色像素的滤光片
1182的横截面的尺寸与彩色像素的滤光片1182的横截面的尺寸相等(面积和相对应的边长
均相等),但如图7C所示,实际上全色像素光电转换元件117中的n势阱层1172的横截面(除
最小尺寸的横截面以外的横截面)的尺寸是大于彩色像素光电转换元件117中的n势阱层
1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的体积大于彩色像素的n势阱层
1172的体积,全色像素具有比彩色像素更大的满阱容量。此外,图7A所示的图像传感器10
中,光线可以在隔离层1183和导光层1184组成的结构中实现全反射,避免光串扰问题。
[0110] 在其他实施例中,图7A中全色像素的n势阱层1172的最小的横截面的尺寸也可以大于彩色像素的n势阱层的最大的横截面的尺寸,全色像素的n势阱层1172的深度H1也可以
大于彩色像素的n势阱层1172的深度H2,导光层1184的结构也可以是:沿收光方向,每个像素(同一个像素)的导光层1184的多个横截面的尺寸均相等。
[0111] 例如,图8A至图8C分别是本申请再一个实施例的像素阵列11的沿收光方向截取的截面示意图、多个滤光片1182的排布示意图、以及多个光电转换元件117的排布示意图。如图8A所示,沿收光方向,每个全色像素(同一个全色像素)的隔离层1183的多个横截面的尺
寸逐渐增大,每个彩色像素(同一个彩色像素)的隔离层1183的多个横截面的尺寸逐渐减
小,并且,全色像素的隔离层1183的最小的横截面的尺寸等于彩色像素的隔离层1183的最
大的横截面的尺寸;沿收光方向,每个全色像素的导光层1184和每个彩色像素的导光层
1184的横截面的尺寸均逐渐减小,;沿收光方向,每个像素的n势阱层1172的多个横截面的
尺寸均相等;全色像素的n势阱层1172的横截面的尺寸大于彩色像素的n势阱层1172的横截
面的尺寸;全色像素的n势阱层1172的深度H1等于彩色像素的n势阱层1172的深度H2。如图
8B所示,虽然全色像素的滤光片1182的横截面的尺寸与彩色像素的滤光片1182的横截面的
尺寸相等(面积和相对应的边长均相等),但如图8C所示,实际上全色像素光电转换元件117中的n势阱层1172的横截面(除最小尺寸的横截面以外的横截面)的尺寸是大于彩色像素光
电转换元件117中的n势阱层1172的横截面的尺寸的。如此使得全色像素的n势阱层1172的
体积大于彩色像素的n势阱层1172的体积,全色像素具有比彩色像素更大的满阱容量。此
外,图8A所示的图像传感器10中,光线可以在隔离层1183和导光层1184组成的结构中实现
全反射,避免光串扰问题。
[0112] 在其他实施例中,图8A中全色像素的n势阱层1172的深度H1也可以大于彩色像素的n势阱层1172的深度H2;图8A中全色像素的隔离层1183的最小的横截面的尺寸也可以大
于彩色像素的隔离层1183的最大的横截面的尺寸;图8A中导光层1184的结构也可以是:沿
收光方向,每个像素(同一个像素)的导光层1184的多个横截面的尺寸均相等。
[0113] 在图4A至图8C所示的任意一个实施例中,导光层1184各个位置处的折射率可以均相等,也即沿收光方向,导光层1184的折射率固定不变,此种设计方式可以简化导光层1184的设计,减小像素阵列11的制造难度。在其他实施例子中,沿图像传感器10的收光方向,导光层1184的折射率也可以逐渐增大。此种设计方式可以增强导光层1184的聚光能力,使得
更多光线可以进入到光电转换元件117中。
[0114] 图4A至图8C所示的任意一个实施例中,沿收光方向,每个像素的导光层1184的多个横截面的尺寸相等的方式可以简化导光层1184的制造工艺;沿收光方向,每个像素的导
光层1184的横截面的尺寸逐渐减小的方式可以增强导光层1184的聚光能力,使得更多光线
可以进入到光电转换元件117中。
[0115] 图4A至图8C所示的任意一个实施例中,导光层1184的深度与隔离层1183的深度相等,从而可以增强导光层1184的聚光能力。此外,与现有的图像传感器中隔离层的厚度相
比,本申请的隔离层1183的厚度要来得大,例如大于一个预定厚度,从而可以形成更长的光路,提升导光层1184和隔离层1183组成的结构的聚光效果。
[0116] 图4A至图8C所示的任意一个实施例中的像素阵列11中,全色像素的光电转换元件117的深度H3与彩色像素的光电转换元件117的深度H4相等,具体地,全色像素的衬底1171
的深度H3与彩色像素的衬底1171的深度H4相等。H3和H4相等时,全色像素的衬底1171的远
离滤光片1182的表面与彩色像素的衬底1171的远离滤光片1182的表面处于同一水平面中,
可以减小读出电路设计与制造的复杂度。
[0117] 图4A至图8C所示的任一个实施例中的各个像素还包括光学隔离夹层1185。光学隔离夹层1185设置在相邻两个像素的隔离层1183之间。例如,一个光学隔离夹层1185设置在
全色像素W的隔离层1183和彩色像素A的隔离层1183之间,另一个光学隔离夹层1185设置在
全色像素W的隔离层1183和彩色像素B的隔离层1183之间等。光学隔离夹层1185可由钨、钛、铝和铜中的至少一种材料制成。光学隔离夹层1185可防止入射到某一像素的光线进入到与
该像素相邻的另一个像素中,避免为其他像素带来噪声,也即避免光串扰。
[0118] 图4A至图8C所示的任一个实施例中各个像素内的导光层1184均可以被替换为聚光透镜1186。具体地,如图9A至图13C所示,图9A中的图像传感器10除聚光透镜1186以外的结构均与图4A中的图像传感器10相同,图10A中的图像传感器10除聚光透镜1186以外的结
构均与图5A中的图像传感器10相同,图11A中的图像传感器10除聚光透镜1186以外的结构
均与图6A相同,图12A中的图像传感器10除聚光透镜1186以外的结构均与图7A中的图像传
感器10相同,图13A中的图像传感器10除聚光透镜1186以外的结构均与图8A中的图像传感
器10相同,在此不再对图9A至图13C中的微透镜1181、滤光片1182、隔离层1183、光学隔离夹层1185、光电转换元件117(衬底1171和n势阱层1172)做描述。
[0119] 如图9A至图13C所示,每个全色像素和每个彩色像素均包括聚光透镜1186,聚光透镜1186设置在对应的像素的隔离层1183内。聚光透镜1186可以起到汇聚光线的作用,以使
得穿过滤光片1182的光线可以更多地进入到光电转换元件117中,从而避免光串扰问题。当每个像素中均设置有聚光透镜1186时,可以根据不同像素的需求设计不同曲率半径的聚光
透镜1186,例如,彩色像素的聚光透镜1186的曲率半径大于全色像素的聚光透镜1186的曲
率半径,从而使得彩色像素的聚光透镜1186的聚光能力高于全色像素的聚光透镜1186的聚
光能力等。
[0120] 在其他实施例中,也可以仅有部分像素包括聚光透镜1186,示例地,全色像素中可以不设置聚光透镜1186,彩色像素中设置聚光透镜1186。例如,如图11A和图12A所示实施例中,沿收光方向,全色像素的n势阱层1172的横截面逐渐增大,彩色像素的n势阱层的横截面逐渐减小,穿过全色像素的滤光片1182的光线极大部分都可以进入到全色像素的光电转换元件117中,而穿过彩色像素的滤光片1182的光线较少部分可以进入彩色像素的光电转换
元件117中,此时可以仅在彩色像素的隔离层1183中设置聚光透镜1186,从而利用聚光透镜
1186的聚光作用使得更多光线可以进入彩色像素的光电转换元件117中。仅在部分像素中
设置聚光透镜1186可以减小图像传感器10的制作成本。
[0121] 像素中设置有聚光透镜1186时,每一个聚光透镜1186的与光电转换元件117相对的一面可以设置抗反射膜,抗反射膜可以用于减小光的干涉,避免光的干涉对图像传感器
10成像效果的影响。
[0122] 请参阅图14和图15,图像传感器10还包括屏障层1187。屏障层1187可以设置在相邻两个像素的光电转换元件117之间。例如,一个屏障层1187设置在全色像素W的光电转换
元件117和彩色像素A的光电转换元件117之间,另一个屏障层1187设置在全色像素W的光电
转换元件117和彩色像素B的光电转换元件117之间等。示例地,屏障层1187可以是深度隔离墙(DeepTrench Isolation,DTI)。屏障层1187可以防止进入某一个像素的光电转换元件
117的光线进入到与该像素相邻的其他像素的光电转换元件117中,避免为其他像素的光电
转换元件117带来噪声,也即避免光串扰。
[0123] 除了前文所述的将全色像素的满阱容量设置成大于彩色像素的满阱容量以外,本申请实施例中,还可以对不同颜色的彩色像素设置不同的满阱容量。具体地,可以根据彩色像素的灵敏度(达到饱和的曝光量的时长越短的像素,其灵敏度越高)来设置对应其灵敏度
的满阱容量。例如,如图1所示,绿色像素的灵敏度>红色像素的灵敏度>蓝色像素的灵敏度,则可以将彩色像素的满阱容量设置成:绿色像素的满阱容量>红色像素的满阱容量>
蓝色像素的满阱容量。其中,增大彩色像素的满阱容量的方式与增大全色像素的满阱容量
的方式类似,例如,当各个像素的n势阱层1172的横截面积都相同,即SW=SG=SR=SB时,则各个像素的n势阱层1172的深度的关系可以为HW>HG>HR>HB;再例如,当各个像素的n势阱层1172的深度都相同,即HW=HG=HR=HB时,则各个像素的n势阱层1172的横截面积的关系可以为SW>SG>SR>SB,其他情况在此不再赘述。如此,可以根据灵敏度的不同设置不同的满阱容量,从而可以均衡各个色彩的像素的曝光,提升图像拍摄质量。
[0124] 在将全色像素的满阱容量设置成大于彩色像素的满阱容量的基础上,还可以进一步通过独立控制全色像素的曝光时间和彩色像素的曝光时间来均衡全色像素和彩色像素
的曝光。
[0125] 图16是本申请一个实施例的像素阵列11及曝光控制线连接方式的示意图。像素阵列11为二维像素阵列。二维像素阵列包括多个全色像素和多个彩色像素,其中,彩色像素具有比全色像素更窄的光谱响应。像素阵列11中的像素排布为如下方式:
[0126]
[0127] 需要说明的是,为了方便图示说明,图16中仅示出了像素阵列11中的部分像素,周边其它像素及连线以省略号“……”代替。
[0128] 如图16所示,像素1101、1103、1106、1108、1111、1113、1116、及1118为全色像素W,像素1102、1105为第一颜色像素A(例如红色像素R),像素1104、1107、1112、1115为第二颜色像素B(例如绿色像素G),像素1114、1117为第三颜色像素C(例如蓝色像素Bu)。从图16中可以看出,全色像素W(像素1101、1103、1106和1108)中曝光控制电路的控制端TG与一条第一曝光控制线TX1连接,全色像素W(1111、1113、1116、和1118)中曝光控制电路的控制端TG与另一条第一曝光控制线TX1连接;第一颜色像素A(像素1102和1105)中曝光控制电路的控制端TG、第二颜色像素B(像素1104、1107)中曝光控制电路的控制端TG与一条第二曝光控制线TX2连接,第二颜色像素B(像素1112、1115)中曝光控制电路的控制端TG、第三颜色像素C(像素1114、1117)中曝光控制电路的控制端TG与另一条第二曝光控制线TX2连接。每条第一曝
光控制线TX1可通过第一曝光控制信号控制全色像素的曝光时长;每条第二曝光控制线TX2
可通过第二曝光控制信号控制彩色像素(例如第一颜色像素A和第二颜色像素B、第二颜色
像素B和第三颜色像素C)的曝光时长。由此可实现全色像素和彩色像素曝光时长的独立控
制。例如,可以实现在全色像素曝光结束时,彩色像素继续曝光,以达到理想的成像效果。
[0129] 请参考图1和图16,第一曝光控制线TX1和第二曝光控制线TX2与图1中的垂直驱动单元12连接,将垂直驱动单元12中相应的曝光控制信号传输到像素阵列11中像素的曝光控
制电路的控制端TG。
[0130] 可以理解的是,由于像素阵列11中有多个像素行组,垂直驱动单元12连接多条第一曝光控制线TX1和多条第二曝光控制线TX2。多条第一曝光控制线TX1和多条第二曝光控
制线TX2对应于相应的像素行组。
[0131] 例如,第一条第一曝光控制线TX1对应第一行和第二行中的全色像素;第二条第一曝光控制线TX1对应第三行和第四行中的全色像素,以此类推,第三条第一曝光控制线TX1
对应第五行和第六行中的全色像素;第四条第一曝光控制线TX1对应第七行和第八行中的
全色像素,再往下的第一曝光控制线TX1与再往下行的全色像素的对应关系不再赘述。不同第一曝光控制线TX1传输的信号时序也会有所不同,该信号时序由垂直驱动单元12配置。
[0132] 例如,第一条第二曝光控制线TX2对应第一行和第二行中的彩色像素;第二条第二曝光控制线TX2对应第三行和第四行中的彩色像素,以此类推,第三条第二曝光控制线TX2
对应第五行和第六行中的彩色像素;第四条第二曝光控制线TX2对应第七行和第八行中的
彩色像素,再往下的第二曝光控制线TX2与再往下行的彩色像素的对应关系不再赘述。不同第二曝光控制线TX2传输的信号时序也会有所不同,该信号时序也由垂直驱动单元12配置。
[0133] 图17至图32示出了多种图像传感器10(图1所示)中像素排布的示例。参见图1、及图17至图32,图像传感器10包括由多个彩色像素(例如多个第一颜色像素A、多个第二颜色
像素B和多个第三颜色像素C)和多个全色像素W组成的二维像素阵列(也即图16所示的像素
阵列11)。其中,彩色像素具有比全色像素更窄的光谱响应。彩色像素的响应光谱例如为全色像素W响应光谱中的部分。二维像素阵列包括最小重复单元(图17至图32示出了多种图像
传感器10中像素最小重复单元的示例),二维像素阵列由多个最小重复单元组成,最小重复单元在行和列上复制并排列。在最小重复单元中,全色像素W设置在第一对角线方向D1,彩色像素设置在第二对角线方向D2,第一对角线方向D1与第二对角线方向D2不同。第一对角
线方向D1相邻的至少两个全色像素的第一曝光时间由第一曝光信号控制,第二对角线方向
D2相邻的至少两个彩色像素的第二曝光时间由第二曝光信号控制,从而实现全色像素曝光
时间和彩色像素曝光时间的独立控制。每个最小重复单元均包括多个子单元,每个子单元
包括多个单颜色像素(例如多个第一颜色像素A、多个第二颜色像素B或多个第三颜色像素
C)和多个全色像素W。例如,请结合图2和图16,像素1101-1108及像素1111-1118组成一个最小重复单元,其中,像素1101、1103、1106、1108、1111、1113、1116、1118为全色像素,像素
1102、1104、1105、1107、1112、1114、1115、1117为彩色像素。像素1101、1102、1105、1106组成一个子单元,其中,像素1101、1106为全色像素,像素1102、1105为单颜色像素(例如为第一颜色像素A);像素1103、1104、1107、1108组成一个子单元,其中,像素1103、1108为全色像素,像素1104、1107为单颜色像素(例如为第二颜色像素B);像素1111、1112、1115、1116组成一个子单元,其中,像素1111、1116为全色像素,像素1112、1115为单颜色像素(例如为第二颜色像素B);像素1113、1114、1117、1118组成一个子单元,其中,像素1113、1118为全色像素,像素1114、1117为单颜色像素(例如为第三颜色像素C)。
[0134] 例如,最小重复单元行和列的像素数量相等。例如最小重复单元包括但不限于,4行4列、6行6列、8行8列、10行10列的最小重复单元。例如,最小重复单元中的子单元行和列的像素数量相等。例如,子单元包括但不限于,2行2列、3行3列、4行4列、5行5列的子单元。这种设置有助于均衡行和列方向图像的分辨率和均衡色彩表现,提高显示效果。
[0135] 例如,图17是本申请实施方式中一种最小重复单元1181像素排布的示意图;最小重复单元为4行4列16个像素,子单元为2行2列4个像素,排布方式为:
[0136]
[0137] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0138] 例如,如图17所示,全色像素W设置在第一对角线方向D1(即图17中左上角和右下角连接的方向),彩色像素设置在第二对角线方向D2(例如图17中左下角和右上角连接的方
向),第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。第一对角线方向D1相邻的两个全色像素W(例如,从左上方起第一行第一列和第二行第二列的
两个全色像素)的第一曝光时间由第一曝光信号控制,第二对角线方向D2相邻的至少两个
彩色像素(例如,从左上方起第四行第一列和第三行第二列的两个彩色像素B)的第二曝光
时间由第二曝光信号控制。
[0139] 需要说明的是,第一对角线方向D1和第二对角线方向D2并不局限于对角线,还包括平行于对角线的方向,例如图16中,全色像素1101、1106、1113、及1118设置在第一对角线方向D1,全色像素1103及1108也设置在第一对角线方向D1,全色像素1111及1116也设置在
第一对角线方向D1;第二颜色像素1104、1107、1112、及1115设置在第二对角线方向D2,第一颜色像素1102及1105也设置在第二对角线方向D2,第三颜色像素1114及1117也设置在第二
对角线方向D2,下文图18至图32中对第一对角线方向D1及第二对角线方向D2的解释与此处
相同。这里的“方向”并非单一指向,可以理解为指示排布的“直线”的概念,可以有直线两端的双向指向。
[0140] 需要理解的是,此处以及下文中的术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能
理解为对本申请的限制。
[0141] 例如,如图17所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。例如,第一曝光信号经由第一曝光控制线TX1传输,第二曝光信号经由第二曝光控制线TX2传输。例如,第一曝光控制线TX1呈“W”型,与相邻两行的全色像素中曝光控制电路的控制端电连接;第二曝光控制线TX2呈“W”型,与相邻两行的彩色像素中曝光控制电路的控制端电连接。具体连接方式可参见前述图2和图17相
关部分关于连接和像素电路的描述。
[0142] 需要说明的是,第一曝光控制线TX1和第二曝光控制线TX2呈“W”型并不是指物理上走线必须严格按照“W”型设置,只需连接方式对应于全色像素和彩色像素的排布即可。例如,“W”型曝光控制线的设置对应“W”型的像素排布方式,这种设置方式走线简单,像素排布的解像力、色彩都有较好的效果,以低成本实现全色像素曝光时间和彩色像素曝光时间的
独立控制。
[0143] 例如,图18是本申请实施方式中又一种最小重复单元1182像素排布的示意图。最小重复单元为4行4列16个像素,子单元为2行2列4个像素,排布方式为:
[0144]
[0145] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0146] 例如,如图18所示,全色像素W设置在第一对角线方向D1(即图18中右上角和左下角连接的方向),彩色像素设置在第二对角线方向D2(例如图18中左上角和右下角连接的方
向)。例如,第一对角线和第二对角线垂直。第一对角线方向D1相邻的两个全色像素W(例如,从左上方起第一行第二列和第二行第一列的两个全色像素)的第一曝光时间由第一曝光信
号控制,第二对角线方向相邻的至少两个彩色像素(例如,从左上方起第一行第一列和第二行第二列的两个彩色像素A)的第二曝光时间由第二曝光信号控制。
[0147] 例如,如图18所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
[0148] 例如,图19是本申请实施方式中又一种最小重复单元1183像素排布的示意图。图20是本申请实施方式中又一种最小重复单元1184像素排布的示意图。在图19和图20的实施
例中,分别对应图17和图18的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
[0149] 需要说明的是,在一些实施例中,全色像素W的响应波段为可见光波段(例如,400nm-760nm)。例如,全色像素W上设置有红外滤光片,以实现红外光的滤除。在一些实施例中,全色像素W的响应波段为可见光波段和近红外波段(例如,400nm-1000nm),与图像传感器10中的光电转换元件117(例如光电二极管PD)响应波段相匹配。例如,全色像素W可以不
设置滤光片,全色像素W的响应波段由光电二极管的响应波段确定,即两者相匹配。本申请的实施例包括但不局限于上述波段范围。
[0150] 例如,图21是本申请实施方式中又一种最小重复单元1185像素排布的示意图。图22是本申请实施方式中又一种最小重复单元1186像素排布的示意图。在图21和图22的实施
例中,分别对应图17和图18的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。
[0151] 例如,图23是本申请实施方式中又一种最小重复单元1187像素排布的示意图。图24是本申请实施方式中又一种最小重复单元1188像素排布的示意图。在图23和图24的实施
例中,分别对应图17和图18的排布方式,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。
[0152] 例如,图25是本申请实施方式中又一种最小重复单元1191像素排布的示意图。最小重复单元为6行6列36个像素,子单元为3行3列9个像素,排布方式为:
[0153]
[0154] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0155] 例如,如图25所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A、B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
[0156] 例如,图26是本申请实施方式中又一种最小重复单元1192像素排布的示意图。最小重复单元为6行6列36个像素,子单元为3行3列9个像素,排布方式为:
[0157]
[0158] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0159] 例如,如图26所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A、B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
[0160] 例如,图27是本申请实施方式中又一种最小重复单元1193像素排布的示意图。图28是本申请实施方式中又一种最小重复单元1194像素排布的示意图。在图27和图28的实施
例中,分别对应图25和图26的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
[0161] 例如,在其它实施方式中,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。例如,在其它实施方式中,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。本申请的实施例包括但不局限于此。电路具体连接方式参见上文说明,在此不再赘述。
[0162] 例如,图29是本申请实施方式中又一种最小重复单元1195像素排布的示意图。最小重复单元为8行8列64个像素,子单元为4行4列16个像素,排布方式为:
[0163]
[0164] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0165] 例如,如图29所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第七行和第八行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第七行和第八行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
[0166] 例如,图30是本申请实施方式中又一种最小重复单元1196像素排布的示意图。最小重复单元为8行8列64个像素,子单元为4行4列16个像素,排布方式为:
[0167]
[0168] W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。
[0169] 例如,如图30所示,第一行和第二行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第一行和第二行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第三行和第四行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第三行和第四行的彩色像素(A和B)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第五行和第六行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第五行和第六行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。第七行和第八行的全色像素由呈“W”型的第一曝光控制线TX1连接在一起,以实现全色像素曝光时间的单独控制。第七行和第八行的彩色像素(B和C)由呈“W”型的第二曝光控制线TX2连接在一起,以实现彩色像素曝光时间的单独控制。
[0170] 例如,图31是本申请实施方式中又一种最小重复单元1197像素排布的示意图。图32是本申请实施方式中又一种最小重复单元1198像素排布的示意图。在图31和图32的实施
例中,分别对应图29和图30的排布方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。
[0171] 例如,在其它实施方式中,第一颜色像素A为红色像素R;第二颜色像素B为黄色像素Y;第三颜色像素C为蓝色像素Bu。例如,第一颜色像素A为品红色像素M;第二颜色像素B为青色像素Cy;第三颜色像素C为黄色像素Y。本申请的实施例包括但不局限于此。电路具体连接方式参见上文说明,在此不再赘述。
[0172] 从上述实施例中可以看出,如图17至图32所示,图像传感器10(图1所示)包括矩阵排布的多个彩色像素和多个全色像素W,彩色像素和全色像素在行和列的方向上均间隔排
布。
[0173] 例如,在行的方向上依次交替设置全色像素、彩色像素、全色像素、彩色像素……[0174] 例如,在列的方向上依次交替设置全色像素、彩色像素、全色像素、彩色像素……[0175] 请结合图16,第一曝光控制线TX1与第2n-1行和第2n行的全色像素W中曝光控制电路116的控制端TG(例如,转移晶体管112的栅极)电连接;第二曝光控制线TX2与第2n-1行和第2n行的彩色像素中曝光控制电路116的控制端TG(例如,转移晶体管112的栅极)电连接;n为大于等于1的自然数。
[0176] 例如,当n=1时,第一曝光控制线TX1与第1行和第2行的全色像素W中曝光控制电路116的控制端TG电连接;第二曝光控制线TX2与第1行和第2行的彩色像素中曝光控制电路
116的控制端TG电连接。当n=2时,第一曝光控制线TX1与第3行和第4行的全色像素W中曝光控制电路116的控制端TG电连接;第二曝光控制线TX2与第3行和第4行的彩色像素中曝光控
制电路116的控制端TG电连接。以此类推,在此不再赘述。
[0177] 在一些实施例中,第一曝光时间小于第二曝光时间。第一曝光时间根据全色像素的n势阱层1172(图4A所示)来确定,第二曝光时间可以根据彩色像素的n势阱层1172(图4A
所示)来确定。
[0178] 请参阅图33,本申请提供一种摄像头组件40。摄像头组件40包括上述任意一项实施方式所述的图像传感器10、处理芯片20及镜头30。图像传感器10与处理芯片20电连接。镜头30设置在图像传感器10的光路上。图像传感器10可以接收穿过镜头30的光线以获取原始
图像。处理芯片20可以接收图像传感器10输出的原始图像,并对原始图像做后续处理。
[0179] 本申请还提供一种可以应用于图33的摄像头组件40的图像采集方法。如图34所示,图像采集方法包括:
[0180] 01:控制二维像素阵列曝光以获取全色原始图像和彩色原始图像;
[0181] 02:处理彩色原始图像,以将每个子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并输出单色大像素的像素值以得到彩色中间图像;
[0182] 03:处理全色原始图像以得到全色中间图像;及
[0183] 04:处理彩色中间图像和/或全色中间图像以获取目标图像。
[0184] 请参阅图1和图33,本申请的图像采集方法可以由摄像头组件40实现。其中,步骤01可以由图像传感器10实现。步骤02、步骤03及步骤04可以由处理芯片20实现。也即是说,图像传感器10可以曝光以获取全色原始图像和彩色原始图像。处理芯片20可以用于处理彩
色原始图像,以将每个子单元的所有像素作为与该子单元中单颜色对应的单色大像素,并
输出单色大像素的像素值以得到彩色中间图像。处理芯片20还可以用于处理全色原始图像
以得到全色中间图像、以及处理彩色中间图像和/或全色中间图像以获取目标图像。
[0185] 请结合图35,相关技术中,图像传感器的像素阵列若同时包括全色像素及彩色像素,则图像传感器工作时,图像传感器会将像素阵列中的每个全色像素的像素值拟合到其
他彩色像素的像素值中,从而输出仅包括彩色像素的原始图像。具体地,以像素A为红色像素R,像素B为绿色像素G,像素C为蓝色像素Bu为例,图像传感器中的列处理单元读出多个红色像素R的像素值、多个绿色像素G的像素值、多个蓝色像素Bu的像素值、及多个全色像素W的像素值后,图像传感器会先将每个全色像素W的像素值拟合到与该全色像素邻近的红色
像素R、绿色像素G、及蓝色像素Bu中,再将非拜耳阵列排布的图像转换成拜耳阵列排布的原始图像输出,以供处理芯片对原始图像做后续处理,比如对原始图像做插值处理以得到全
彩图像(全彩图像中每个像素的像素值均由红色、绿色及蓝色三个分量组合而成)等。这一
处理方式中,图像传感器需要执行较为复杂的算法,运算量比较大,且由于高通平台不支持非拜耳阵列排布的图像的处理,可能需要在图像传感器中增加额外的硬件(例如额外的处
理芯片)来执行将非拜耳阵列排布的图像转换成拜耳阵列排布的原始图像的处理。
[0186] 本申请的图像采集方法和摄像头组件40可以减小图像传感器的运算量,以及避免在图像传感器中增加额外硬件。
[0187] 具体地,请结合图1和图36,在用户请求拍照时,图像传感器10中的垂直驱动单元12会控制二维像素阵列中的多个全色像素和多个彩色像素均曝光,列处理单元14会读出每
一个全色像素的像素值以及每一个彩色像素的像素值。图像传感器10不执行将全色像素的
像素值拟合到彩色像素的像素值中的操作,而是直接根据多个全色像素的像素值输出一张
全色原始图像,并直接根据多个彩色像素的像素值输出一张彩色原始图像。
[0188] 如图36所示,全色原始图像包括多个全色像素W及多个空像素N(NULL),其中,空像素既不为全色像素,也不为彩色像素,全色原始图像中空像素N所处位置可视为该位置没有像素,或者可以将空像素的像素值视为零。比较二维像素阵列与全色原始图像可知,对于二维像素阵列中的每一个子单元,该子单元包括两个全色像素W和两个彩色像素(彩色像素A、彩色像素B、或彩色像素C)。全色原始图像中也具有与二维像素阵列中的每一个子单元对应的一个子单元,全色原始图像的子单元包括两个全色像素W和两个空像素N,两个空像素N所处位置对应二维像素阵列子单元中的两个彩色像素所处的位置。
[0189] 同样地,彩色原始图像包括多个彩色像素及多个空像素N,其中,空像素既不为全色像素,也不为彩色像素,彩色原始图像中空像素N所处位置可视为该位置没有像素,或者可以将空像素的像素值视为零。比较二维像素阵列与彩色原始图像可知,对于二维像素阵
列中的每一个子单元,该子单元包括两个全色像素W和两个彩色像素。彩色原始图像中也具有与二维像素阵列中的每一个子单元对应的一个子单元,彩色原始图像的子单元包括两个
彩色像素和两个空像素N,两个空像素N所处位置对应二维像素阵列子单元中的两个全色像
素W所处的位置。
[0190] 处理芯片20接收到图像传感器10输出的全色原始图像和彩色原始图像后,可以对全色原始图像作进一步处理得到全色中间图像,并对彩色原始图像作进一步处理得到彩色
中间图像。示例地,彩色原始图像可通过图37所示的方式变换为彩色中间图像。如图37所
示,彩色原始图像包括多个子单元,每个子单元都包括多个空像素N和多个单颜色的彩色像素(也称单颜色像素)。具体地,某些子单元包括两个空像素N和两个单颜色像素A,某些子单元包括两个空像素N和两个单颜色像素B,某些子单元包括两个空像素N及两个单颜色像素
C。处理芯片20可以将包括空像素N和单颜色像素A的子单元中的所有像素作为与该子单元
中的单颜色A对应的单色大像素A,将包括空像素N和单颜色像素B的子单元中的所有像素作
为与该子单元中的单颜色B对应的单色大像素B,将包括空像素N和单颜色像素C的子单元中
的所有像素作为与该子单元中的单颜色C对应的单色大像素C。由此,处理芯片20即可根据
多个单色大像素A、多个单色大像素B、及多个单色大像素C形成一张彩色中间图像。如果包括多个空像素N的彩色原始图像视为一张具有第二分辨率的图像,则按照图38所示方式获
取的彩色中间图像则为一张具有第一分辨率的图像,其中,第一分辨率小于第二分辨率。处理芯片20得到全色中间图像以及彩色中间图像后,可以对全色中间图像和/或彩色中间图
像作进一步处理以获取目标图像。具体地,处理芯片20可以仅处理全色中间图像以得到目
标图像;处理芯片20也可以仅处理彩色中间图像以得到目标图像;处理芯片20还可以同时
处理全色中间图像和彩色中间图像以得到目标图像。处理芯片20可以根据实际需求来决定
两张中间图像的处理方式。
[0191] 本申请实施方式的图像采集方法中,图像传感器10可以直接输出全色原始图像和彩色原始图像,对于全色原始图像和彩色原始图像的后续处理由处理芯片20来执行,图像
传感器10无需执行将全色像素W的像素值拟合到彩色像素的像素值中的操作,图像传感器
10的运算量得到减小,并且无需在图像传感器10中增加新的硬件来支持图像传感器10执行
图像处理,可以简化图像传感器10的设计。
[0192] 在某些实施方式中,步骤01控制二维像素阵列曝光以获取全色原始图像和彩色原始图像可以根据多种方式实现。
[0193] 请参阅图38,在一个例子中,步骤01包括:
[0194] 011:控制二维像素阵列中的所有全色像素和所有彩色像素同时曝光;
[0195] 012:输出所有全色像素的像素值以获取全色原始图像;及
[0196] 013:输出所有彩色像素的像素值以获取彩色原始图像。
[0197] 请参阅图33,步骤011、步骤012和步骤013均可以由图像传感器10实现。也即是说,图像传感器10中的所有全色像素和所有彩色像素同时曝光。图像传感器10可以输出所有全色像素的像素值以获取全色原始图像,还可以输出所有彩色像素的像素值以获取彩色原始
图像。
[0198] 请结合图2和图16,全色像素和彩色像素可以同时曝光,其中,全色像素的曝光时间可以小于或等于彩色像素的曝光时间。具体地,在全色像素的第一曝光时间与彩色像素
的第二曝光时间相等时,全色像素的曝光起始时刻及曝光截止时刻分别与彩色像素的曝光
起始时刻及曝光截止时刻相同。在第一曝光时间小于第二曝光时间时,全色像素的曝光起
始时刻晚于或等于彩色像素的曝光起始时刻,且全色像素的曝光截止时刻早于彩色像素的
曝光截止时刻;或者,在第一曝光时间小于第二曝光时间时,全色像素的曝光起始时刻晚于彩色像素的曝光起始时刻,且全色像素的曝光截止时刻早于或等于彩色像素的曝光截止时
刻。全色像素和彩色像素曝均光完毕后,图像传感器10输出所有全色像素的像素值以获取
全色原始图像,并输出所有彩色像素的像素值以获取彩色原始图像。其中,全色原始图像可以先于彩色原始图像输出,或者;彩色原始图像可以先于全色原始图像输出;或者,全色原始图像和彩色原始图像可以同时输出。二者的输出顺序在此不作限定。全色像素和彩色像
素同时曝光可以减小全色原始图像及彩色原始图像的获取时间,加快全色原始图像及彩色
原始图像获取进程。全色像素和彩色像素同时曝光的方式在快拍、连拍等对出图速度要求
较高的模式下具有极大优势。
[0199] 请参阅图39,在另一个例子中,步骤01包括:
[0200] 014:控制二维像素阵列中的所有全色像素和所有彩色像素分时曝光;
[0201] 015:输出所有全色像素的像素值以获取全色原始图像;及
[0202] 016:输出所有彩色像素的像素值以获取彩色原始图像。
[0203] 请参阅图33,步骤014、步骤015和步骤016均可以由图像传感器10实现。也即是说,图像传感器10中的所有全色像素和所有彩色像素分时曝光。图像传感器10可以输出所有全色像素的像素值以获取全色原始图像,还可以输出所有彩色像素的像素值以获取彩色原始
图像。
[0204] 具体地,全色像素和彩色像素可以分时曝光,其中,全色像素的曝光时间可以小于或等于彩色像素的曝光时间。具体地,无论第一曝光时间与第二曝光时间是否相等,所有全色像素和所有彩色像素分时曝光的方式均可以是:(1)所有全色像素先执行第一曝光时间的曝光,待所有全色像素曝光完毕后,所有彩色像素再执行第二曝光时间的曝光;(2)所有彩色像素先执行第二曝光时间的曝光,待所有彩色像素曝光完毕后,所有全色像素再执行
第一曝光时间的曝光。全色像素和彩色像素曝均光完毕后,图像传感器10输出所有全色像
素的像素值以获取全色原始图像,并输出所有彩色像素的像素值以获取彩色原始图像。其
中,全色原始图像和彩色原始图像的输出方式可以是:(1)在全色像素先于彩色像素曝光
时,图像传感器10可以在彩色像素曝光期间输出全色原始图像,也可以等彩色像素曝光完
毕后再依次输出全色原始图像及彩色原始图像;(2)在彩色像素先于全色像素曝光时,图像传感器10可以在全色像素曝光期间输出彩色原始图像,也可以等全色像素曝光完毕后再依
次输出彩色原始图像及全色原始图像;(3)无论全色像素和彩色像素中的哪一个优先曝光,图像传感器10可以在所有像素均曝光完毕后,同时输出全色原始图像和彩色原始图像。本
示例中全色像素和彩色像素分时曝光的方式的控制逻辑较为简单。
[0205] 图像传感器10可以同时具有图38及图39所示的控制全色像素和彩色像素同时曝光、以及控制全色像素和彩色像素分时曝光的功能。图像传感器10在采集图像的过程中具
体采用哪一种曝光方式,可以根据实际需求来自主选定。比如,在快拍、连拍等模式下时可以采用同时曝光的方式以满足快速出图的需求;在普通的拍照模式下可以采用分时曝光的
方式以简化控制逻辑等。
[0206] 图38及图39所示的两个示例中,全色像素和彩色像素的曝光顺序可以由图像传感器10中的控制单元13来控制。
[0207] 图38及图39所示的两个示例中,全色像素的曝光时间可以由第一曝光信号控制,彩色像素的曝光时间可以由第二曝光信号控制。
[0208] 具体地,请结合图16,作为一个示例,图像传感器10可以用第一曝光信号控制第一对角线方向相邻的至少两个全色像素以第一曝光时间曝光,并用第二曝光信号控制第二对角线方向相邻的至少两个彩色像素以第二曝光时间曝光,其中,第一曝光时间可以小于或
等于第二曝光时间。具体地,图像传感器10中的垂直驱动单元12通过第一曝光控制线TX1传输第一曝光信号以控制第一对角线方向相邻的至少两个全色像素以第一曝光时间曝光,垂
直驱动单元12通过第二曝光控制线TX2传输第二曝光信号以控制第二对角线方向相邻的至
少两个全色像素以第二曝光时间曝光。待所有全色像素及所有彩色像素均曝光完成后,如
图37所示,图像传感器10不执行将多个全色像素的像素值拟合到彩色像素的像素值中的处
理,而是直接输出一张全色原始图像和一张彩色原始图像。
[0209] 请结合图2和图17,作为另一个示例,图像传感器10可以用第一曝光信号控制第2n-1行和第2n行的全色像素以第一曝光时间曝光,并用第二曝光信号控制第2n-1行和第2n
行的彩色像素以第二曝光时间曝光,其中,第一曝光时间可以小于或等于第二曝光时间。具体地,图像传感器10中的第一曝光控制线TX1与2n-1行和第2n行的所有全色像素的控制端
TG连接,第二曝光控制线TX2与2n-1行和第2n行的所有彩色像素的控制端TG连接。垂直驱动单元12通过第一曝光控制线TX1传输第一曝光信号以控制第2n-1行和第2n行的全色像素以
第一曝光时间曝光,通过第二曝光控制线TX2传输第二曝光信号以控制第2n-1行和第2n行
的彩色像素以第二曝光时间曝光。待所有全色像素及所有彩色像素均曝光完成后,如图36
所示,图像传感器10不执行将多个全色像素的像素值拟合到彩色像素的像素值中的处理,
而是直接输出一张全色原始图像和一张彩色原始图像。
[0210] 在某些实施方式中,处理芯片20可以根据环境亮度来确定第一曝光时间与第二曝光时间的相对关系。示例地,图像传感器10可以先控制全色像素曝光并输出一张全色原始
图像,处理芯片20分析全色原始图像中多个全色像素的像素值来确定环境亮度。在环境亮
度小于或等于亮度阈值时,图像传感器10控制全色像素以等于第二曝光时间的第一曝光时
间来曝光;在环境亮度大于亮度阈值时,图像传感器10控制全色像素以小于第二曝光时间
的第一曝光时间来曝光。在环境亮度大于亮度阈值时,可以根据环境亮度与亮度阈值之间
的亮度差值来确定第一曝光时间与第二曝光时间的相对关系,例如,亮度差值越大,第一曝光时间与第二曝光时间的比例越小。示例地,在亮度差值位于第一范围[a,b)内时,第一曝光时间与第二曝光时间的比例为V1:V2;在亮度差值位于第二范围[b,c)内时,第一曝光时
间与第二曝光时间的比例为V1:V3;在亮度差值大于或等于c时,第一曝光时间与第二曝光
时间的比例为V1:V4,其中V1
[0211] 请参阅图40,在某些实施方式中,步骤02包括:
[0212] 021:合并每个子单元中的所有像素的像素值以得到单色大像素的像素值;及
[0213] 022:根据多个单色大像素的像素值形成彩色中间图像,彩色中间图像具有第一分辨率。
[0214] 请参阅图33,在某些实施方式中,步骤021及步骤022均可以由处理芯片20实现。也即是说,处理芯片20可以用于合并每个子单元中的所有像素的像素值以得到单色大像素的像素值、以及根据多个单色大像素的像素值形成彩色中间图像,彩色中间图像具有第一分
辨率。其中,彩色中间图像具有第一分辨率。
[0215] 具体地,如图37所示,对于单色大像素A,处理芯片20可以将包括空像素N和单颜色像素A的子单元中的所有像素的像素值相加,并将相加的结果作为对应该子单元的单色大像素A的像素值,其中,空像素N的像素值可以视为零,下同;处理芯片20可以将包括空像素N和单颜色像素B的子单元中的所有像素的像素值相加,并将相加的结果作为对应该子单元
的单色大像素B的像素值;处理芯片20可以将包括空像素N和单颜色像素C的子单元中的所
有像素的像素值相加,并将相加的结果作为对应该子单元的单色大像素C的像素值。由此,处理芯片20即可获得多个单个大像素A的像素值、多个单色大像素B的像素值、以及多个单
色大像素C的像素值。处理芯片20再根据多个单色大象素A的像素值、多个单色大像素B的像素值、以及多个单色大像素C的像素值形成一张彩色中间图像。如图37所示,当单颜色A为红色R,单颜色B为绿色G,单颜色C为蓝色Bu时,彩色中间图像即为拜耳阵列排布的图像。当然,处理芯片20获取彩色中间图像的方式并不限于此。
[0216] 在某些实施方式中,请结合图33和图41,当摄像头组件40处于不同的模式时,不同模式对应不同的目标图像。处理芯片20会先判断摄像头组件40处于哪一种模式,再根据摄像头组件40所处的模式对彩色中间图像和/或全色中间图像做相应处理以得到对应该模式
的目标图像。目标图像至少包括四类目标图像:第一目标图像、第二目标图像、第三目标图像、第四目标图像。摄像头组件40所处的模式至少包括:(1)模式为预览模式,预览模式下的目标图像可以为第一目标图像或第二目标图像;(2)模式为成像模式,成像模式下的目标图像可以为第二目标图像、第三目标图像或第四目标图像;(3)模式既为预览模式又为低功耗模式,此时目标图像为第一目标图像;(4)模式即为预览模式又为非低功耗模式,此时目标图像为第二目标图像;(5)模式既为成像模式又为低功耗模式,此时目标图像为第二目标图像或第三目标图像;(6)模式既为成像模式又为非低功耗模式,此时目标图像为第四目标图像。
[0217] 请参阅图41,在一个例子中,当目标图像为第一目标图像时,步骤04包括:
[0218] 040:对彩色中间图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第一目标图像。
[0219] 请参阅图33,步骤040可以由处理芯片20实现。也即是说,处理芯片20可以用于对彩色中间图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色
的像素值并输出以得到具有第一分辨率的第一目标图像。
[0220] 具体地,请结合图42,假设单色大像素A为红色像素R,单色大像素B为绿色像素G,单色大像素C为蓝色像素Bu,则彩色中间图像为拜耳阵列排布的图像,处理芯片20需要对彩色中间图像执行去马赛克(即插值处理),以使得每个单色大像素的像素值都同时具有R、G、B三个分量。示例地,可以采用线性插值的方式来计算每个单色大像素的除单色大像素的单颜色以外的另外两种颜色的像素值。以单色大像素C2,2(“C2,2”表示从左上方算起第二行第二列的像素C)为例,单色大像素C2,2仅具有颜色C的分量的像素值P(C2,2),还需要计算出单色大像素C位置处颜色A的像素值P(A2,2)和颜色B的像素值P(B2,2),则P(A2,2)=α1·P(A3,1)+α2·P(A3,3)+α3·P(A1,3)+α4·P(A1,1),P(B2,2)=β1·P(B1,2)+β2·P(B2,1)+β3·P(B2,3)+β4·P(B3,2),其中,α1~α4与β1~β4均为插值系数,且α1+α2+α3+α4=1,β1+β2+β3+β4=1。上述P(A2,2)及P(B2,2)的计算方式仅为示例,P(A2,2)及P(B2,2)还可以通过除线性插值方式以外的其他插值方式计算得到,在此不作限制。
[0221] 处理芯片20计算出每个单色大像素的三个分量的像素值后,即可根据三个像素值计算出对应该单色大像素的最终的像素值,即A+B+C,需要说明的是,此处的A+B+C并不表示直接将三个像素相加得到单色大像素最终的像素值,仅表示单色大像素包括A、B、C三个色彩分量。处理芯片20可以根据多个单色大像素的最终的像素值形成一张第一目标图像。由
于彩色中间图像具有第一分辨率,第一目标图像为彩色中间图像经插值处理得到,处理芯
片20未对彩色中间图像做插补处理,因此,第一目标图像的分辨率也为第一分辨率。处理芯片20处理彩色中间图像得到第一目标图像的处理算法较为简单,处理速度较快,摄像头组
件40在模式既为预览模式又为低功耗模式时使用第一目标图像作为预览图像,既可以满足
预览模式对出图速度的需求,还可以节省摄像头组件40的功耗。
[0222] 请再参阅图41,在另一个例子中,当目标图像为第二目标图像时,步骤03包括:
[0223] 031:处理全色原始图像,将每个子单元的所有像素作为全色大像素,并输出全色大像素的像素值以得到全色中间图像,全色中间图像具有第一分辨率;
[0224] 步骤04包括:
[0225] 041:分离彩色中间图像的色彩及亮度以得到具有第一分辨率的色亮分离图像;
[0226] 042:融合全色中间图像的亮度及色亮分离图像的亮度以得到具有第一分辨率的亮度修正彩色图像;及
[0227] 043:对亮度修正彩色图像中的每个单色大像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第一分辨率的第二目标图像。
[0228] 请参阅图33,步骤031、步骤041、步骤042及步骤043均可以由处理芯片20实现。也即是说,处理芯片20可以用于处理全色原始图像,将每个子单元的所有像素作为全色大像素,并输出全色大像素的像素值以得到全色中间图像,全色中间图像具有第一分辨率。处理芯片20还可以用于分离彩色中间图像的色彩及亮度以得到具有第一分辨率的色亮分离图
像、融合全色中间图像的亮度及色亮分离图像的亮度以得到具有第一分辨率的亮度修正彩
色图像、以及对亮度修正彩色图像中的每个单色大像素进行插值处理以获取除该单颜色以
外的另外两种颜色的像素值并输出以得到具有第一分辨率的第二目标图像。
[0229] 具体地,全色原始图像可通过图43所示的方式变换为全色中间图像。如图43所示,全色原始图像包括多个子单元,每个子单元都包括两个空像素N和两个全色像素W。处理芯片20可以将每个包括空像素N和全色像素W的子单元中的所有像素作为与该子单元对应的
全色大像素W。由此,处理芯片20即可根据多个全色大像素W形成一张全色中间图像。如果包括多个空像素N的全色原始图像视为一张具有第二分辨率的图像,则按照图43所示方式获
取的全色中间图像则为一张具有第一分辨率的图像,其中,第一分辨率小于第二分辨率。
[0230] 作为一个示例,处理芯片20可以通过以下方式将全色原始图像中每个子单元的所有像素作为与该子单元对应的全色大像素W:处理芯片20首先合并每个子单元中的所有像
素的像素值以得到全色大像素W的像素值,再根据多个全色大像素W的像素值形成全色中间
图像。具体地,对于每个全色大像素,处理芯片20可以将包括空像素N和全色像素W的子单元中的所有像素值相加,并将相加的结果作为对应该子单元的全色大像素W的像素值,其中,空像素N的像素值可以视为零。由此,处理芯片20即可获得多个全色大像素W的像素值。
[0231] 处理芯片20获得全色中间图像和彩色中间图像后,可以对全色中间图像和彩色中间图像做融合处理以得到第二目标图像。
[0232] 示例地,如图43所示,处理芯片20首先分离彩色中间图像的色彩及亮度以获取色亮分离图像,图43中色亮分离图像中的L表示亮度,CLR表示色彩。具体地,假设单颜色像素A为红色像素R,单颜色像素B为绿色像素G,单颜色像素C为蓝色像素Bu,则:(1)处理芯片20可以将RGB空间的彩色中间图像转换为YCrCb空间的色亮分离图像,此时YCrCb中的Y即为色亮
分离图像中的亮度L,YCrCb中的Cr和Cb即为色亮分离图像中的色彩CLR;(2)处理芯片20也
可以将RGB的彩色中间图像转换为Lab空间的色亮分离图像,此时Lab中的L即为色亮分离图
像中的亮度L,Lab中的a和b即为色亮分离图像中的色彩CLR。需要说明的是,图44所示色亮分离图像中L+CLR并不表示每个像素的像素值由L和CLR相加而成,仅表示每个像素的像素
值是由L和CLR组成。
[0233] 随后,处理芯片20融合色亮分离图像的亮度以及全色中间图像的亮度。示例地,全色中间图像中每个全色像素W的像素值即为每个全色像素的亮度值,处理芯片20可以将色亮分离图像中每个像素的L与全色中间图像中对应位置的全色像素的W相加,即可得到亮度
修正后的像素值。处理芯片20根据多个亮度修正后的像素值形成一张亮度修正后的色亮分
离图像,再利用色彩空间转换将亮度修正后的色亮分离图像转换为亮度修正彩色图像。
[0234] 在单色大像素A为红色像素R,单色大像素B为绿色像素G,单色大像素C为蓝色像素Bu时,亮度修正彩色图像为拜耳阵列排布的图像,处理芯片20需要对亮度修正彩色图像做
插值处理,以使得每个修正了亮度后的单色大像素的像素值都同时具有R、G、B三个分量。处理芯片20可以对亮度修正彩色图像做插值处理以得到第二目标图像,示例地,可采用线性
插值方式来获取第二目标图像,线性插值过程与前述步骤040中的插值过程类似,在此不再赘述。
[0235] 由于亮度修正彩色图像具有第一分辨率,第二目标图像为亮度修正彩色图像经插值处理得到,处理芯片20未对亮度修正彩色图像做插补处理,因此,第二目标图像的分辨率也为第一分辨率。由于第二目标图像是融合了彩色中间图像的亮度及全色中间图像亮度得
到的,因此第二目标图像具有更好的成像效果。在模式为预览模式又为非低功耗模式时使
用第二目标图像作为预览图像,可以提升预览图像的预览效果。在模式为成像模式又为低
功耗模式时,使用第二目标图像作为提供给用户的图像,由于第二目标图像是无需经过插
补处理计算得到的,一定程度上可以减小摄像头组件40的功耗,能够满足低功耗模式下的
使用需求;同时第二目标图像的亮度较亮,可以满足用户对目标图像的亮度要求。
[0236] 请再参阅图41,在又一个例子中,当目标图像为第三目标图像时,步骤04包括:
[0237] 044:插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率;及
[0238] 045:对彩色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第三目标图像。
[0239] 请参阅图33,步骤044和步骤045均可以由处理芯片20实现。也即是说,处理芯片20可以用于插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率。处理芯片20还可以用于对彩
色插补图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的
像素值并输出以得到具有第二分辨率的第三目标图像。
[0240] 具体地,请结合图44,处理芯片20将彩色中间图像中的每一个单色大像素拆分为四个彩色像素,四个彩色像素组成彩色插补图像中的一个子单元,每个子单元中包括三种
颜色的彩色像素,分别为一个彩色像素A、两个彩色像素B、及一个彩色像素C。当彩色像素A为红色像素R,彩色像素B为绿色像素G,彩色像素C为蓝色像素Bu时,每个子单元中的多个彩色像素即呈拜耳阵列排布。由此,包含多个子单元的彩色插补图像即为拜耳阵列排布的图
像。处理芯片20可以对彩色插补图像做插值处理以得到第三目标图像,示例地,可采用线性插值方式来获取第二目标图像,线性插值过程与前述步骤040中的插值过程类似,在此不再赘述。第三目标图像是经过插补处理得到的图像,第三目标图像的分辨率(即第二分辨率)
比彩色中间图像的分辨率(即第一分辨率)来得大。在模式即为预览模式又为非低功耗模式
时,将第三目标图像作为预览图像,可以得到更为清晰的预览图像。在模式既为成像模式又为低功耗模式时,将第三目标图像作为提供给用户的图像,由于第三目标形成过程中不需
要与全色中间图像做亮度融合,可以在一定程度上降低摄像头组件40的功耗,同时又能满
足用户对拍摄图像的清晰度要求。
[0241] 请再参阅图41,在又一个例子中,当目标图像为第四目标图像时,步骤03包括:
[0242] 032:插补处理全色原始图像,获取每个子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像;
[0243] 步骤04包括:
[0244] 046:插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵列排布,第二分辨率大于第一分辨率;
[0245] 047:分离彩色插补图像的色彩及亮度以得到具有第二分辨率的色亮分离图像;
[0246] 048:融合全色插补图像的亮度及色亮分离图像的亮度以得到具有第二分辨率的亮度修正彩色图像;及
[0247] 049:对亮度修正彩色图像中的所有单颜色像素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二分辨率的第四目标图像。
[0248] 请参阅图33,步骤032、步骤046、步骤047、步骤048及步骤049均可以由处理芯片20实现。也即是说,处理芯片20可以用于插补处理全色原始图像,获取每个子单元中的所有像素的像素值以得到具有第二分辨率的全色中间图像。处理芯片20还可以用于插补处理彩色中间图像以得到具有第二分辨率的彩色插补图像,彩色插补图像中对应的子单元呈拜耳阵
列排布,第二分辨率大于第一分辨率。处理芯片20还可以用于分离彩色插补图像的色彩及
亮度以得到具有第二分辨率的色亮分离图像、融合全色插补图像的亮度及色亮分离图像的
亮度以得到具有第二分辨率的亮度修正彩色图像、对亮度修正彩色图像中的所有单颜色像
素进行插值处理以获取除该单颜色以外的另外两种颜色的像素值并输出以得到具有第二
分辨率的第四目标图像。
[0249] 具体地,处理芯片20首先要对第一分辨率的全色原始图像做插补处理以得到第二分辨率的全色中间图像。请结合图46,全色原始图像包括多个子单元,每个子单元包括两个空像素N和两个全色像素W,处理芯片20需要将每个子单元中的每个空像素N均替换为全色
像素W,并计算出替换后位于空像素N所在位置的每个全色像素W的像素值。对于每一个空像素N,处理芯片20将该空像素N替换为全色像素W,并根据与该替换后的全色像素W相邻的其
余全色像素W的像素值来确定该替换后的全色像素W的像素值。以图46所示全色原始图像中
的空像素N1,8(“空像素N1,8”为从左上方算起第一行第八列的空像素N,下同)为例,空像素N1,8替换为全色像素W1,8,与全色像素W1,8相邻的像素为全色原始图像中的全色像素W1,7以及全色像素W2,8,作为示例,可以将全色像素W1,7的像素值和全色像素W2,8的像素值的均值作为全色像素W1,8的像素值。以图46所示全色原始图像中的空像素N2,3为例,空像素N2,3替换为全色像素W2,3,与全色像素W2,3相邻的全色像素为全色原始图像中的全色像素W1,3、全色像素W2,2、全色像素W2,4、以及全色像素W3,3,作为示例,处理芯片20将全色像素W1,3的像素值、全色像素W2,2的像素值、全色像素W2,4的像素值、以及全色像素W3,3的像素值的均值作为替换后的全色像素W2,3的像素值。
[0250] 处理芯片20获得全色中间图像和彩色中间图像后,可以对全色中间图像和彩色中间图像做融合处理以得到第四目标图像。
[0251] 首先,处理芯片20可以对第一分辨率的彩色中间图像做插补处理以得到第二分辨率的彩色插补图像,如图45所示。具体插补方式与步骤045中的插补方式类似,在此不做赘述。
[0252] 随后,如图45所示,处理芯片20可以分离彩色插补图像的色彩及亮度以获取色亮分离图像,图45中色亮分离图像中的L表示亮度,CLR表示色彩。具体地,假设单颜色像素A为红色像素R,单颜色像素B为绿色像素G,单颜色像素C为蓝色像素Bu,则:(1)处理芯片20可以将RGB空间的彩色插补图像转换为YCrCb空间的色亮分离图像,此时YCrCb中的Y即为色亮分
离图像中的亮度L,YCrCb中的Cr和Cb即为色亮分离图像中的色彩CLR;(2)处理芯片20也可
以将RGB的彩色插补图像转换为Lab空间的色亮分离图像,此时Lab中的L即为色亮分离图像
中的亮度L,Lab中的a和b即为色亮分离图像中的色彩CLR。需要说明的是,图45所示色亮分离图像中L+CLR并不表示每个像素的像素值由L和CLR相加而成,仅表示每个像素的像素值
是由L和CLR组成。
[0253] 随后,如图46所示,处理芯片20可以融合色亮分离图像的亮度以及全色中间图像的亮度。示例地,全色中间图像中每个全色像素W的像素值即为每个全色像素的亮度值,处理芯片20可以将色亮分离图像中每个像素的L与全色中间图像中对应位置的全色像素的W
相加,即可得到亮度修正后的像素值。处理芯片20根据多个亮度修正后的像素值形成一张
亮度修正后的色亮分离图像,再将亮度修正后的色亮分离图像转换为亮度修正彩色图像,
该亮度修正彩色图像具有第二分辨率。
[0254] 在彩色像素A为红色像素R,彩色像素B为绿色像素G,彩色像素C为蓝色像素Bu时,亮度修正彩色图像为拜耳阵列排布的图像,处理芯片20需要对亮度修正彩色图像做插值处
理,以使得每个修正了亮度后的彩色像素的像素值都同时具有R、G、B三个分量。处理芯片20可以对亮度修正彩色图像做插值处理以得到第四目标图像,示例地,可采用线性插值方式
来获取第四目标图像,线性插值过程与前述步骤40中的插值过程类似,在此不再赘述。
[0255] 由于第四目标图像是融合了彩色中间图像的亮度及全色中间图像亮度得到的,且第四目标图像具有较大的分辨率,因此第四目标图像具有更好的亮度和清晰度。在模式为
既为成像模式又为非低功耗模式时使用第四目标图像作为提供给用户的图像,可以满足用
户对拍摄图像的质量要求。
[0256] 在某些实施方式中,图像采集方法还可以包括获取环境亮度。该步骤可以由处理芯片20实现,具体实现方式如前所述,在此不再赘述。在环境亮度大于亮度阈值时,可以将第一目标图像或第三目标图像作为目标图像;在环境亮度小于或等于亮度阈值时,可以将
第二目标图像或第四目标图像作为目标图像。可以理解,在环境亮度较亮时,仅由彩色中间图像得到的第一目标图像和第二目标图像的亮度已经足够满足用户对目标图像的亮度需
求,此时可以无需融合全色中间图像的亮度来提升目标图像的亮度,如此,不仅可以减小处理芯片20的计算量,还可以降低摄像头组件40的功耗。在环境亮度较低时,仅由彩色中间图像得到的第一目标图像和第二目标图像的亮度可能无法满足用户对目标图像的亮度需求,
将融合了全色中间图像的亮度得到的第二目标图像或第四目标图像作为目标图像,可以提
升目标图像的亮度。
[0257] 请参阅图47,本申请还提供一种移动终端60。移动终端60可以是手机、平板电脑、笔记本电脑、智能穿戴设备(如智能手表、智能手环、智能眼镜、智能头盔等)、头显设备、虚拟现实设备等等,在此不做限制。
[0258] 移动终端60包括壳体50和摄像头组件40。壳体50和摄像头组件40结合。示例地,摄像头组件40可以安装在壳体50上。移动终端60中还可以包括处理器(图未示)。摄像头组件40中的处理芯片20与处理器可为同一个处理器,也可为两个独立的处理器,在此不作限制。
[0259] 在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0260] 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部
分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺
序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
[0261] 尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对
上述实施方式进行变化、修改、替换和变型。