一种基于股骨旋转轴与内翻轴分析模型的构建方法及系统转让专利

申请号 : CN201911080296.1

文献号 : CN110811829B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 程徽罗殿中张洪谢智衡明文华黄育瀑

申请人 : 中国人民解放军总医院第四医学中心

摘要 :

本发明涉及一种基于股骨旋转轴与内翻轴的分析模型的构建方法及系统。方法包括基于检查数据构建股骨‑髋臼模型;呈现股骨‑髋臼模型;基于股骨‑髋臼模型生成髋臼模型和股骨模型;基于股骨模型生成能够用于分割股骨头部模型和股骨体模型的切割面,其能够基于股骨头部模型和切割面构建旋转轴,其中,在股骨头部模型绕旋转轴转动的情况下,股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动,其能够依据股骨头部模型的骨表面和旋转轴构建内翻轴,其中,在股骨头部模型绕内翻轴转动的情况下,股骨头部模型能够以将股骨头部分区域移除负重区的方式与髋关节面生成倾角。据此方法,本发明还涉及了一种构建系统。

权利要求 :

1.一种基于股骨旋转轴与内翻轴的分析模型的构建系统,包括:模型构建模块(1),基于检查数据构建股骨-髋臼模型;

图像显示模块(2),用于呈现所述股骨-髋臼模型;

其特征在于,所述系统还包括:

模型切割模块(4),基于所述股骨-髋臼模型生成能够用于分割股骨头部模型和股骨体模型的切割面,旋转轴构建模块(5),其能够基于所述股骨头部模型和所述切割面构建旋转轴,其中,在所述股骨头部模型绕所述旋转轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动;和内翻轴构建模块(6),其能够依据所述股骨头部模型的骨表面和所述旋转轴构建内翻轴,其中,在所述股骨头部模型绕所述内翻轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移除负重区的方式与所述髋关节面生成倾角;

所述系统还包括:

模型分割模块(3),能够基于所述股骨-髋臼模型生成髋臼模型和股骨模型;

判别模块(7),用于判别所述旋转轴是否满足第一特征需求;

如果所述旋转轴与所述切割面的法向量的角度小于第一角度阈值,则所述旋转轴满足所述第一特征需求;否则,所述旋转轴不满足所述第一特征需求;

在所述判别模块(7)判别出所述旋转轴不满足所述第一特征需求的情况下,所述模型切割模块(4)基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。

2.根据权利要求1所述的构建系统,其特征在于,所述判别模块(7)还用于判别所述切割面是否满足第二特征需求;

如果所述切割面的法向量与所述髋关节面形成的空间体的重心线的角度小于第二角度阈值,则所述切割面满足所述第二特征需求;否则,所述切割面不满所述第二特征需求;

在所述判别模块(7)判别出所述切割面不满足所述第二特征需求的情况下,所述模型切割模块(4)基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。

3.根据权利要求2所述的构建系统,其特征在于,所述判别模块(7)还用于判别所述切割面是否满足第三特征需求;如果所述切割面与所述髋关节面形成的空间体的空间距离满足距离阈值,则所述切割面满足所述第三特征需求;否则,所述切割面不满所述第三特征需求;

在所述判别模块(7)判别出所述切割面不满足所述第三特征需求的情况下,所述模型切割模块(4)基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。

4.根据权利要求1所述的构建系统,其特征在于,所述系统还包括回转轴构建模块(8),用于将至少两个符合所述第一特征需求的旋转轴生成一个回转轴,其中,在所述股骨头部模型绕所述回转轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动。

5.根据权利要求4所述的构建系统,其特征在于,所述内翻轴构建模块(6)能够在所述回转轴构建模块(8)构建了所述回转轴的情况下基于所述回转轴构建内翻轴而不基于旋转轴构建内翻轴,以使得所述内翻轴能够与所述股骨头部模型的旋转中心轴能够配套使用。

6.根据权利要求3所述的构建系统,其特征在于,在切割面的位置关系符合所述第二特征需求和所述第三特征需求的情况下,所述旋转轴构建模块(5)能够按照如下方式构建所述旋转轴:计算所述切割面与所述股骨头部模型的点集合,并基于所述点集合形成的平面图形生成所述平面图形的重心作为第一标志点;

以所述股骨头部模型的重心作为第二标志点;

构建同时穿过所述第一标志点和所述第二标志点的直线作为所述旋转轴。

7.根据权利要求6所述的构建系统,其特征在于,所述内翻轴构建模块(6)按照如下方式构建所述内翻轴:在所述旋转轴满足所述第一特征需求的情况下,所述内翻轴构建模块(6)生成能包围完整的股骨头部模型的股骨头表面的方向包围盒;

提取构成方向包围盒的所有线段中的最短线段;

对最短线段进行归一化处理得到第一线段;

将第一线段移动到所述第一标志点处得到第二线段;

对所述旋转轴与所述第二线段进行叉积运算得到归一化的第三线段;

求第三线段与完整的股骨模型的表面的交点作为第三标志点;和将第二线段沿第三线段平移到第三标志点处作为内翻轴。

说明书 :

一种基于股骨旋转轴与内翻轴分析模型的构建方法及系统

技术领域

[0001] 本发明涉及医疗信息化技术领域,尤其涉及一种基于股骨旋转轴与内翻轴的分析模型的构建方法及系统。

背景技术

[0002] 股骨头坏死是一个病理演变过程,初始发生在股骨头的负重区,应力作用下坏死骨骨小梁结构发生损伤即显微骨折以及随后针对损伤骨组织的修复过程。造成骨坏死的原因不消除,修复不完善,损伤-修复的过程继续,导致股骨头结构改变、股骨头塌陷、变形,关节炎症,功能障碍。对这一疾病如果单纯的从临床症状及体征上进行确诊比较困难,容易出现误诊或者漏诊的情况,现阶段临床上主要采取的检测方法是X线检查及CT检查、磁共振检查3种诊断方式。在股骨头坏死的临床诊断中,X线检查是应用最广泛的一种方法,通过检查主要能够对患者的病情进展及骨坏死程度进行了解,CT检查也主要是对患者骨坏死的情况进行了解,通过对影像进行分析选择合适的治疗方法。
[0003] 股骨头坏死(avascular necrosis of the femoral head,ANFH)主要采用以下方式治疗:非手术治疗、保髋手术治疗和人工关节置换术。随着技术计算机技术、空间导航技术以及图像处理技术的迅速发展,计算机辅助导航技术在传统的TKR手术方法中得到了较好应用。计算机辅助导航技术系统是将术前和术后获得的影像学资料经过计算机处理后形成三维可视影像。其可以进行模拟手术,术前可自动选出最适合的尺寸关节零件、模拟开刀,手术中在骨头中放置感应器,导航系统上有红外线摄像头,动态追踪手术器械相对患者解剖的实时空间位置关系,手术医生据此可精确地放置人工关节。不过导航技术存在如下地不足:导航技术无法确定负重片区,即导航技术是在非负重的情况下测量下肢力线,其结果与负重下的存在差异。
[0004] 例如,公开号为CN108542408A的中国专利公开的一种三维立体股骨头尺寸测量装置。其主要包括:扫描床、防护装置、测量装置。扫描床第一段安装有防护装置,另一端安装测量装置,扫面装置安装在扫面床的侧面。该发明的三维立体股骨头尺寸测量装置将X射线扫描、双目立体摄像、三维建模技术相结合,准确地测定患者的股骨头的三维立体尺寸,达到精确测量的目的,在进行人工股骨头置换手术之前,对患者的股骨头进行三维建模,在根据患者的实际治疗情况,医护人员制定出最佳手术方案,结构巧妙,操作简单快捷,提高医疗人员的工作效率和患者的治愈率。
[0005] 例如,公开号为CN107545578A的中国专利公开的一种CT图像中股骨头区域分割方法、装置及设备。该方法包括获取被检体股骨头区域CT序列图像,通过对所述CT序列图像的每一幅图像的股骨头区域进行定位,构建股骨头包围盒和股骨颈包围盒;基于空间辐射线法在股骨头包围盒和股骨颈包围盒内获取多个采样点;根据多个采样点生成二维采样图像;在二维采样图像上确定股骨头区域的骨皮质外边界。该发明旨在准确地分割CT序列图像中股骨头区域的骨皮质外边界。
[0006] 例如,公开号为CN104462636B的中国专利公开的一种基于伞状股骨头支撑器的坏死股骨头修复模型的建模方法。其方法包括:一、待修复股骨头的三维模型获取;获取待修复股骨头NURBS曲面模型,待修复股骨头为存在骨组织坏死区域且预采用股骨头支撑器修复的股骨头;股骨头支撑器由伞状支撑器和支撑套筒组成;二、根据伞状支撑器形状,确定需分离坏死区域,建立坏死股骨头模型;三、股骨头支撑器模型建立;四、坏死股骨头植入模型建立:建立带植入通道的坏死股骨头植入模型和植入骨的三维模型;五、坏死股骨头修复模型建立。该发明能够简便地、快速建立股骨头支撑器植入坏死股骨头的修复模型,且所建立的修复模型质量高。
[0007] 在科技论文研究方面,例如,《大连理工大学学报》2009年第49卷(第二期)的文章——基于CT图像反求技术的人体股骨头修复建模。利用基于模型的分割方法从人体髋关节CT图像中分别提取股骨和髋臼骨轮廓三维点数据,通过对离散点云数据进行规则化处理、精简、分割等,提取目标区域点云数据,最后利用最小二乘法拟合对因病变而发生塌陷的股骨头表面进行修复重建,恢复其健康状态的球面形态特征。利用两例不同程度的股骨头坏死病例进行修复实验,均得到较精确的修复还原效果。该方法不仅可以很好地重构人体髋关节模型、还原缺损股骨头的原始形态,而且可以推广到其他关节或骨组织,为骨科手术的精确定位和生物力学有限元分析提供了理论模型,并为关节假体的个体化快速制造提供了一种有效的方法。
[0008] 东北大学硕士论文提供了一种CT和MRI图像配准及融合方法。
[0009] 在其他相关技术领域方面,公开号为CN104622572A的基于医学图像的个性化骨科定位片。该专利旨在提供一种能够精确确定膝关节置换中关节定位孔和切削面的位置。首先,基于医学图像重建骨骼模型,对重构模型进行术前规划,确定下肢力线,股骨旋转轴和截骨参考点等参数,模拟截骨和假体置入。利用以上结果,确定和设计定位片;医生登录数据管理模块,查询数据。
[0010] 中国专利(公开号为CN108711187A)公开了一种配准融合CT和MRI信号建立人体腰椎三维仿真模型的方法,包括:采集计算机断层扫描CT图像;采集磁共振成像MRI图像;建立计算机断层扫描图像三维模型;建立磁共振成像图像三维模型;配准融合计算机断层扫描图像三维模型和磁共振成像图像三维模型,包括根据腰椎解剖结构进行简单配准和进行全局计算配准。该专利充分利用现有常规检查如计算机断层扫描和磁共振成像结合优选磁共振扫描序列,建立可以在各个磁共振序列内相互验证准确度的腰椎间盘、神经根、黄韧带的重要软组织三维模型,建立了腰椎间盘新的医学影像高准确度的建模方式,同时大大提高了医学影像检查的数据的利用率。
[0011] 对于截骨术而言,在手术前,外科医生需要获得对手术对象身体结构尽可能进行精确地解剖学图像,针对股骨头坏死的诊断主要来自于CT/MR的影像数据,才能确定手术方案,例如确定切开的大小、位置,如何避开其他脏器和神经等等。骨科医生只有根据CT/MR的影像来预估旋转角度以及旋转相应的角度后大致估计是否有将大部分坏死骨质区域移出负重区和将正常的骨质区域移入负重区的可能,而且即使得到了预估的结果,在实际操作过程中,截骨后,一些医生还可能要旋转到不同的角度去尝试是否可能有更佳的手术方案。因此,外壳医生基于CT或者MR影响数据难以准确地判定股骨头坏死的空间立体关系,这对于手术方案的确定、实施以及手术的成功率是不利的。

发明内容

[0012] 针对现有技术之不足,本发明旨在使用计算机断层扫面技术,获取断层检查数据,生成三维可视化图像,用于能够在股骨头坏死的空间立体关系,从而能够基于该立体关系确定手术方案以及在手术中存在的风险进行评估。本发明能够在虚拟空间内,通过导入检查数据的形式,构造一个能够模拟人体构造的动态模型,通过三维切割、三维交互以及三维测量等手段,便于医生能够模拟手术,为患者手术提供一种合理的手术方案。
[0013] 基于此,本发明提供了一种基于股骨旋转轴与内翻轴分析模型的构建系统,包括:模型构建模块,基于检查数据构建股骨-髋臼模型;图像显示模块,用于呈现所述股骨-髋臼模型;模型分割模块,能够基于所述股骨-髋臼模型生成髋臼模型和股骨模型;所述系统还包括:模型切割模块,基于所述股骨模型生成能够用于分割股骨头部模型和股骨体模型的切割面,旋转轴构建模块,其能够基于所述股骨头部模型和所述切割面构建旋转轴,其中,在所述股骨头部模型绕所述旋转轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动,内翻轴构建模块,其能够依据所述股骨头部模型的骨表面和所述旋转轴构建内翻轴,其中,在所述股骨头部模型绕所述内翻轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移除负重区的方式与所述髋关节面生成倾角。
[0014] 根据一种优选的实施方式,所述系统还包括判别模块,用于判别所述旋转轴是否满足第一特征需求;如果所述旋转轴与所述切割面的法向量的角度小于第一角度阈值,则所述旋转轴满足所述第一特征需求;否则,所述旋转轴不满足所述第一特征需求;在所述判别模块判别出所述旋转轴不满足所述第一特征需求的情况下,所述模型切割模块基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。
[0015] 根据一种优选的实施方式,所述判别模块还用于判别所述切割面是否满足第二特征需求;如果所述切割面的法向量与所述髋关节面形成的空间体的重心线小于第二角度阈值,则所述切割面满足所述第二特征需求;否则,所述切割面不满所述第二特征需求;在所述判别模块判别出所述切割面不满足所述第二特征需求的情况下,所述模型切割模块基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。
[0016] 根据一种优选的实施方式,所述判别模块还用于判别所述切割面是否满足第三特征需求;如果所述切割面与所述髋关节面形成的空间体的空间距离满足距离阈值,则所述切割面满足所述第三特征需求;否则,所述切割面不满所述第三特征需求;在所述判别模块判别出所述切割面不满足所述第三特征需求的情况下,所述模型切割模块基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。
[0017] 根据一种优选的实施方式,所述系统还包括回转轴构建模块,用于将至少两个符合所述第一特征需求的旋转轴生成一个回转轴,其中,在所述股骨头部模型绕所述回轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动。
[0018] 根据一种优选的实施方式,所述内翻轴构建模块能够在所述回转轴构建模块构建了所述回转轴的情况下基于所述回转轴构建内翻轴而不基于旋转轴构建内翻轴,以使得所述内翻轴能够与所述股骨头部模型的旋转中心轴配套。
[0019] 根据一种优选的实施方式,所述旋转轴构建模块能够按照如下方式构建所述旋转轴:计算所述切割面与所述股骨头部模型的点集合,并基于所述点集合形成的平面图形生成所述平面图形的重心作为第一标志点;以所述股骨头部模型的重心作为第二标志点;构建同时穿过所述第一标志点和所述第二标志点的直线作为所述旋转轴。
[0020] 根据一种优选的实施方式,所述内翻轴构建模块按照如下方式构建所述内翻轴:生成能包围完整的股骨头部模型表面的方向包围盒;提取构成方向包围盒的所有线段中的最短线段;对最短线段进行归一化处理得到第一线段;将第一线段移动到所述第一标志点处得到第二线段;对所述旋转轴与所述第二线段进行叉积运算得到归一化的第三线段;求第三线段与完整的股骨模型的表面的交点作为第三标志点;和将第二线段沿第三线段平移到第三标志点处作为内翻轴。
[0021] 根据一种优选的实施方式,本发明还提供了一种基于股骨旋转轴与内翻轴分析模型的构建方法,包括:基于检查数据构建股骨-髋臼模型;呈现所述股骨-髋臼模型;基于所述股骨-髋臼模型生成髋臼模型和股骨模型;所述方法还包括:基于所述股骨模型生成能够用于分割股骨头部模型和股骨体模型的切割面,基于所述股骨头部模型和所述切割面构建旋转轴,其中,在所述股骨头部模型绕所述旋转轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动,基于所述股骨头部模型的骨表面和所述旋转轴构建内翻轴,其中,在所述股骨头部模型绕所述内翻轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移除负重区的方式与所述髋关节面生成倾角。
[0022] 根据一种优选的实施方式,所述方法还包括:判别所述旋转轴是否满足第一特征需求;如果所述旋转轴与所述切割面的法向量的角度小于第一角度阈值,则所述旋转轴满足所述第一特征需求;否则,所述旋转轴不满足所述第一特征需求;在判别出所述旋转轴不满足所述第一特征需求的情况下,基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。
[0023] 基于本发明提供的技术方案,本发明相比较于现有技术方案至少具有如下优势:
[0024] (1)在本发明中,在股骨头部模型绕旋转轴转动的情况下,股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动。这种模拟操作,与实际手术的操作是相近或者相同的,即在股骨头部分区域移除负重区后,股骨头仍然保持在髋关节面内;这有利于医生在手术前对于手术方案的确定是具有重要价值的;
[0025] (2)能够明确地限定出旋转轴和切割面的关系位置,从而能够提高旋转轴的构建精度,这对于手术方案的确定是十分有利的;
[0026] (3)本发明能够对旋转轴的位置进行约束,使得股骨头部模型在绕旋转轴模型转动时,股骨头模型能够在髋关节面的窝形构造体内转动;其次,这种判别是基于髋关节面形成的空间体的重心线的角度为基础进行的,有利于提高股骨头部分区域移出负重区所需旋转角度的准确度。

附图说明

[0027] 图1是本发明提供的一种系统的模块之间的优选的关系示意图;和
[0028] 图2是本发明提供的一种方法的一种优选的流程示意图。
[0029] 附图标记列表
[0030] 1:模型构建模块                 5:旋转轴构建模块
[0031] 2:图像显示模块                 6:内翻轴构建模块
[0032] 3:模型分割模块                 7:判别模块
[0033] 4:模型切割模块                 8:旋转轴拟合模块

具体实施方式

[0034] 下面结合附图1-2进行详细说明。
[0035] 实施例1
[0036] 本实施例公开一种基于股骨旋转轴与内翻轴的分析模型的构建系统。
[0037] 该构建系统中,涉及到重要术语如下,
[0038] 股骨-髋臼模型:由股骨-髋臼部位真实检查数据构建的三维模型。
[0039] 股骨模型:由股骨-髋臼模型分离出来的股骨部位的模型。
[0040] 髋臼模型:由股骨-髋臼模型分离出来的髋臼部位的模型
[0041] 切割面:用于将股骨头部模型和股骨体模型分离的虚拟平面。
[0042] 旋转轴:是本实施例中构建一条虚拟轴线。
[0043] 内翻轴:是本实施例中构建的另一条虚拟轴线。
[0044] 股骨头部模型:包括股骨头模型和股骨颈模型。股骨头模型对应人体的股骨头。股骨颈模型对应人体的股骨颈。
[0045] 股骨体模型:对应人体的股骨体。
[0046] 髋关节面:股骨头与髋臼通过髋关节配合,即髋臼上具有一个容纳股骨头的窝形构造。髋关节面是与股骨头表面相互吻合的窝形面。股骨头/股骨头部模型能够在髋关节面内绕旋转轴转动。
[0047] 本实施例提供一种基于股骨旋转轴与内翻轴的分析模型的构建系统,如图1所示,包括模型构建模块1、图像显示模块2、模型切割模块4、旋转轴构建模块5和内翻轴构建模块6。模型构建模块1和图像显示模块2数据交互。优选地,本系统还包括模型分割模块3。图像显示模块2和模型分割模块3数据交互。模型切割模块4和模型分割模块3数据交互。模型切割模块4分别与旋转轴构建模块5和内翻轴构建模块6数据交互。具体地,
[0048] 模型构建模块1,基于检查数据构建股骨-髋臼模型。检查数据至少来源于两种不同的扫面成像方式。例如,检查数据主要来源于CT、MRI等医疗扫描数据。当然,检查数据不仅限于CT和MRI扫描数据,还可以是PET等扫描数据。CT,是指计算机断层造影或者计算机断层扫描。MRI是Nuclear Magnetic Resonance Imaging的缩写,是指磁共振断层造影或者磁共振断层扫描。本实施例通过配准融合方法将CT采集的股骨-髋臼的计算机断层扫面数据和MR采集的股骨-髋臼的计算机断层扫描数据构建股骨-髋臼模型。医学图像配准与融合技术主要包括两方面的技术:医学图像配准和图像融合技术。医学图像配准旨在确定两个图像之间的几何变换关系,通过这一变换可以把一个图像中的任意一点的坐标变换到另一个图像中对应位置的坐标。医学图像配准主要包括三个步骤:提取图像特征、根据特征向量对并确定几何变换和执行变换。图像融合技术主要分为:以图像像素为基础的融合方法和以图像特征为基础的融合方法。
[0049] 图像显示模块2,用于呈现股骨-髋臼模型。例如,将MRI扫描数据和CT数据导入构建系统中并基于模型构建模块1生成股骨-髋臼模型,图像显示模块2可以将其显示出来。图像显示模块2可以是液晶显示屏、VR眼镜和计算机屏幕等显示装置。
[0050] 模型分割模块3,能够基于股骨-髋臼模型生成髋臼模型和股骨模型。髋臼和股骨是两个相对独立的骨组织。本实施例中,髋臼模型和股骨模型的生成可以按照如下方法生成:有界面生成、轮廓提取和轮廓图分割。有界面生成用于根据股骨-髋臼模型的三角形网络数据对该模型中包含的所有三角形进行处理,以生成适用于对该三维模型进行分割的有界面。轮廓提取用于通过有有界面提取三维模型的轮廓图。轮廓图分割,用于根据生成的有界面信息以及三维模型的顶点邻接图的信息,将提取出的轮廓图分割成满足预定条件的一个子图或者至少两个相互不重叠的子图。顶点邻接图可以通过以下方式构建:根据三维模型的三角形网络数据,以三维模型的顶点为节点,在被一个或多个三角形所共有的每两个顶点之间添加一条边,从而构建顶点邻接图。预定条件包括以下几种中的任意一个:子图的顶点数量小于预定的第一阈值;子图含有的有界面数量小于预定的第二阈值;子图含有的所有有界平面中不存在候选分割面;或子图中不存在可将与该子图对应的轮廓图分割为至少两个子图的候选分割面。又如,模型分割模块3能够基于布尔运算将股骨-髋臼模型分割为髋臼模型和股骨模型。再如,模型分割模块3还可以采用医学图像三维分割技术——基于结构的分割技术。基于结构的分割技术是通过检测边缘或体数据中的边界面进行图像分割,其包括:通过区分不同属性检测出边缘点;将这些边缘点组合成连续的轮廓,将感兴趣的区域的体素从其他体素中分离出来。
[0051] 模型切割模块4,基于股骨模型生成能够用于分割股骨头部模型和股骨体模型的切割面。切割面还能够作为用于旋转轴生成的基础面。优选地,切割面是平面。例如,切割面的生成可以按照基于结构的分割技术生成。首先,操作人员可以选择股骨头部上的一个点作为分割面的一个点,然后模型切割模块4即与结构特征和该点生成分割面。又如,切割面的生成还可以基于统计学方法生成,例如基于阈值分割算法、马尔科夫随机场模型、聚类算法或者分类器算法。再如,切割面的生成还可以基于混合分割算法,例如区域增长算法、分裂合并算法或图谱引导算法。
[0052] 旋转轴构建模块5,其能够基于股骨头部模型和切割面构建旋转轴。在本发明中,旋转轴是一条虚拟轴线,主要使得股骨头部模型能够模拟股骨头部旋转,用于外科医生观察部分区域移除负重区域所需的最大旋转角度。该部分区域是由医生选定的股骨头坏死区域。医生在构建系统中操作该模型时能够对角度进行测量,以判定其最大旋转角度。在真实截骨术过程中,需要将股骨头部从股骨体上截取下来,然后将股骨头部分区域的大部分或者全部旋转出负重区。由于股骨头部周边存在大量的血管和神经,在实际手术过程中,股骨头能转动的角度有限,其不能完全的旋转一周。据临床数据表明,股骨头逆时针转动仅能旋转90°,逆时针旋转仅能旋转130°。在本发明中,在股骨头部模型绕旋转轴转动的情况下,股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动。这种模拟操作,与实际手术的操作是相近或者相同的,即在股骨头部分区域移除负重区后,股骨头仍然保持在髋关节面内。这有利于医生在手术前对于手术方案的确定是具有重要价值的。优选地,旋转轴构建模块5可以按照如下方式生成旋转轴。在切割面的位置关系符合上述第二特征需求和第三特征需求的情况下,旋转轴构建模块5计算切割面与股骨头部模型的点集合。此时,切割面与股骨头部模型的点集合形成一个封闭平面图形。旋转轴构建模块5将该封闭平面图形的重心作为构建旋转轴的第一标志点。切割面与股骨头部模型形成了一个以空间体。旋转轴构建模块5将该空间体的重心作为第二标志点。第一标志点与第二标志点构成的直线记为旋转轴。
[0053] 内翻轴构建模块6,其能够依据股骨头部模型的骨表面和旋转轴构建内翻轴。其中,在股骨头部模型绕内翻轴转动的情况下,股骨头部模型能够以将股骨头部分区域移除负重区的方式与髋关节面生成倾角。优选地,内翻轴构建模块6可以按照如下方式生成内翻轴:在旋转轴满足第一特征需求的情况下,内翻轴构建模块6生成能包围完整的股骨头部模型表面的方向包围盒。提取构成方向包围盒的所有线段中的最短线段。对最短线段进行归一化处理得到第一线段。将第一线段移动到第一标志点处得到第二线段。对旋转轴与第二线段进行叉积运算得到归一化的第三线段。求第三线段与完整的股骨模型的表面的交点作为第三标志点。将第二线段沿第三线段平移到第三标志点处作为内翻轴。
[0054] 旋转轴和内翻轴的构建精度对于临床方案的确定是至关重要的。
[0055] 第一方面,在该构建系统中,为了能够通过该系统模拟出股骨头部分区域大部分旋转移除负重区所需要的角度,为手术决策提供精确的数据支撑,旋转轴的构建精度是至关重要的。为了能够有效地控制构建的旋转轴能够与实际手术过程中的旋转轴的误差,优选地,本发明提供的系统还包括了判别模块7,主要用于判别旋转轴的构建精度。结合图2,J3:判别模块7用于判别旋转轴是否满足第一特征需求。如果旋转轴与切割面的法向量的角度小于第一角度阈值,则旋转轴满足第一特征需求。否则,旋转轴不满足第一特征需求。第一角度阈值可以根据部分区域的面积来决定。部分区域的面积与第一角度阈值呈负相关。例如,部分区域占股骨头的10%,则第一角度阈值为1.5°。部分区域占股骨头的12%,则第一角度阈值为1.4°。部分区域的面积能够根据检查数据由医生确定,然后输入该构建系统。
由于在一种优选的实施方式过程中,旋转轴是要穿过切割面的重心以及切割面与股骨头部模型围成的三维空间体的重心。因而,在判别模块7判别出旋转轴不满足第一特征需求的情况下,模型切割模块4基于股骨模型对股骨头部模型和股骨体模型进行切割以重新生成切割面。通过这种设置:能够明确地限定出旋转轴和切割面的关系位置,从而能够提高旋转轴的构建精度,这对于手术方案的确定是十分有利的。
[0056] 第二方面,旋转轴构建的准确度与切割面的构建精度和准确度是正相关的。如果切割面构造具有明显的偏差,这对于将股骨头部分区域移除负重区所需要的旋转角度的判定是十分不利的。因此,优选地,判别模块7在切割面生成之后就需要对切割面的位置关系进行判定。具体地,结合图2,J1:判别模块7还用于判别切割面是否满足第二特征需求。第二特征需求是用于判定切割面相对于髋关节面的位置是否满足旋转轴的构建需求。优选地,第二特征需求是用于判定切割面相对于髋关节面的窝形构造形成的空间体的位置是否满足旋转轴的构建需求。如果切割面的法向量与髋关节面形成的空间体的重心线的角度小于第二角度阈值,则切割面满足第二特征需求。否则,切割面不满第二特征需求。第二角度阈值同样与部分区域的面积呈负相关。部分区域面积越大,第二角度阈值越小。部分区域面积越小,第二角度阈值越大。第二角度阈值还与个体股骨-髋臼的结构特征有关。因此,具体的第二角度阈值的由医生设定。在判别模块7判别出切割面不满足第二特征需求的情况下,模型切割模块4基于股骨模型对股骨头部模型和股骨体模型进行切割以重新生成切割面。从对切割面的约束条件可以看出,该约束是对旋转轴相对髋关节面的位置进行约束。通过这种判别设置,本发明能够对旋转轴的位置进行约束,使得股骨头部模型在绕旋转轴模型转动时,股骨头模型能够在髋关节面的窝形构造体内转动;其次,这种判别是基于髋关节面形成的空间体的重心线的角度为基础进行的,有利于提高股骨头部分区域移出负重区所需旋转角度的准确度。
[0057] 第三方面,切割面距离髋关节面的距离对于手术方案的确定是十分重要的。在实际手术过程中,截骨术是将股骨颈从股骨体上的大转子截下后进行旋转,将股骨头上的部分区域移出负重区。基于此,优选地,切割面是股骨颈模型与股骨体模型的分界平面。因此,切割面与髋关节面的距离关系是有必要进行精确要求的。优选地,结合图2,J2:判别模块7还用于判别切割面是否满足第三特征需求。第三特征需求是对切割面与髋关节面之间的距离进行精确限定。切割面不能距离髋关节面太远,以使得切割面不与股骨颈模型有交点。切割面不能距离髋关节面太远,以使得切割面不予股骨颈模型有交点或者与股骨头模型有交点。每一个人体的股骨颈与大转子交接的面距离髋关节的距离都是不一样的。因此,该距离阈值与人体的股骨-髋臼结构相关。医生能够根据实际情况对距离阈值进行设定。如果切割面与髋关节面形成的空间体的空间距离满足距离阈值,则切割面满足第三特征需求。否则,切割面不满第三特征需求。在判别模块7判别出切割面不满足第三特征需求的情况下,模型切割模块4基于股骨模型对股骨头部模型和股骨体模型进行切割以重新生成切割面。例如,距离阈值可以是的2cm~12cm。
[0058] 实施例2
[0059] 本实施例是实施例1的进一步补充或者技术方案的进一步优化。
[0060] 由于旋转轴是在切割面的基础上生成的。由于满足第一特征需求、第二特征需求和第三特征需求的切割面是无穷多个。从而,旋转轴也是无穷多个的。为此,本实施例为了进一步地提高旋转轴的构建精度。
[0061] 模型切割模块4至少会生成两个符合第一特征需求、第二特征需求和第三特征需求的切割面。此时,旋转轴构建模块5构建的旋转轴符合第一特征需求。优选地,旋转轴构建模块5能够生成至少两个与切割面彼此对应的旋转轴。此时,结合图2,步骤S7:旋转轴拟合模块8会基于至少两个旋转轴生成一个回转轴。
[0062] 优选地,旋转轴拟合模块8按照如下方式基于至少两个旋转轴生成一个回转轴:
[0063] 标号,将至少两个旋转轴标号:L1、L2……Ln。
[0064] 构造直线,选取至少两条能够同时与直线L1、L2……Ln有交点的平行直线。
[0065] 交点求取:求取第一条直线与旋转轴L1、L2……Ln的交点,然后求取同一条直线上交点坐标的平均值,求得一个平均交点。依次类推,求得每一条直线与旋转轴L1、L2……Ln形成的平均交点。将这些交点进行连线获得回转轴。股骨头部模型绕该回转轴旋转。
[0066] 例如,旋转轴构建模块5生成了两根旋转轴L1和L2。空间上存在两条平行直线S1和S2。S1与L1具有交点A(x1,y1,z1)。S1与L2具有交点B(x2,y2,z2)。S1与L1、L2形成的平均交点为同理,S2与L1具有交点C(x3,y3,z3)。S2与L2具有交点D(x4,y4,z4)。S2与L1、L2形成的平均交点为 那么回转轴
以为EF。
[0067] 优选地,旋转轴拟合模块8按照如下方式基于至少两个旋转轴生成一个回转轴:
[0068] 首先,对旋转轴在直角坐标系下进行空间几何建模描述:
[0069] L1:a1x+b1y+c1z=d1;L2:a2x+b2y+c2z=d2;···Ln:anx+bny+cnz=dn;
[0070] 其次,将旋转轴的数学方程进行叠加运算可得数学模型:
[0071]
[0072] 该叠加后的数学模型为一条直线,将该直线作为回转轴的空间方程。
[0073] 优选地,股骨头部模型的旋转中心轴应该与内翻轴是相互配套使用的。因此,在股骨头模型的旋转中心轴是由若干个旋转轴构建的回转轴时,内翻轴构建模块6能够基于所述回转轴构建内翻轴而不基于旋转轴构建内翻轴。
[0074] 实施例3
[0075] 本实施例提供了一种基于股骨旋转轴与内翻轴的分析模型的构建方法,包括:
[0076] S1,基于检查数据构建股骨-髋臼模型。
[0077] S2,呈现所述股骨-髋臼模型。
[0078] S3,所述股骨-髋臼模型生成髋臼模型和股骨模型。
[0079] S4,基于所述股骨模型生成能够用于分割股骨头部模型和股骨体模型的切割面。
[0080] S5,基于所述股骨头部模型和所述切割面构建旋转轴,其中,在所述股骨头部模型绕所述旋转轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移出负重区的方式在髋关节面内转动。
[0081] S6,基于所述股骨头部模型的骨表面和所述旋转轴构建内翻轴,其中,在所述股骨头部模型绕所述内翻轴转动的情况下,所述股骨头部模型能够以将股骨头部分区域移除负重区的方式与所述髋关节面生成倾角。
[0082] 优选地,在步骤S5中,需要对旋转轴的构建精度进行判定。判别所述旋转轴是否满足第一特征需求。如果所述旋转轴与所述切割面的法向量的角度小于第一角度阈值,则所述旋转轴满足所述第一特征需求。否则,所述旋转轴不满足所述第一特征需求。在判别出所述旋转轴不满足所述第一特征需求的情况下,基于所述股骨模型对所述股骨头部模型和股骨体模型进行切割以重新生成切割面。
[0083] 如本发明中所用的词语“模块”描述任一种硬件、软件或软硬件组合,其能够执行与“模块”相关联的功能。例如,模型构建模块1、模型分割模块3、模型切割模块4、旋转轴构建模块5、内翻轴构建模块6判别模块7和旋转轴拟合模块8均是一种数据运算处理器以及配置了执行其各自模块中具体步骤的算法。例如,模型构建模块1、模型分割模块3、模型切割模块4、旋转轴构建模块5、内翻轴构建模块6判别模块7和旋转轴拟合模块8可以是处理器、服务器或者专用集成芯片中的一种或几种。
[0084] 需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。