一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法转让专利

申请号 : CN201911233982.8

文献号 : CN110846581B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 万文华屈志东许加陆左锦中林俊

申请人 : 中天钢铁集团有限公司

摘要 :

本发明属于炼钢工艺技术领域,涉及一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法,采用“KR‑BOF‑LF‑RH‑(带电磁搅拌的中包)‑CC”工艺路线。KR负责铁水脱硫,BOF负责脱碳、脱磷及保证一定的出钢温度,LF调节钢水成分、温度,RH及带电磁搅拌的中包负责夹杂物去除任务。转炉出钢和LF精炼时,通过控制炉渣碱度,达到抑制LF过程Al2O3夹杂物向低熔点钙铝酸盐转变的目的,从而实现精炼结束时钢中夹杂物处于高Al2O3系夹杂物的控制,然后借助RH和带电磁搅拌的中包可以高效化去除这类高熔点夹杂物,最终实现轴承钢超低氧冶炼目的,成品T.O可控制在4ppm以内。

权利要求 :

1.一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法,其特征在于,所述轴承钢的冶炼步骤包括以下:(1)KR过程,先将铁水渣扒除,重新添加KR脱硫渣,利用KR工序将铁水硫含量控制在

0.012%以内;

(2)转炉采用常规吹炼方法,转炉终点温度控制在1610 1670℃,终点碳≥0.05%;

~

(3)转炉出钢先加铝进行脱氧,随后加入低铝低钛硅铁合金、低钛高碳铬铁、高碳锰铁和低氮增碳剂进行合金化,合金加入后再加入石灰、精炼渣料及石英砂进行造渣;

(4)LF过程加碳化硅进行渣面脱氧,渣中(TFe+MnO)含量控制在1.00%以下,精炼渣碱度控制在2.0 3.0,精炼末期采用Al线调整钢液中Al含量为0.030 0.045%;

~ ~

(5)RH真空处理,RH过程不加任何合金和渣料;

(6)中间包采用带电磁搅拌设备的中间包,并开启电磁搅拌, 电磁搅拌电流控制在

400A;

(7)连铸过程采用全程保护浇铸;

轴承钢产品成分为:C:0.95 1.05%、Si:0.15 0.35%、Mn: 0.25 0.45%、S:≤0.020%、Cr:~ ~ ~

1.40 1.65%、Al:≤0.050%、Ti:≤0.0050%,其余为铁和残余元素。

~

2.根据权利要求1所述的冶炼方法,其特征在于:步骤(4)中LF精炼时间控制在40min以内。

3.根据权利要求1所述的冶炼方法,其特征在于:步骤(4)LF过程中钢包底吹氩控制在

400L/min以下。

4.根据权利要求1所述的冶炼方法,其特征在于:步骤(5)所述的RH真空<133Pa处理25~

35min,真空处理后,软吹时间≥25min。

说明书 :

一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净

度的冶炼方法

技术领域

[0001] 本发明属于炼钢工艺技术领域,特别涉及到轴承钢的超高纯净度冶炼控制方法。

背景技术

[0002] 轴承钢的纯净度对其疲劳寿命影响极大,其中氧含量的控制尤为重要,钢中氧含量越低,越容易获得高寿命的轴承钢。因此,如何实现超低氧轴承钢的冶炼,成为轴承钢冶炼行业的重点问题。
[0003] 经检索,国内外许多人在超低氧方面进行了诸多研究,但均与本专利存在许多差异。文献“Effect of Silica in Slag on Inclusion Compositions in 304 Stainless”指出通过控制炉渣中SiO2的含量可改变夹杂物的成分,原理在于精炼过程钢水中的Al会还原炉渣中的CaO(反应Al+CaO→Al2O3+Ca),而当炉渣中SiO2含量较高时,会促进被还原进入钢水的Ca与SiO2反应(反应Ca+SiO2→CaO+Si),使得Ca 重新成为CaO进入炉渣中,这也就可以阻止精炼过程夹杂物转变为低熔点钙铝酸盐夹杂物,文中指出当采用CaO-Al2O3-SiO2-MgO-CaF2渣系(SiO2=10%)时,加入Al之后迅速生成了氧化铝,之后转变为镁铝尖晶石,就不再继续转变了;但采用CaO-Al2O3-MgO-CaF2渣系(SiO2=0%)时,发现夹杂物由氧化铝转变为镁铝尖晶石之后,继续转变为CaO-Al2O3-MgO类液态夹杂物。文献“中间包等离子加热和电磁搅拌复合技术的开发与使用”指出通过中间包采用等离子加热结合中间包电磁搅拌的方式能促进夹杂物上浮,达到净化钢水的作用。文中虽然提到可以利用中间包电磁搅拌的技术达到提高钢水洁净度,从而降低钢水氧含量的,但并没有考虑夹杂物的类型(固态还是液态夹杂物)对于去除效率的影响,也没有涉及如何将夹杂物控制为Al2O3类夹杂物的方法,因此很难将带电磁搅拌中间包的作用发挥至最佳。文献“1.An Overview of Steel Cleanliness From an indursty perspective”指出,普通硅铁合金中含有一定量的Ca(0.1%或>2%),这部分Ca 会导致精炼过程夹杂物被变相钙处理,进而转变为低熔点钙铝酸盐,因此本发明要求适用低铝低钛硅铁(钙含量约0.025%),以防止由于普通硅铁带入的Ca的影响。国际专利申请号PCT/IB2015/050493“METHOD AND APPARTUS TO MAINTAIN A HOMOGENIZED MELT AND CONTROLLED FIELDS OF A MOLTEN METAL(熔融金属流场、均质化控制的方法和装置)”指出,利用中间包电磁搅拌技术可以很好地控制中间包温度场的均匀性,同时可以净化钢水,提高钢水中夹杂物的去除率。国际专利申请号PCT/EP2013/053250“METHOD, CONTROLLER AND TUNDISH CONTROL SYSTEM FOR A CONTINUOUS CASTING PROCESS(一种连铸过程的方法、控制器和中间包控制系统)”指出,通过中间包电磁搅拌设备可以持续冶炼高质量钢材产品,均匀钢水成分、净化钢水。前面两个专利仅涉及中间包带电磁搅拌后的温度或夹杂物控制好处,并没有涉及前道工序夹杂物的控制方法,因此同本文在控制前道工序夹杂物控制,同时结合RH、带电磁搅拌中间包工序去除高熔点的Al2O3夹杂物,进而获得超低氧轴承钢存在明显区别。
[0004] 为此,针对采用“KR-BOF-LF-(带电磁搅拌的中包)-CC”工艺生产轴承钢,本发明提供一种抑制LF过程Al2O3夹杂物向低熔点钙铝酸盐转变方法,然后借助 RH和带电磁搅拌的中包高效的去除此类高熔点夹杂物,以实现轴承钢超高纯净度冶炼目的。

发明内容

[0005] 本发明目的是开发一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法,这种方法能够替代传统的冶炼方法,很容易实现轴承钢超低氧冶炼,在提高产品质量的同时,还可以均匀钢水温度、成分。
[0006] 所述钢种质量百分比成分为:C:0.95~1.05%、Si:0.15~0.35%、Mn:0.25~0.45%、 S:≤0.020%、Cr:1.40~1.65%、Al:≤0.050%、Ti:≤0.0050%,其余为铁和残余元素;
[0007] 一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法,其特征在于该工艺包含以下几个要点:
[0008] (一)KR过程,先将铁水渣扒除,重新添加脱硫渣,利用KR工序将铁水硫含量控制在0.012%以内;
[0009] (二)转炉终点温度控制在1610~1670℃,出钢碳≥0.10%;转炉出钢先加200kg 铝饼进行脱氧(130t钢水),随后加低铝低钛硅铁合金(作为优选:合金要求(wt%) 为C:≤0.2%,P≤0.02%,S≤0.02%,Al≤0.02%,Ti≤0.02%,Si≥72%,水份≤0.1%)、低钛高碳铬铁(作为优选:合金要求(wt%)为C:≤10%,Si≤1%, P≤0.04%,S≤0.05%,Ti≤
0.03%,Cr≥60%,水份≤0.1%)、高碳锰铁(作为优选:合金要求(wt%)为C:≤8%,Si≤
1.5%,P≤0.20%,S≤0.03%,Mn≥ 75%,水份≤0.1%)和低氮增碳剂(作为优选:合金要求(wt%)为Std(硫份):≤0.04%,N≤0.03%,FCd(固定碳)≥96%,水份≤0.5%)按目标成分进行合金化
[0010] 合金加入后再加入500~600kg/炉石灰、100kg/炉精炼渣料 (45%CaO-2%SiO2-40%Al2O3)和150kg/炉石英砂进行造渣;
[0011] (三)LF进站先对钢水升温6~10min,升温至1550℃后对钢水进行取样,待成分检测结果反馈到操作室后采用Al线调整Al含量>0.025%即可。同时,向渣面上加140kg碳化硅进行渣面脱氧,(TFe+MnO)含量控制在1.00%以下,碳化硅的加入对钢水增硅影响可以忽略。精炼渣碱度控制在2.0~3.0,且要求精炼过程不补加普通硅铁(可补加低铝低钛硅铁),根据实际钢水成分情况可以加入高碳锰铁、低钛高碳铬铁、低氮增碳剂等合金进行成分微调。LF末期继续采用Al 线调整钢液中Al含量为0.030~0.045%。钢包底吹氩流量控制在400L/min以下,精炼时间控制在40min以内;
[0012] (四)RH过程不加任何合金和渣料,真空(<133Pa)时间控制在25~35min,真空处理后,软吹时间≥25min;
[0013] (五)带电磁搅拌的中包,其与普通中间包相比在中间包整个高度约1/3处(距离底部),安装电磁搅拌设备,电磁搅拌电流控制为400A;
[0014] (六)连铸采用全程保护浇铸。
[0015] 由于高Al2O3类夹杂物较低熔点钙铝酸盐,更容易聚集长大而被去除。因此,控制LF精炼时钢中夹杂物为高熔点夹杂物,进而在后续过程中创造极多的碰撞机会而促进其碰撞、聚集、长大和去除,是获得超低氧轴承钢的关键。在常规 LF精炼工艺中,尽管LF处理前夹杂物为Al2O3,但是通过LF处理,夹杂物很容易向低熔点钙铝酸盐转变,因此降低了其在后续RH、带电磁搅拌的中包过程中的去除效率。为了实现精炼结束时钢中夹杂物仍然为Al2O3,本发明考虑了炉渣碱度等对LF过程夹杂物成分影响,提出了将精炼过程炉渣碱度控制在2.0~3.0,以避免炉渣向钢液中传钙,最终实现精炼结束时钢中Al2O3系夹杂物控制。
[0016] 本发明的一种控制炉渣碱度结合中间包电磁搅拌实现轴承钢超高纯净度的冶炼方法,步骤(一)采用KR工艺脱硫的目的是减轻LF过程脱硫负担。步骤(三) 中LF过程调整Si含量时仅能通过低铝低钛硅铁调控,主要是避免普通硅铁合金中金属钙对夹杂物成分影响。步骤(三)中LF过程精炼渣全程碱度控制在2.0~3.0,主要是为了避免炉渣向钢液中增钙。
[0017] 经生产实践检验,实施本发明方法,可以将成品总氧控制到4ppm以内。
[0018] 本发明的进步效果是:通过对炉渣碱度等进行控制,可以将精炼结束时夹杂物控制为Al2O3,部分夹杂物含有少量MgO或CaO,进而通过RH及带电磁搅拌的中包实现超低氧冶炼目的,T.O可以控制在4ppm以下。

附图说明

[0019] 图1为实施例1LF结束钢中夹杂物分析图;
[0020] 图2为实施例2LF结束钢中夹杂物分析图;
[0021] 图3为对比例1LF结束钢中夹杂物分析图;
[0022] 图4为对比例2LF结束钢中夹杂物分析图;
[0023] 图5为对比例3LF结束钢中夹杂物分析图。

具体实施方式

[0024] 采用130吨KR脱硫炉、130吨转炉、130吨精炼炉、130吨RH炉、50吨带电磁搅拌的中包生产轴承钢。
[0025] 实施例1:
[0026] 成品钢成分C:0.99%、Si:0.27%、Mn:0.31%、S:≤0.008%、Cr:1.47%、 Al:0.013%、Ti:0.0021%。
[0027] 采用KR工序对130吨钢水进行铁水预脱硫处理,KR结束硫含量控制在 0.010%。顶底复吹转炉,采用常规吹炼方法,转炉终点温度控制在1627℃,终点C控制在0.15%,转炉出钢时先加200kg铝饼、280kg低铝低钛硅铁、300kg 高碳锰铁、2200kg低钛高碳铬铁、900kg增碳剂,然后加入550kg石灰、100kg/ 炉精炼渣料和150kg石英砂。
[0028] LF前8min只对钢水进行升温,升温至1550℃进行钢水取样,取样后7min 成分反馈到主控室,然后喂入480m铝线,再加入140kg碳化硅进行渣面脱氧,并加入700kg低钛高碳铬铁,2350kg高碳锰铁,70kg低铝低钛硅铁和300kg低氮增碳剂,全程底吹Ar流量控制在300~400L/min。LF末期继续采用Al线调整钢液中Al含量为0.038%。精炼时间控制在37min。
[0029] LF结束炉渣成分见表1(各成分单位:wt%):
[0030] 表1:
[0031]
[0032] LF结束钢中夹杂物为固态Al2O3,夹杂物中含有少量MgO或CaO,如图1。
[0033] RH真空处理时间为35min,真空处理后软吹时间为32min。
[0034] 带电磁搅拌的中包,电磁搅拌电流控制为400A。
[0035] 连铸采用全程保护浇铸。
[0036] 冶炼过程中钢水总氧变化为:LF结束总氧为16.1ppm、RH破空总氧为7.3ppm、中包总氧为4.5ppm,成品总氧为3.7ppm。
[0037] 实施例2:
[0038] 成品钢成分为:C:1.00%、Si:0.26%、Mn:0.33%、S:≤0.007%、Cr:1.52%、 Al:0.012%、Ti:0.0023%。
[0039] 采用KR工序对130吨钢水进行铁水预脱硫处理,KR结束硫含量控制在 0.009%。顶底复吹转炉,采用常规吹炼方法,转炉终点温度控制在1619℃,终点C控制在0.16%,转炉出钢时先加200kg铝饼、280kg低铝低钛硅铁、300kg 高碳锰铁、2200kg低钛高碳铬铁、900kg增碳剂,然后加入550kg石灰、100kg/ 炉精炼渣料和150kg石英砂。
[0040] LF前6min只对钢水升温,升温至1550℃进行钢水取样,取样后7min成分反馈到主控室,然后喂入500m铝线,再加入150kg碳化硅进行渣面脱氧,并加入689kg低钛高碳铬铁,233kg高碳锰铁合金,55kg低铝低钛硅铁,290kg低氮增碳剂,全程底吹Ar流量控制在300~
400L/min,LF末期继续采用Al线调整钢液中 Al含量为0.040%。精炼时间控制在38min。
[0041] LF结束炉渣成分见表2:(各成分单位:wt%)
[0042] 表2
[0043]
[0044] LF结束钢中夹杂物为固态Al2O3,部分夹杂物含有少量MgO或CaO,如图 2:
[0045] RH中包真空处理时间为35min,真空处理后软吹时间为30min。
[0046] 带电磁搅拌的中包电流设定为400A。
[0047] 冶炼过程钢水总氧变化为:LF结束总氧为15.7ppm、RH破空总氧为8.0ppm、中包总氧为4.9ppm,成品总氧为4.0ppm
[0048] 连铸采用全程保护浇铸。
[0049] 对比例1
[0050] 成品钢成分为:C:0.98%、Si:0.23%、Mn:0.34%、S:≤0.003%、Cr:1.49%、 Al:0.015%、Ti:0.0025%。
[0051] 采用KR工序对130吨钢水进行铁水预脱硫处理,KR结束硫含量控制在 0.011%。顶底复吹转炉,采用常规吹炼方法,转炉终点温度控制在1622℃,终点C控制在0.20%,转炉出钢时先加200kg铝饼、280kg低铝低钛硅铁、300kg 高碳锰铁、2200kg低钛高碳铬铁、900kg低氮增碳剂,然后加入550kg石灰、100kg/ 炉精炼渣料。
[0052] LF前8min只进行钢水升温,升温至1550℃进行钢水取样,取样后7min成分反馈到主控室,然后根据钢水成分检测结果喂120m铝线(由于炉渣碱度高,出钢过程钢水Al损小,因此LF过程不需要喂很多铝线),并加入739kg低钛高碳铬铁,247kg高碳锰铁、57kg低铝低钛硅铁,300kg低氮增碳剂,全程底吹Ar流量控制在300~400L/min,LF末期采用铝线调整钢水Al含量为0.039%。
[0053] LF结束炉渣成分见表3:(各成分单位:wt%)
[0054] 表3
[0055]
[0056] LF结束钢中夹杂物大多为液态CaO-Al2O3-MgO夹杂物,如图3:
[0057] RH真空处理时间为35min,真空处理后软吹时间为35min。
[0058] 带电磁搅拌的中包电流设定为400A。
[0059] 冶炼过程钢水总氧变化为:LF结束总氧为13.8ppm、RH破空总氧为9.8ppm、中包总氧为7.0ppm,成品总氧为6.2ppm。
[0060] 连铸采用全程保护浇铸。
[0061] 对比例2
[0062] 成品钢成分为:C:0.99%、Si:0.25%、Mn:0.34%、S:≤0.004%、Cr:1.50%、 Al:0.015%、Ti:0.0025%。
[0063] 采用KR工序对130吨钢水进行铁水预脱硫处理,KR结束硫含量控制在 0.010%。顶底复吹转炉,采用常规吹炼方法,转炉终点温度控制在1624℃,终点C控制在0.19%,转炉出钢时先加200kg铝饼、280kg低铝低钛硅铁、300kg 高碳锰铁、2200kg低钛高碳铬铁、900kg增碳剂,然后加入550kg石灰、100kg/ 炉精炼渣料。
[0064] LF前8min只进行钢水升温,升温至1550℃进行钢水取样,取样后7min成分反馈到主控室,然后根据钢水成分检测结果喂120m铝线(由于炉渣碱度高,出钢过程钢水Al损小,因此LF过程不需要喂很多铝线),并加入700kg低钛高碳铬铁,255kg高碳锰铁、50kg低铝低钛硅铁,70kg增碳剂,全程底吹Ar流量控制在300~400L/min,LF末期采用铝线调整钢水Al含量为0.038%。
[0065] LF结束炉渣成分见表4(各成分单位:wt%):
[0066] 表4
[0067]
[0068]
[0069] LF结束钢中夹杂物大多为液态CaO-Al2O3-MgO夹杂物,如图4:
[0070] RH真空处理时间为35min,真空处理后软吹时间为35min。
[0071] 带电磁搅拌的中包电流设定为0A。
[0072] 冶炼过程钢水总氧变化为:LF结束总氧为14.0ppm、RH破空总氧为9.4ppm、中包总氧为8.0ppm,成品总氧为6.5ppm。
[0073] 连铸采用全程保护浇铸。
[0074] 对比例3
[0075] 成品钢成分(wt%)为:C:1.01%、Si:0.25%、Mn:0.33%、S:≤0.004%、Cr:1.49%、Al:0.014%、Ti:0.0027%。
[0076] 采用KR工序对130吨钢水进行铁水预脱硫处理,KR结束硫含量控制在 0.010%。顶底复吹转炉,采用常规吹炼方法,转炉终点温度控制在1612℃,终点C控制在0.23%,转炉出钢时先加200kg铝饼、280kg低铝低钛硅铁、300kg 高碳锰铁、2200kg低钛高碳铬铁、900kg增碳剂,然后加入550kg石灰、100kg/ 炉精炼渣料和150kg石英砂。
[0077] LF前8min只进行钢水升温,升温至1550℃进行钢水取样,取样后7min成分反馈到主控室,然后根据钢水成分检测结果喂120m铝线(由于炉渣碱度高,出钢过程钢水Al损小,因此LF过程不需要喂很多铝线),并加入725kg低钛高碳铬铁,253kg高碳锰铁、56kg低铝低钛硅铁,238kg低氮增碳剂,全程底吹 Ar流量控制在300~400L/min,LF末期采用铝线调整钢水Al含量为0.041%。
[0078] LF结束炉渣成分见表5:(各成分单位:wt%)
[0079] 表5
[0080]
[0081] LF结束钢中夹杂物多为固态Al2O3,部分夹杂物含有少量MgO或CaO,如图5:
[0082] RH真空处理时间为35min,真空处理后软吹时间为33min。
[0083] 带电磁搅拌的中包电流设定为100A。
[0084] 冶炼过程钢水总氧变化为:LF结束总氧为16.1ppm、RH破空总氧为7.8ppm、中包总氧为7.0ppm,成品总氧为6.4ppm。
[0085] 连铸采用全程保护浇铸。