环保组合鞋底及其制作方法转让专利

申请号 : CN201911031237.5

文献号 : CN111019535B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈振裕卢鑫王育玲林剑坤罗显发丁思博廖毅彬

申请人 : 茂泰(福建)鞋材有限公司

摘要 :

本发明公开了环保组合鞋底及其制备方法,一种环保组合鞋底,包括:EVA中底初胚、硫化橡胶大底、胶膜,所述胶膜包括:马来酸酐接枝SBS橡胶40份、马来酸酐化聚丁二烯23份、改性碳九树脂15份、氯化聚丙烯22份、硬脂酸锌1份,所述EVA中底初胚与所述硫化橡胶大底通过所述胶膜连接;本申请有效解决了现有胶膜熔点低的问题,进而避免了鞋底在做耐水解测试时开胶的问题,同时本申请的胶膜不使用任何化学溶剂,既保护了工人的身体健康,又减少了对环境的污染。

权利要求 :

1.一种环保组合鞋底,其特征在于,包括:EVA中底初胚;

硫化橡胶大底;

胶膜,所述胶膜由以下组分按下列重量份组成:所述EVA中底初胚与所述硫化橡胶大底通过所述胶膜连接;

所述EVA中底初胚包括:

所述硫化橡胶大底包括:

2.如权利要求1所述的一种环保组合鞋底,其特征在于,所述回收EVA膜的制备方法为:将生产EVA鞋底过程中产生的料头、次品、废品、边角料,经破碎机破碎;再将按重量份的破碎料75份、矿物油3份、EVA 7870S 5份,在密炼机中密炼,然后开炼,最后压延成厚度为

0.01mm—0.05mm的回收EVA膜。

3.如权利要求1所述的一种环保组合鞋底,其特征在于,所述淀粉接枝EVA中的淀粉接枝比例为25%‑38%,所述淀粉接枝EVA的制备方法为:将淀粉溶于水中,加热至93℃,糊化

35min,然后冷却至55℃,加入过硫酸铵引发剂,再加入EVA乳液,升温至85℃,反应3‑4小时,加入无水乙醇沉析,过滤,烘干得到淀粉接枝EVA。

4.如权利要求1所述的一种环保组合鞋底,其特征在于,所述橡胶粉的制备方法为:将生产硫化橡胶鞋底过程中产生的边料、次品和废品,经破碎机破碎;再经机械碾磨,得到橡胶粉;所述橡胶粉中白炭黑含量低于30%、碳酸钙含量低于15%;所述橡胶粉的细度为400目。

5.如权利要求1所述的一种环保组合鞋底,其特征在于,所述淀粉接枝聚异戊二烯中的淀粉接枝比例15%‑23%,所述淀粉接枝聚异戊二烯的制备方法为:将淀粉溶于水中,加热至96℃,糊化30min,然后冷却至55℃,加入过硫酸铵引发剂,再加入聚异戊二烯胶乳,升温至85℃,反应5‑6小时,加入无水乙醇沉析,过滤,烘干得到淀粉接枝聚异戊二烯。

6.如权利要求1所述的一种环保组合鞋底,其特征在于,所述马来酸酐化聚丁二烯中的马来酸酐含量为10%‑20%,乙烯基含量25%‑35%。

7.如权利要求1所述的一种环保组合鞋底,其特征在于,所述液体聚异丁烯是数均分子量为2000‑5000的粘稠液体。

8.根据权利要求1‑7任一所述的一种环保组合鞋底的制作方法,其特征在于,包括:(a)将回收EVA膜55份、EVA 15份、淀粉接枝EVA 18‑23份、马来酸酐接枝POE 7份、硬脂酸锌0.3份、硬脂酸0.4份混合密炼,调整密炼温度控制为91℃‑96℃,保持5分钟;然后加入交联剂BIBP 0.9份和发泡剂AC 1.7份,继续密炼升温,出料温度为115℃‑117℃,密炼结束后进行开炼、造粒,得到EVA中底料米;

(b)将EVA中底料米倒入发泡模具,然后合模、升温、发泡,冷却12小时,经皮轮打磨表皮,得到EVA中底初胚;

(c)将橡胶粉50份、溶聚丁苯橡胶20份、淀粉接枝聚异戊二烯16‑20份、马来酸酐化聚丁二烯12份、液体聚异丁烯7份、聚乙烯蜡0.3份、防老剂0.4份、三聚氰胺0.1份、硅烷偶联剂1份和聚乙二醇1份放入密炼机中密炼,115℃‑118℃排胶,室温放置24小时,然后在双辊开炼机上混炼,并加入不溶性硫磺0.4份和硫化促进剂0.4份,混炼均匀后,以均匀片状出片,最后将物料裁成鞋底形状,得到待硫化的橡胶片;

(d)将马来酸酐接枝SBS橡胶40份、马来酸酐化聚丁二烯23份、改性碳九树脂15份、氯化聚丙烯22份、硬脂酸锌1份,经110℃密炼、造粒后,将粒料流延,在流延机制膜时,覆PET膜,得到带PET膜的胶膜;

(e)将待硫化的橡胶片和胶膜一起放入橡胶硫化模具,将所述胶膜背离所述PET膜的一面粘贴在待硫化的橡胶片需要粘贴中底的一面,经165℃硫化成型,打开模具,然后撕下PET膜,得到带胶膜的硫化橡胶大底,自然冷却2小时以上;

(f)将工序(e)的带胶膜的橡胶大底放入二次油压模具内,将EVA中底初胚覆盖在胶膜上,使EVA中底初胚与所述硫化橡胶大底连接,合紧模具,180℃模压300秒,冷却取出,即得到环保组合鞋底。

说明书 :

环保组合鞋底及其制作方法

技术领域

[0001] 本发明涉及有机高分子化合物技术领域,尤其涉及环保组合鞋底及其制备方法。

背景技术

[0002] 现有技术中,鞋底包括中底和大底,在生产过程中将中底和大底均分别生产出来的,然后再用胶水或胶膜将中底和大底连接在一起,组成鞋底;由于胶水普通含有有毒物
质,同时用胶水连接时通常还需要经过鞋底打粗、刷处理水、烘干、刷胶、加热活化等处理工
序,因此采用胶水连接方式逐渐被行业淘汰。
[0003] 现有的胶膜通常以EVA为主要组成成分,配以硬脂酸锌、硬脂酸;或者以EVA为主要组成成分,配以石油树脂、石蜡、抗氧化剂;采用这两种组分制作出的胶膜具有粘附力好,且
不含有毒物质的特点。
[0004] 但本申请发明人在实现本申请实施例中发明技术方案的过程中,发现上述技术至少存在如下技术问题:
[0005] 以EVA为主的胶膜,即热熔胶,它的融化温度低,低于70度,一般组合鞋底需要测耐水解性能,其测试条件是在温度70℃、湿度95%的条件下测试48h以上,因此采用EVA为主的
胶膜容易在耐水解测试时开胶,影响产品质量。

发明内容

[0006] 本申请实施例通过提供环保组合鞋底及其制备方法,解决了现有技术中在做测水解性能由于胶膜熔点低导致鞋底开胶的问题,避免了鞋底在做耐水解测试时开胶的问题,
同时本申请的胶膜不使用任何化学溶剂,既保护了工人的身体健康,又减少了对环境的污
染。
[0007] 本申请实施例提供了一种环保组合鞋底,包括:
[0008] EVA中底初胚;
[0009] 硫化橡胶大底;
[0010] 胶膜,所述胶膜由以下组分按下列重量份组成:
[0011]
[0012] 所述EVA中底初胚与所述硫化橡胶大底通过所述胶膜连接。
[0013] 进一步地,所述EVA中底初胚包括:
[0014]
[0015] 进一步地,所述硫化橡胶大底包括:
[0016]
[0017]
[0018] 进一步地,所述回收EVA膜的制备方法为:将生产EVA鞋底过程中产生的料头、次品、废品、边角料,经破碎机破碎;再将按重量份的破碎料75份、矿物油3份、EVA7870S5份,在
密炼机中密炼,然后开炼,最后压延成厚度为0.01mm—0.05mm的回收EVA膜。
[0019] 进一步地,所述淀粉接枝EVA中的淀粉接枝比例为25%‑38%,所述淀粉接枝EVA的制备方法为:将淀粉溶于水中,加热至93℃,糊化35min,然后冷却至55℃,加入过硫酸铵引
发剂,再加入EVA乳液,升温至85℃,反应3‑4小时,加入无水乙醇沉析,过滤,烘干得到淀粉
接枝EVA。
[0020] 其中,优选为淀粉接枝率28%的淀粉接枝EVA,制备方法为:将28g玉米淀粉溶于水中,加热至93℃,糊化35min,然后冷却至55℃,加入1.2g过硫酸铵引发剂,再加入131gEVA乳
液(固含量55%(质量分数)、EVA中VA含量85%(质量分数)、粘度(4000±500)cP),升温至85
℃,反应3.6小时,慢慢加入无水乙醇沉析,室温静置6小时,过滤,烘干,得到淀粉接枝率
28%的淀粉接枝EVA。
[0021] 进一步地,所述橡胶粉的制备方法为:将生产硫化橡胶鞋底过程中产生的边料、次品和废品,经破碎机破碎;再经机械碾磨,得到橡胶粉;所述橡胶粉中白炭黑含量低于30%、
碳酸钙含量低于15%;所述橡胶粉的细度为400目。
[0022] 进一步地,所述淀粉接枝聚异戊二烯中的淀粉接枝比例15%‑23%,所述淀粉接枝聚异戊二烯的制备方法为:将淀粉溶于水中,加热至96℃,糊化30min,然后冷却至55℃,加
入1.2过硫酸铵引发剂,再加入聚异戊二烯胶乳,升温至85℃,反应5‑6小时,加入无水乙醇
沉析,过滤,烘干得到淀粉接枝聚异戊二烯。
[0023] 所述淀粉接枝聚异戊二烯中的淀粉接枝比例优选为23%,所述淀粉接枝聚异戊二烯的制备方法为:将23g淀粉溶于水中,加热至96℃,糊化30min,然后冷却至55℃,加入1.2
过硫酸铵引发剂,再加入聚异戊二烯胶乳(含聚异戊二烯64%,质量比),升温至85℃,反应5
小时,慢慢加入无水乙醇沉析,室温静置6小时,过滤,烘干得到淀粉接枝率23%(质量比)的
淀粉接枝聚异戊二烯。
[0024] 进一步地,所述马来酸酐化聚丁二烯中的马来酸酐含量为10%‑20%,乙烯基含量25%‑35%。
[0025] 进一步地,所述液体聚异丁烯的数均分子量为2000‑5000的粘稠液体。
[0026] 一种环保组合鞋底的制作方法,包括:
[0027] (a)将回收EVA膜55份、EVA15份、淀粉接枝EVA18‑23份、马来酸酐接枝POE7份、硬脂酸锌0.3份、硬脂酸0.4份混合密炼,调整密炼温度控制为91℃‑96℃,保持5分钟;然后加入
交联剂BIBP0.9份和发泡剂AC1.7份,继续密炼升温,出料温度为115℃‑117℃,密炼结束后
进行开炼、造粒,得到EVA中底料米;
[0028] (b)将EVA中底料米倒入发泡模具,然后合模、升温、发泡,冷却12小时,经皮轮打磨表皮,得到EVA中底初胚;
[0029] (c)将橡胶粉50份、溶聚丁苯橡胶20份、淀粉接枝聚异戊二烯16‑20份、马来酸酐化聚丁二烯12份、液体聚异丁烯7份、聚乙烯蜡0.3份、防老剂0.4份、三聚氰胺0.1份、硅烷偶联
剂1份和聚乙二醇1份放入密炼机中密炼,115℃‑118℃排胶,室温放置24小时,然后在双辊
开炼机上混炼,并加入不溶性硫磺0.4份和硫化促进剂0.4份,混炼均匀后,以均匀片状出
片,最后将物料裁成鞋底形状,得到待硫化的橡胶片;
[0030] (d)将马来酸酐接枝SBS橡胶40份、马来酸酐化聚丁二烯23份、改性碳九树脂15份、氯化聚丙烯22份、硬脂酸锌1份,经110度密炼、造粒后,将粒料流延,在流延机制膜时,覆PET
膜,得到带PET膜的胶膜;
[0031] (e)将待硫化的橡胶片和胶膜一起放入橡胶硫化模具,将所述胶膜背离所述PET膜的一面粘贴在待硫化的橡胶片需要粘贴中底的一面,经165℃硫化成型,打开模具,然后撕
下PET膜,得到带胶膜的硫化橡胶大底,自然冷却2小时以上;
[0032] (f)将工序(e)的带胶膜的橡胶大底放入二次油压模具内,将EVA中底初胚覆盖在胶膜上,使EVA中底初胚与所述硫化橡胶大底连接,合紧模具,180℃模压300秒,冷却取出,
即得到环保组合鞋底。
[0033] 本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
[0034] 1、由于采用了以橡胶材料为主的胶膜,有效解决了现有胶膜熔点低的问题,进而避免了鞋底在做耐水解测试时开胶的问题,同时本申请的胶膜不使用任何化学溶剂,既保
护了工人的身体健康,又减少了对环境的污染。
[0035] 2、由于采用了回收EVA膜、橡胶粉,其中EVA中底初胚使用回收EVA膜占比53.1%‑55.9%(占EVA中底的总重量比例),橡胶片使用回收的橡胶粉占比44.7%‑46.3%(占橡胶
片的总重量比例),有效解决了现有生产过程中原材料难以回收利用的问题,实现了EVA和
橡胶生产过程产生的废品、次品、边角料的高价值资源回收再利用,减少生产废料,进而降
低了产品的生产成本,实现材料的可持续发展。
[0036] 3、由于采用了淀粉接枝EVA、淀粉接枝聚异戊二烯,有效解决了淀粉的亲水性表面和EVA或聚异戊二烯之间的不相容性,共混物两相的界面结合力很弱的问题,实现了增强淀
粉与高分子材料共混界面粘结力的作用,同时减少界面间隙、提高了共混物综合性能。
[0037] 4、由于采用了马来酸酐接枝POE,通过马来酸酐接枝POE的末端羧基与淀粉的末端羟基发生化学反应,增强结合力,本发明得到的鞋底易被自然界的多种微生物或动植物体
内的酶分解、代谢,是典型的可生物降解聚合物材料,残余物也以分散的碎末小颗粒存在,
大大缓解废旧鞋带来的环境污染问题。

具体实施方式

[0038] 为了更好的理解上述技术方案,下面将结合具体的实施方式对上述技术方案进行详细的说明。
[0039] 以下是实施例和对比例的原料组成汇总,得到表1:
[0040]
[0041]
[0042] 表1实施例和对比例的原料组成汇总表
[0043] 实施例1:
[0044] 本实施例中,所述环保组合鞋底包括如下步骤:
[0045] 步骤1:制备EVA中底初胚。
[0046] EVA中底料米由以下组分按下列重量份的原料制备而成:
[0047] 回收EVA膜55份、EVAEA330457份、EVA7470M8份、淀粉接枝EVA21份、马来酸酐接枝POE7份、发泡剂ACDN4‑81.7份、交联剂BIBP14S‑FL0.9份、硬脂酸锌0.3份、硬脂酸0.4份。
[0048] 先将以上组分除交联剂BIBP14S‑FL和发泡剂ACDN4‑8之外的其他原料混合进行密炼,调整密炼温度控制为91℃‑96℃,保持5分钟;然后加入BIBP14S‑FL和发泡剂ACDN4‑8,继
续密炼升温,出料温度为116℃,密炼结束后进行开炼、造粒,得到EVA中底料米。
[0049] 准确称量EVA中底料米,倒入发泡模具,然后合模、升温、发泡,发泡温度175℃,发泡时间360秒,冷却12小时,经皮轮打磨表皮,得到EVA中底初胚。
[0050] 其中回收EVA膜的制备方法:将生产EVA鞋底过程中产生的料头、次品、废品、边角料,经破碎机破碎;再将按重量份的破碎料75份、矿物油3份、EVA7870S5份,在密炼机中密
炼,然后开炼,最后压延成厚度为0.01mm至0.05mm的回收EVA膜;
[0051] 步骤2:制备硫化橡胶大底。
[0052] 先将橡胶粉50份、溶聚丁苯橡胶205S20份、淀粉接枝聚异戊二烯18份、马来酸酐化聚丁二烯12份、液体聚异丁烯7份、聚乙烯蜡0.3份、防老剂0.4份、三聚氰胺0.1份、硅烷偶联
剂1份和聚乙二醇1份放入密炼机中密炼,117℃排胶,室温放置24小时,然后在双辊开炼机
上混炼,并加入不溶性硫磺0.4份和硫化促进剂0.4份,混炼均匀后,以均匀片状出片,最后
将物料裁成鞋底形状,得到待硫化的橡胶片。
[0053] 将待硫化的橡胶片和胶膜一起放入橡胶硫化模具,其中所述胶膜贴在橡胶大底需要粘贴中底的一面,经165℃硫化成型,硫化时间280秒,打开模具,然后撕下PET膜,取出橡
胶大底,自然冷却2小时以上,即得到硫化橡胶大底。
[0054] 步骤3:制备环保组合鞋底。
[0055] 将步骤2制备的硫化橡胶大底放入二次油压模具内,且将所述硫化橡胶大底设置了橡胶粘结膜的一面朝上,再将EVA中底初胚贴在硫化橡胶大底上,合紧模具,180℃模压
300秒,冷却取出,即得到环保组合鞋底。
[0056] 上述制备得到的环保组合鞋底,EVA中底:密度0.19g/cm3,硬度60C,回弹率50%,3 3
尺寸收缩1.4%,;硫化橡胶大底:硬度62A,密度1.09g/cm ,DIN耐磨195mm ,防滑系数平滑干
1.05、湿0.65,耐水解测试120H不开胶。
[0057] 实施例2:
[0058] 本实施例中,环保组合鞋底的制备方法基本与实施例1中的制备方法相同,所不同的是:
[0059] 在步骤1和2中:原材料组成不同(详见表1)。
[0060] 上述制备得到的环保组合鞋底,EVA中底:密度0.2g/cm3,硬度61C,回弹率52%,尺3 3
寸收缩1.6%,;硫化橡胶大底:硬度64A,密度1.11g/cm ,DIN耐磨237mm ,防滑系数平滑干
0.97、湿0.59,耐水解测试120H不开胶。
[0061] 实施例3:
[0062] 本实施例中,环保组合鞋底的制备方法基本与实施例1中的制备方法相同,所不同的是:
[0063] 在步骤1和2中:原材料组成不同(详见表1)。
[0064] 上述制备得到的环保组合鞋底,EVA中底:密度0.21g/cm3,硬度63C,回弹率51%,3 3
尺寸收缩1.9%,;硫化橡胶大底:硬度61A,密度1.1g/cm ,DIN耐磨254mm ,防滑系数平滑干
0.99、湿0.61,耐水解测试120H不开胶。
[0065] 对比例A:
[0066] 本对比例中,环保组合鞋底的制备方法与实施例1中的制备方法相同,所不同的是:
[0067] 在步骤1和2中:原材料组成不同(详见表1)。
[0068] 上述制备得到的环保组合鞋底,EVA中底:密度0.2g/cm3,硬度59C,回弹率56%,尺3 3
寸收缩3.2%,;硫化橡胶大底:硬度57A,密度1.12g/cm ,DIN耐磨342mm ,防滑系数平滑干
1.08、湿0.73,耐水解测试72H开胶。
[0069] 对比例B:
[0070] 本对比例中,环保组合鞋底的制备方法与实施例1中的制备方法相同,所不同的是:
[0071] 在步骤1和2中:原材料组成不同(详见表1)。
[0072] 上述制备得到的环保组合鞋底,EVA中底:密度0.19g/cm3,硬度62C,回弹率47%,3 3
尺寸收缩1.6%,;硫化橡胶大底:硬度61A,密度1.11g/cm ,DIN耐磨206mm ,防滑系数平滑干
0.94、湿0.58,耐水解测试96H开胶。
[0073] 对比例C:
[0074] 本对比例中,环保组合鞋底的制备方法与实施例1中的制备方法相同,所不同的是:
[0075] 在步骤1和2中:原材料组成不同(详见表1)。
[0076] 上述制备得到的环保组合鞋底,EVA中底:密度0.2g/cm3,硬度57C,回弹率45%,尺3 3
寸收缩2.5%,;硫化橡胶大底:硬度58A,密度1.07g/cm ,DIN耐磨271mm ,防滑系数平滑干
0.94、湿0.56,耐水解测试96H开胶。
[0077] 将上述实施例1~4和对比例A/B/C/D的数据整理后,得到如下表2(注:中底硬度采用GS‑701N硬度计测试,尺寸收缩率按照70度30分钟测试,回弹率测试采用GT‑7042‑RE型冲
击弹性试验机,大底硬度采用GS‑706G硬度计测试,DIN耐磨按照GB/T9867测试,防滑系数按
照TM144测试湿式止滑;耐水解性能按照GB/T3903.7‑2005测试,温度70℃、95%湿度):
[0078]
[0079]
[0080] 表2:实施例1~3和对比例A/B/C制备的环保组合鞋底的性能参数对照表。
[0081] 从EVA中底的实验数据来看,实施例1相比于对比例A而言,对比例A中未使用回收EVA膜,同时其他组分也做对应性调整,做到发泡倍率相同,对比例A的密度和硬度与实施例
1非常接近,但回弹性更好、尺寸收缩率更大;相比于对比例B而言,对比例B未添加淀粉接枝
EVA1250目,对比例B的密度与实施例1的一致,但硬度更高、回弹性更差;相比于对比例C而
言,对比例C未添加马来酸酐接枝POE,对比例C的密度与实施例1的接近,但硬度更低、回弹
性更差、尺寸收缩率更大。
[0082] 从硫化橡胶大底的实验数据来看,实施例1相比于对比例A而言,对比例A中未使用橡胶粉400目,对比例A的硬度更低、DIN耐磨更差,但防滑性能更好;相比于对比例B而言,对
比例B未添加淀粉接枝聚异戊二烯400目,对比例B的硬度和DIN耐磨与实施例1的接近,但防
滑性能明显更差;相比于对比例C而言,对比例C未添加马来酸酐化聚丁二烯,对比例B的硬
度更低,DIN耐磨更差,防滑性能明显更差。
[0083] 从鞋底的实验数据来看,对比例的鞋底经过120H未开胶,而对比例在72H、96H均出现开胶现象,由此可知,本申请的鞋底耐水解性能远优于对比例。
[0084] 综上所述,按照本发明制得的环保组合鞋底,大量使用回收材料、采用节能环保工艺、具有降解性能,在保证具有防滑、耐磨、高弹性及低成本等综合性能好的基础上,实现
EVA和橡胶生产过程产生的废品、次品、边角料的高价值资源回收再利用,减少生产废料,并
具备可生物降解性,能缓解白色污染带来的环境问题,助推全球可持续发展。
[0085] 以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。