一种靶向神经生长因子的单克隆抗体及其应用转让专利

申请号 : CN201910939980.4

文献号 : CN110684106B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王春河李欢欢刘国键陈淦均李三泰温家明陈艺丽王琪林以均王米娜

申请人 : 达石药业(广东)有限公司上海迈石生物技术有限公司深圳创石生物医药有限公司

摘要 :

本发明涉及一种靶向神经生长因子(NGF)的单克隆抗体及其应用。所述单克隆抗体包含:重链可变区,其包含SEQ ID NO:1或SEQ ID NO:7所示的CDR‑H1、SEQ ID NO:2或SEQ ID NO:8所示的CDR‑H2和SEQ ID NO:3或SEQ ID NO:9所示的CDR‑H3;和轻链可变区,其包含SEQ ID NO:4或SEQ ID NO:10所示的CDR‑L1、SEQ ID NO:5或SEQ ID NO:11所示的CDR‑L2和SEQ ID NO:6或SEQ ID NO:12所示的CDR‑L3。本发明的单克隆抗体可应用于NGF分子检测试剂及治疗性抗体的研发。

权利要求 :

1.一种靶向神经生长因子(NGF)的单克隆抗体,所述单克隆抗体包含SEQ ID NO:13所示的重链可变区和SEQ ID NO:14所示的轻链可变区;或者所述单克隆抗体包含SEQ ID NO:15所示的重链可变区和SEQ ID NO:16所示的轻链可变区。

2.根据权利要求1所述的单克隆抗体用于制备镇痛剂或NGF分子检测试剂的用途。

3.一种镇痛剂组合物,其至少包含权利要求1所述的单克隆抗体。

4.一种NGF分子检测试剂,其至少包含权利要求1所述的单克隆抗体。

说明书 :

一种靶向神经生长因子的单克隆抗体及其应用

技术领域

[0001] 本发明属于生物化学领域,具体地,本发明涉及一种靶向神经生长因子(NGF)的单克隆抗体及其应用。

背景技术

[0002] 神经生长因子(NGF)是一种小型分泌蛋白,属于神经营养因子家族,不仅存在于神经系统中,还存在于全身其他组织中。NGF以前体(Pro-NGF)形式存在,并在内切酶的作用下激活。NGF包含2个α亚基、1个β亚基、2个γ亚基,共同形成α2βγ2的结构。其中β亚基是118个氨基酸组成的同源二聚体多肽,其氨基酸组成和序列在不同种族间高度保守(人与鼠NGF的相似度约90%)。只有β亚基单独存在时,NGF才能发挥生物活性。γ亚基有水解蛋白质的活性,属于胰蛋白酶样激肽释放酶家族。尽管α亚基与γ亚基高度相似,但α亚基无酶活性。NGF的受体为p75神经营养因子受体(NTR)和酪氨酸激酶受体A(TrkA)。p75NTR属于肿瘤坏死因子(TNF)受体家族,由富含半胱氨酸的胞外区、跨膜区和胞内死亡域构成。其中,胞内死亡域可被磷酸化进而和多种死亡相关信号蛋白结合。p75NTR无酪氨酸激酶活性,也不与G蛋白偶联信号通路相关。p75NTR对NGF的亲和力较低。与p75NTR相比,TrkA对NGF的亲和力较高,且有酪氨酸激酶活性,主要选择性表达于痛觉神经元上。与大多数酪氨酸激酶受体类似,TrkA的激活依靠配体诱导相关受体二聚化的形成。
[0003] NGF的主要作用为维持神经细胞的存活、增殖与分化。近期的研究表明,NGF在炎症、疼痛中也发挥一定作用。NGF调节疼痛主要是通过与TrkA结合介导实现的。当NGF与痛觉末梢上的TrkA结合后,另一分子的TrkA与之结合,形成的NGF/TrkA复合体促进TrkA细胞内结构域的自体磷酸化,进而激活下游通路而发挥作用。通过该信号通路,NGF激活瞬时电压感受器香草酸受体亚型1(TRPV1)阳离子通道,该通道感受细胞内外机械、温度、化学物质等刺激。该通道开放后会导致大量钙离子内流,产生动作电位,将疼痛信号转换为电信号传递至痛觉神经元而产生疼痛。NGF还能促进TRPV1的表达,并将其转运至细胞膜。因此,通过上述2种机制,NGF能有效激活TRPV1阳离子通道,进而产生疼痛。研究发现,慢性持续性疼痛与NGF介导产生的TRPV1激动剂氧化脂质激活TRPV1阳离子通道相关。此外,NGF可以上调痛觉神经元相关基因,如P物质、Nav1.8、BNDF的表达,来促进疼觉神经元的敏化。NGF还能间接激活肥大细胞,释放疼痛介质,如前列腺素、缓激肽及组胺等,刺激痛觉末梢,增加痛感。简言之,NGF主要通过激活或上调离子通道、上调疼痛相关基因的表达及促进肥大细胞释放疼痛介质等机制产生疼痛。
[0004] 现在临床上多使用吗啡等阿片类药物进行镇痛,然而这类药物具有严重的呼吸抑制、抑郁、致幻等毒副作用并容易造成滥用和成瘾,引发吸毒等社会问题。NGF阻断型抗体分子的疗效能与阿片药物相媲美但又无耐受和成瘾风险、毒副作用较小,因此相对于阿片类药物具有明显的优势,临床应用价值高。NGF抗体也可以用于NGF分子的检测。基于NGF抗体的以上优点,有必要开发一类可以有效阻断NGF与TrkA的结合的NGF抗体分子。

发明内容

[0005] 鉴于以上问题,本发明的技术目的是提供一种靶向神经生长因子(NGF)的单克隆抗体及其应用。
[0006] 因此,一方面,本发明提供一种靶向神经生长因子(NGF)的单克隆抗体,其包含:
[0007] 重链可变区,其包含CDR-H1、CDR-H2和CDR-H3序列;和
[0008] 轻链可变区,其包含CDR-L1、CDR-L2和CDR-L3序列,
[0009] 其中,
[0010] CDR-H1可选自SEQ ID NO:1所示的序列或SEQ ID NO:7所示的序列;
[0011] CDR-H2可选自SEQ ID NO:2所示的序列或SEQ ID NO:8所示的序列;
[0012] CDR-H3可选自SEQ ID NO:3所示的序列或SEQ ID NO:9所示的序列;并且[0013] CDR-L1可选自SEQ ID NO:4所示的序列或SEQ ID NO:10所示的序列;
[0014] CDR-L2可选自SEQ ID NO:5所示的序列或SEQ ID NO:11所示的序列;
[0015] CDR-L3可选自SEQ ID NO:6所示的序列或SEQ ID NO:12所示的序列。
[0016] 在一个具体实施方式中,所述单克隆抗体包含:
[0017] 重链可变区,其包含SEQ ID NO:1所示的CDR-H1、SEQ ID NO:2所示的CDR-H2和SEQ ID NO:3所示的CDR-H3,和
[0018] 轻链可变区,其包含SEQ ID NO:4所示的CDR-L1、SEQ ID NO:5所示的CDR-L2和SEQ ID NO:6所示的CDR-L3。
[0019] 在一个具体实施方式中,所述单克隆抗体包含:
[0020] 重链可变区,其包含SEQ ID NO:7所示的CDR-H1、SEQ ID NO:8所示的CDR-H2和SEQ ID NO:9所示的CDR-H3,和
[0021] 轻链可变区,其包含SEQ ID NO:10所示的CDR-L1、SEQ ID NO:11所示的CDR-L2和SEQ ID NO:12所示的CDR-L3。
[0022] 在一个具体实施方式中,所述单克隆抗体包含SEQ ID NO:13所示的重链可变区和SEQ ID NO:14所示的轻链可变区。
[0023] 在一个具体实施方式中,所述单克隆抗体包含SEQ ID NO:15所示的重链可变区和SEQ ID NO:16所示的轻链可变区。
[0024] 另一方面,本发明提供了上述单克隆抗体用于制备镇痛剂或NGF分子检测试剂的用途。
[0025] 另一方面,一种镇痛剂组合物,其至少包含上述单克隆抗体。
[0026] 再一方面,一种NGF分子检测试剂,其至少包含上述单克隆抗体。
[0027] 有益效果
[0028] 本发明筛选的两种NGF抗体分子1D4、5F2与现有技术中的NGF抗体分子Tanezumab的亲和力相似,均可以阻断NGF与TrkA的结合,1D4、5F2的EC50分别为0.92和0.95nM,优于与现有技术中的NGF抗体分子Tanezumab,在制备镇痛剂或NGF分子检测试剂中具有很好的应用前景。

附图说明

[0029] 图1显示本发明制备实施例1中制备的抗体1D4和5F2和阳性对照药Tanezumab的亲和力测试结果。
[0030] 图2显示本发明制备实施例1中制备的抗体1D4和5F2和阳性对照药Tanezumab阻断NGF与TrkA的结合的测试结果。

具体实施方式

[0031] 以下通过具体实施例来说明本发明的具体实施方式以使本领域的技术人员更好地了解本发明,然而这些实施方式不意图限制本发明的范围。
[0032] 实施例1:鼠源抗体产生和筛选
[0033] 用带有His标签的NGF对BALB/c小鼠进行了多次免疫,得到高血清效价的小鼠。取最高效价的小鼠的脾脏细胞与SP20骨髓瘤细胞融合形成杂交瘤细胞,然后进行结合的筛选,筛选方法是“直接ELISA”,即把抗原人的(胞外区)包被在ELISA板上,与培养基上清孵育,然后使用生物素标记的羊抗鼠Fc抗体、Strepavidin-HRP,和TMB底物显色筛选。通过结合筛选,得到大量的结合克隆。最后选择了亲和力最强的两种抗体,分别命名为:1D4和5F2。
[0034] 实施例2:鼠源抗体的序列分析
[0035] 对1D4和5F2的轻链和重链的cDNA进行了克隆和测序。使用AbYsis上的工具结合人工经验对序列进行了分析,标注出了框架区、互补决定区(CDR)和不可变区。对2D3的可变区(通过对框架区和CDR区)进行了Genebank蛋白序列同源搜索,结果显示框架区与多种小鼠抗体的框架区高度同源。没有找到与1D4和5F2的CDR区同源的蛋白序列。因此,1D4和5F2是一序列尚未被报道过的全新的鼠源抗体。
[0036] 1D4和5F2的轻链和重链可变区的测序结果如下:
[0037] CDR-H1(SEQ ID NO:1或SEQ ID NO:7);
[0038] CDR-H2(SEQ ID NO:2或SEQ ID NO:8);
[0039] CDR-H3(SEQ ID NO:3或SEQ ID NO:9);
[0040] CDR-L1(SEQ ID NO:4或SEQ ID NO:10);
[0041] CDR-L2(SEQ ID NO:5或SEQ ID NO:11);
[0042] CDR-L3(SEQ ID NO:6或SEQ ID NO:12);
[0043] 1D4重链可变区:SEQ ID NO:13;
[0044] 1D4轻链可变区:SEQ ID NO:14;
[0045] 5F2重链可变区:SEQ ID NO:15;
[0046] 5F2轻链可变区:SEQ ID NO:16。
[0047] 具体氨基酸序列请见序列表。
[0048] 实施例3:抗原亲和力分析
[0049] 将1ug/ml的抗体蛋白4℃过夜包被在ELISA板上,次日用封闭液室温封闭以避免非特异性结合,之后加入生物素化标记的待检测的抗原室温孵育,加辣根过氧化物酶标记的链霉亲合素(Streptavidin-HRP)作为显色底物,用TMB显色,在450nm处测吸光值,在Prism上做出相应的结合曲线。结果显示1D4和5F2与抗原的亲和力为5.2及2.9nM(参见图1),与美国辉瑞和礼来公司的NGF抗体分子Tanezumab的亲和力相似。
[0050] 实施例4:1D4和5F2抗体分子阻断NGF与TrkA的结合。
[0051] 将1ug/ml的NGF-FC蛋白4℃过夜包被在ELISA板上,次日用封闭液室温封闭以避免非特异性结合,之后加入不同浓度抗体分子1D4和5F2与NGF室温结合1小时,洗掉以后加入生物素化标记的待检测的TrkA蛋白室温孵育,加辣根过氧化物酶标记的链霉亲合素(Streptavidin-HRP)作为显色底物,用TMB显色,在450nm处测吸光值,在Prism上做出相应的结合曲线。结果显示1D4和5F2都可以阻断NGF与TrkA的结合,其EC50分别为0.92和0.95nM(参见图2),优于与美国辉瑞和礼来公司的NGF抗体分子Tanezumab。