量子点显示面板增亮膜及透镜阵列转让专利

申请号 : CN201911069422.3

文献号 : CN110928021B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 潘甦

申请人 : 深圳市华星光电半导体显示技术有限公司

摘要 :

本发明提供一种量子点显示面板包括像素层、透镜层、以及增亮膜。像素层中包括多个挡墙及多个挡墙之间定义出的多个子像素,每三个子像素的其中两个子像素填充红色量子点及绿色量子点;透镜层设置在像素层之上,包括多个凸透镜组成的透镜阵列,每一透镜的焦点位于每一挡墙之内;增亮膜设置在透镜层之上,包括面向像素层设置的多个棱镜组成的棱镜阵列。当环境光射入量子点显示面板时,通过增亮膜将环境光收敛、准直;再由透镜阵列将环境光汇聚到具吸光特性的多个挡墙上。透镜阵列维持量子点显示面板的对比度;增亮膜增强量子点显示面板的广视角显示效果。

权利要求 :

1.一种量子点显示面板,其特征在于,包括:像素层,包括多个挡墙及所述多个挡墙之间定义出的多个子像素;

透镜层,设置在所述像素层之上,包括多个凸透镜组成的透镜阵列;以及增亮膜,设置在所述透镜层之上,包括面向所述像素层设置的多个棱镜组成的棱镜阵列;

其中,每一所述凸透镜的焦点位于每一所述凸透镜对应的每一所述挡墙之内。

2.如权利要求1所述的量子点显示面板,其特征在于,所述量子点显示面板还包括蓝色背光源设置在所述像素层之下,所述蓝色背光源为蓝色有机发光二极体光源或是蓝色微发光二极体光源。

3.如权利要求2所述的量子点显示面板,其特征在于,所述蓝色背光源的光线能自所述像素层之下,穿透每一所述子像素至所述像素层之上。

4.如权利要求3所述的量子点显示面板,其特征在于,每三个所述子像素的其中两个所述子像素填充红色量子点及绿色量子点。

5.如权利要求4所述的量子点显示面板,其特征在于,所述多个挡墙、所述红色量子点、以及绿色量子点经由光刻或喷墨打印制程形成。

6.如权利要求1所述的量子点显示面板,其特征在于,所述透镜层为有机材料,经由压印方式形成所述透镜阵列。

7.如权利要求1所述的量子点显示面板,其特征在于,所述透镜层相对所述像素层的表面为一个平坦面;以及

所述透镜层还包括透镜平坦层,覆盖所述透镜阵列面向所述像素层的表面,形成一个平坦表面。

8.如权利要求1所述的量子点显示面板,其特征在于,所述增亮膜相对所述透镜层的表面为一个平坦面;以及

所述增亮膜还包括棱镜平坦层,覆盖所述棱镜阵列面向所述透镜层的表面,形成一个平坦表面。

9.如权利要求1所述的量子点显示面板,其特征在于,所述量子点显示面板还包括基板;以及

所述像素层、所述透镜层、所述基板、以及所述增亮膜由下而上依序叠层设置。

10.如权利要求1所述的量子点显示面板,其特征在于,所述量子点显示面板还包括基板;以及

所述像素层、所述基板、所述透镜层、以及所述增亮膜由下而上依序叠层设置。

说明书 :

量子点显示面板增亮膜及透镜阵列

技术领域

[0001] 本发明涉及量子点显示面板技术领域,特别是涉及一种量子点显示面板增亮膜及透镜阵列。

背景技术

[0002] 量子点(quantum dot,QD)是在纳米尺度下的微小半导体粒子,其光学和电子特性因量子力学而与较大的一般粒子不同。当量子点接收外在光线时,量子点中的电子会被激
发,电子由价带(valence band)跃迁至导带(conduction band)。被激发的电子再度回到价
带时,便会伴随着发光以释放其能量,这便是所谓的光致发光量子点(photo‑emissive 
quantum dot)。另外,量子点亦会受到电场提供的能量产生发光,这便是所谓的电致发光量
子点(electro‑emissive quantum dot)。
[0003] 量子点的尺寸大小会影响其发光的特性。较大的量子点,直径约为5~6纳米,激发后会发出波长较长的光,例如橘光或红光;较小的量子点,直径约为2~3纳米,激发后会发
出波长较短的光,例如蓝光或绿光。因此,便可利用不同尺寸的量子点,取得不同颜色的光。
量子点所发出来的光,颜色纯度高、发光光谱窄且分布对称。而且量子点发光效率高,量子
效率高达90%。利用量子点所制成的显示面板色彩表现力好、饱和度高,覆盖的色域大于
100%NTSC(national television standards committee)。
[0004] 然而,由于目前电致发光量子点的技术尚无法运用在量产显示面板,因此,目前市面上的量子点显示面板,皆是运用光致发光量子点所制成。目前市场上主要的光致发光量
子点显示面板主要有两类:第一类是改良液晶显示器(liquid crystal display,LCD),将
传统的白色背光源以蓝光发光二极体(blue light‑emitting diode,blue LED)背光源及
量子点薄膜取代;背光直接输出相对纯色的红、绿、以及蓝三种颜色的光,进而得到更好的
背光利用率,提升显示面板的色彩空间;此类型称做量子点增强膜(quantum  dot 
enhancement film,QDEF)技术,市场上的产品称做QD‑enhanced TV。第二类是改良有机发
光二极体(organic light‑emitting diode,OLED)显示面板,将传统的红色及绿色OLED以
红色及绿色量子点取代;面板由蓝色OLED统一发光,再利用红色及绿色量子点转换蓝色
OLED的光线;此类型技术解决传统OLED面板中三色寿命不均、烙印的问题,也维持OLED面板
原有的优点、更提供面板输出相对纯色的光线;此类型称做量子点彩色滤光片(quantum 
dot color filter,QDCF)技术,市场上的产品称做QD‑OLED TV。
[0005] 尽管QD‑OLED TV拥有许多优点,但是不可避免的,环境光也会导致面板中的量子点发光。当环境光射入QD‑OLED TV的面板时,既使面板处于暗态显示,环境光会激发面板中
的量子点发光,降低了面板的显示对比度,影响使用者的观看体验。
[0006] QD‑OLED TV的面板结构如图1所示,图1为现有技术的量子点显示面板的结构示意图,所述量子点显示面板包括像素层100、以及蓝色背光源500。所述像素层包括多个子像素
120,每三个所述子像素120的其中两个所述子像素120填充光致发光的红色量子点121及绿
色量子点122;以及所述蓝色背光源500设置于所述像素层100之下。
[0007] 其中,所述蓝色背光源500的光线能自所述像素层100之下,穿透每一所述子像素120至所述像素层100之上。蓝色背光源500的光线会激发所述红色量子点121及所述绿色量
子点122,使所述红色量子点121发出红光,使所述绿色量子点122发出绿光,因此,每三个所
述子像素120便能显示红色、绿色、蓝色光。
[0008] 由于所述红色量子点121及绿色量子点122为光致发光量子点,因此,其受到任何光源激发皆会导致发光。当所述量子点显示面板处于运作中,所述蓝色背光源500提供所述
量子点显示面板显示光线,然而,环境光700射入所述量子点显示面板,额外激发所述红色
量子点121及所述绿色量子点122发光,产生所述量子点显示面板运作之外的量子点激发光
线710。
[0009] 因此,即使所述量子点显示面板处于暗态显示,所述环境光激发了所述红色量子点121及所述绿色量子点122发光,降低所述量子点显示面板的显示对比度,影响使用者的
观看体验。

发明内容

[0010] 为解决以上问题,本发明提供一种量子点显示面板,包括像素层、透镜层、以及增亮膜。所述像素层包括多个挡墙及所述多个挡墙之间定义出的多个子像素。所述透镜层设
置在所述像素层之上,包括多个凸透镜组成的透镜阵列。所述增亮膜设置在所述透镜层之
上,包括面向所述像素层设置的多个棱镜组成的棱镜阵列。其中,每一所述凸透镜的焦点位
于每一所述凸透镜对应的每一所述挡墙之内。
[0011] 本发明所述量子点显示面板还包括蓝色背光源设置在所述像素层之下,所述蓝色背光源为蓝色有机发光二极体光源或是蓝色微发光二极体光源。
[0012] 本发明所述蓝色背光源的光线能自所述像素层之下,穿透每一所述子像素至所述像素层之上。
[0013] 本发明每三个所述子像素的其中两个所述子像素填充红色量子点及绿色量子点。
[0014] 本发明所述多个挡墙、所述红色量子点、以及绿色量子点经由光刻或喷墨打印制程形成。
[0015] 本发明所述透镜层为树脂或有机材料,经由压印方式形成所述透镜阵列。
[0016] 本发明所述透镜层相对所述像素层的表面为一个平坦面。所述透镜层还包括透镜平坦层,覆盖所述透镜阵列面向所述像素层的表面,形成一个平坦表面。
[0017] 本发明所述增亮膜相对所述透镜层的表面为一个平坦面。所述增亮膜还包括棱镜平坦层,覆盖所述棱镜阵列面向所述透镜层的表面,形成一个平坦表面。
[0018] 本发明其中一设计的所述量子点显示面板还包括基板,所述像素层、所述透镜层、所述基板、以及所述增亮膜由下而上依序叠层设置。
[0019] 本发明其中另一设计的所述量子点显示面板还包括基板,所述像素层、所述基板、所述透镜层、以及所述增亮膜由下而上依序叠层设置。
[0020] 相较现有技术,本发明中的所述透镜阵列将环境光聚焦到所述多个挡墙上,减少了环境光对所述红色量子点及所述绿色量子点的激发,维持所述量子点显示面板的对比
度。并且,本发明中的所述增亮膜能加大所述量子点显示面板的显示光线射出的角度,增强
所述量子点显示面板的广视角显示效果。
[0021] 为了能更进一步了解本发明的详细技术内容与具体实施方式,请参阅以下有关本发明的附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图说明

[0022] 图1为现有技术的量子点显示面板的结构示意图。
[0023] 图2~图6为本发明的量子点显示面板的第一实施例的制造流程的结构示意图。
[0024] 图7为本发明的所述量子点显示面板的显示光线射出的路径示意图。
[0025] 图8为环境光射入本发明的所述量子点显示面板的路径示意图。
[0026] 图9~图10为本发明的量子点显示面板的第二实施例的制造流程的结构示意图。

具体实施方式

[0027] 藉由以下具体实施例之详述,更加清楚描述本发明之特征与精神,而并非以所揭露的具体实施例来对本发明之范畴加以限制。相反地,其目的是希望能涵盖各种改变及具
相等性的安排于本发明所欲申请之权利要求的范畴内。
[0028] 第一实施例:
[0029] 图2~图6为本发明的量子点显示面板的第一实施例的制造流程的结构示意图。
[0030] 首先,如图2所示,在基板400上涂布树脂211a,所述树脂211a还可以由其他有机材料替代。
[0031] 第二,如图3所示,将图2中的所述树脂211a经由压印方式形成由多个凸透镜211组成的透镜阵列210。
[0032] 第三,如图4所示,在所述透镜阵列210上形成透镜平坦层212,所述透镜平坦层212相对所述透镜阵列210的一侧是一个平坦表面,以利后续制程进行。
[0033] 第四,如图5所示,在所述透镜平坦层212上设置像素层100。在像素层100中,经由光刻或喷墨打印制程形成多个挡墙110,每一所述挡墙110的位置必须对齐每一所述凸透镜
211的焦点111,并且,每一所述凸透镜211的所述焦点111位于每一所述凸透镜211对应的每
一所述挡墙110之内的任意位置。所述多个挡墙110之间能定义出多个子像素120,每三个所
述子像素120的其中两个所述子像素120,经由光刻或喷墨打印制程填充光致发光的红色量
子点121及绿色量子点122。
[0034] 最后,如图6所示,在所述多个子像素120相对所述透镜阵列210的一侧贴合蓝色背光源500,所述蓝色背光源500为蓝色有机发光二极体(blue organic light‑emitting 
diode,blue OLED)光源或是蓝色微发光二极体(blue micro light‑emitting diode,blue 
micro LED)光源。所述蓝色背光源500的光线能自所述像素层100之下,穿透每一所述子像
素120至所述像素层100之上。所述蓝色背光源500的光线会激发所述红色量子点121及所述
绿色量子点122,使所述红色量子点121发出红光,使所述绿色量子点122发出绿光,因此,每
三个所述子像素120便能显示红色、绿色、蓝色光。
[0035] 在所述基板400相对所述透镜阵列210的一侧贴合增亮膜300。所述增亮膜300包括面向所述透镜阵列210设置的多个棱镜311组成的棱镜阵列310、以及在所述棱镜阵列310面
向所述透镜阵列210设置的棱镜平坦层312。所述增亮膜300相对所述透镜阵列210的表面为
一个平坦面,所述棱镜平坦层312相对棱镜阵列310的一侧是一个平坦表面。
[0036] 在本发明的所述第一实施例中,所述量子点显示面板的叠层结构依序为:所述蓝色背光源500、包括所述多个挡墙110及所述多个子像素120的所述像素层100、包括所述透
镜阵列210及所述透镜平坦层212的所述透镜层200、所述基板400、以及包括所述棱镜阵列
310及所述棱镜平坦层312的所述增亮膜300。
[0037] 如图7所示,图7为本发明的所述量子点显示面板的显示光线600射出的路径示意图。
[0038] 当蓝色背光源500的光线穿透每一子像素120,便会激发红色量子点121及绿色量子点122,使所述红色量子点121发出红光,使所述绿色量子点122发出绿光。由于所述量子
点显示面板射出的所述显示光线600穿越每一所述凸透镜211之间,因此所述显示光线600
并不会被所述多个凸透镜211所偏折,而是迳直进入增亮膜300。由于增亮膜300包括多个棱
镜311组成的棱镜阵列310,所述显示光线600进入所述增亮膜300时,所述棱镜阵列310会加
大所述显示光线600的折射角。
[0039] 因此,相较现有技术,本发明中的所述增亮膜300能加大所述量子点显示面板的所述显示光线600射出的角度,增强所述量子点显示面板的广视角显示效果。
[0040] 如图8所示,图8为环境光700射入本发明的所述量子点显示面板的路径示意图。
[0041] 当所述环境光700射入本发明的所述量子点显示面板时,首先,会通过所述增亮膜300,通过所述增亮膜300中的所述棱镜阵列310的所述多个棱镜311将所述环境光700收敛、
准直。接着,由于所述透镜阵列210中的每一所述凸透镜211的所述焦点111皆位于每一所述
凸透镜211对应的每一所述挡墙110之内,所述环境光700通过所述透镜阵列210汇聚到所述
多个挡墙110之内,而不是直接射入所述红色量子点121及所述绿色量子点122。
[0042] 当所述环境光700经过本发明所提供的所述增亮膜300及所述透镜阵列210,所述环境光700将会被汇聚到具有吸光特性的所述多个挡墙110。由于所述环境光700被所述多
个挡墙110所吸收,因此,所述量子点显示面板在运作时,所述环境光700便不会额外激发所
述红色量子点121及所述绿色量子点122发光,也不会令所述量子点显示面板产生运作之外
的显示光线。
[0043] 因此,相较现有技术,本发明中的所述透镜阵列210将所述环境光700聚焦到所述多个挡墙110之内,减少了所述环境光700对所述红色量子点121及所述绿色量子点122的激
发,维持所述量子点显示面板的对比度。
[0044] 第二实施例:
[0045] 图9~图10为本发明的量子点显示面板的第二实施例的制造流程的结构示意图。
[0046] 首先,如图9所示,在基板400上,经由光刻或喷墨打印制程形成多个挡墙110,所述多个挡墙110之间能定义出多个子像素120,每三个所述子像素120的其中两个所述子像素
120,经由光刻或喷墨打印制程填充光致发光的红色量子点121及绿色量子点122。
[0047] 在所述多个子像素120相对所述基板400的一侧贴合蓝色背光源500,所述蓝色背光源500为蓝色有机发光二极体(blue organic light‑emitting diode,blue OLED)光源
或是蓝色微发光二极体(blue micro light‑emitting diode,blue micro LED)光源。所述
蓝色背光源500的光线能自所述像素层100之下,穿透每一所述子像素120至所述像素层100
之上。所述蓝色背光源500的光线会激发所述红色量子点121及所述绿色量子点122,使所述
红色量子点121发出红光,使所述绿色量子点122发出绿光,因此,每三个所述子像素120便
能显示红色、绿色、蓝色光。
[0048] 接着,如图10所示,在所述基板400相对所述多个子像素120的一侧贴合透镜层200。所述透镜层200包括多个凸透镜211组成的透镜阵列210、以及在所述透镜阵列210上的
透镜平坦层212。所述透镜层200相对所述基板400的表面为一个平坦面。所述透镜平坦层
212相对透镜阵列210的一侧是一个平坦表面。每一所述凸透镜211的焦点111的位置必须对
齐每一所述挡墙110,并且,每一所述凸透镜211的所述焦点111位于每一所述凸透镜211对
应的每一所述挡墙110之内的任意位置。
[0049] 在所述透镜层200相对所述基板400的一侧贴合增亮膜300。所述增亮膜300包括面向所述透镜阵列210设置的多个棱镜311组成的棱镜阵列310、以及在所述棱镜阵列310面向
所述透镜阵列210设置的棱镜平坦层312。所述增亮膜300相对所述透镜阵列210的表面为一
个平坦面,所述棱镜平坦层312相对棱镜阵列310的一侧是一个平坦表面。
[0050] 本发明的第二实施例中,所述量子点显示面板的叠层结构依序为:所述蓝色背光源500、包括所述多个挡墙110及所述多个子像素120的所述像素层100、所述基板400、包括
所述透镜阵列210及所述透镜平坦层212的所述透镜层200、以及包括所述棱镜阵列310及所
述棱镜平坦层312的所述增亮膜300。
[0051] 虽然本发明已用优选实施例揭露如上,然其并非用以限定本发明,本发明所属技术领域中具有通常知识者,在不脱离本发明之精神和范围内,当可作各种之更动与润饰,因
此本发明之保护范围当视权利要求书所界定范围为准。