发动机废气分层进气系统转让专利

申请号 : CN201911052244.3

文献号 : CN111042945B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 沈照杰吴岳羲姜宇涵杨建国林波

申请人 : 哈尔滨工业大学(威海)

摘要 :

本发明属于汽车发动机技术领域,更确切地说,本发明是一种用以降低废气与空气在进气过程中的混合接触,提高气缸内废气分层程度的基于时序进气的发动机废气分层进气系统,设有气缸盖以及至少两个气缸,其特征在于气缸盖上开设用于与气缸盖内至少两个气缸上进气口一一对应连通的两组以上的空气/废气进气道,还开设用于与气缸上出气口连通的排气道;所述每组空气/废气进气道由并排设置的空气进气道和废气进气道组成,其中两个以上的空气进气道上一一对应设有两个以上的空气进气门,两个以上的废气进气道上一一对应设有两个以上的废气进气门,空气进气门以及废气进气门均经进气凸轮驱动机构控制开闭。

权利要求 :

1.一种发动机废气分层进气系统,设有气缸盖以及至少两个气缸,其特征在于气缸盖上开设用于与气缸盖内至少两个气缸上进气口一一对应连通的两组以上的空气/废气进气道,还开设用于与气缸上出气口连通的排气道;所述每组空气/废气进气道由并排设置的空气进气道和废气进气道组成,其中两个以上的空气进气道上一一对应设有两个以上的空气进气门,两个以上的废气进气道上一一对应设有两个以上的废气进气门,空气进气门以及废气进气门均经进气凸轮驱动机构控制开闭;两个以上的空气进气道经空气进气歧管与空气稳压罐相连,两个以上的废气进气道经废气进气歧管与废气稳压罐相连,所述排气道上设有排气门,排气道上还连接排气歧管,所述排气歧管的前端与排气道相连通,排气歧管的后端具有两个端口,一端将废气排出系统外,另一端经EGR回路接入废气稳压罐;

所述进气凸轮驱动机构设有进气凸轮轴以及分布在凸轮轴上的用于开启/关闭空气进气气门和废气进气气门的两个以上的进气凸轮,空气进气凸轮和废气进气凸轮采用同样的凸轮型线,具有同样的气门升程,同一气缸对应的两个进气凸轮分别为空气进气凸轮和废气进气凸轮,且空气进气凸轮与废气进气凸轮的中心线呈60°夹角,进气凸轮轴上不同气缸之间的空气进气凸轮的夹角相差角度范围为45°‑180°,夹角按360°/气缸数设置,废气进气凸轮间的夹角与空气进气凸轮夹角相同;

所述排气道上还设有排气气门,并对应设有用于驱动排气气门开闭的排气凸轮驱动机构,所述排气凸轮驱动机构中设有排气凸轮轴,排气凸轮轴上设置排气凸轮;

所述空气进气歧管或废气进气歧管均采用输出端具有至少两个分叉的歧管结构,同一个气缸上的空气进气歧管和废气进气歧管的对应分支经连接管路相连通,连接管路上设置三通电磁阀,三通电磁阀根据工况,控制废气进气管路或空气进气管路的开启/关闭,三通电磁阀的一端与废气进气歧管入口相连,一端与空气进气歧管相连,一端为废气进气道入口,三通电磁阀根据工况,控制废气进气环路打开,并关闭其与空气进气歧管的连接,此时为废气进气环路;或控制废气进气环路关闭,并打开与空气进气管路的连接,此时为空气进气环路。

2.根据权利要求1所述的一种发动机废气分层进气系统,其特征在于所述EGR回路设有与废气稳压罐相连的中冷器、与中冷器相连的增压器以及设置在废气稳压罐与排气歧管之间的EGR阀,EGR阀采用开度大小可调的三通阀,通过开启或关闭EGR阀,控制废气直接排出或进入废气稳压罐进行废气进气循环。

3.根据权利要求1所述的一种发动机废气分层进气系统,其特征在于所述空气稳压罐或废气稳压罐的容积在2‑4L,用于缓冲气流,减小气缸排气道中废气温度对进气温度的影响和压力波动,进而降低对气缸充气效率和进气分层效果的干扰。

4.根据权利要求1所述的一种发动机废气分层进气系统,其特征在于所述设有用于控制系统各部分协同工作的ECU控制器,ECU控制器根据发动机工况,计算废气管路压力,并将信号发送给压力调节器,实现调节废气进气管路压力,从而精确控制再循环废气量,当发动机工况不需要废气再循环时,ECU控制器将关闭信号发送到连接废气和空气进气歧管连接管路上的三通电磁阀上,关闭废气进气回路。

说明书 :

发动机废气分层进气系统

技术领域:

[0001] 本发明属于汽车发动机技术领域,更确切地说,本发明是一种用以降低废气与空气在进气过程中的混合接触,提高气缸内废气分层程度的基于时序进气的发动机废气分层
进气系统。
背景技术:
[0002] 柴油机因其有害排放高,其在车用动力领域的应用受到限制。通过向气缸内大量引入再循环废降低柴油机氮氧化物的技术手段被广泛认可。但气缸内的高浓度废气造成柴
油机热效率和颗粒物排放明显增高。EGR分层技术是解决这一问题的有效措施。通过控制缸
内氧浓度分布,在氮氧化物生成时区内以高浓度废气抑制氮氧化物生成,在颗粒物生成时
区内补充氧气达到降低颗粒物排放的目的。这种方式提高了再循环废气的作用效率,并降
低了冷却再循环废气所需要的能量损耗,改善了颗粒物排放和油耗恶化问题。目前实现废
气分层的主要方式有:采用五气门发动机、在进气歧管内安装再循环废气管路、借助涡流及
滚流装置等。然而现有技术存在的问题是,空气与废气在整个进气过程中接触混合,并且在
进气门位置高速强湍流气流发生对撞混合,大大降低废气在气缸内的分层程度。为解决这
些问题,科研人员提出了时序进气概念,通过拆分进气过程,使空气与废气不同时刻引入气
缸,大大降低空气与废气接触混合。有人提出了五气门废气分层进气系统,实现了空气与废
气在完全独立的气体回路中依次进入气缸,但采用五气门发动机需要对原有发动机进气大
量的结构改动。
发明内容:
[0003] 本发明针对现有技术的不足,提出了一种特别适用于四冲程柴油机,且能够提高气缸内废气分层程度的基于时序进气的发动机废气分层进气系统。
[0004] 本发明通过以下措施达到:
[0005] 一种发动机废气分层进气系统,设有气缸盖以及至少两个气缸,其特征在于气缸盖上开设用于与气缸盖内至少两个气缸上进气口一一对应连通的两组以上的空气/废气进
气道,还开设用于与气缸上出气口连通的排气道;所述每组空气/废气进气道由并排设置的
空气进气道和废气进气道组成,其中两个以上的空气进气道上一一对应设有两个以上的空
气进气门,两个以上的废气进气道上一一对应设有两个以上的废气进气门,空气进气门以
及废气进气门均经进气凸轮驱动机构控制开闭;两个以上的空气进气道经空气进气歧管与
空气稳压罐相连,两个以上的废气进气道经废气进气歧管与废气稳压罐相连,所述排气道
上设有排气门,排气道上还连接排气歧管,所述排气歧管的前端与排气道相连通,排气歧管
的后端具有两个端口,一端将废气排出系统外,另一端经EGR回路接入废气稳压罐;
[0006] 所述进气凸轮驱动机构设有进气凸轮轴以及分布在凸轮轴上的用于开启/关闭空气进气气门和废气进气气门的两个以上的进气凸轮,空气进气凸轮和废气进气凸轮采用同
样的凸轮型线,具有同样的气门升程,同一气缸对应的两个进气凸轮分别为空气进气凸轮
和废气进气凸轮,且空气进气凸轮与废气进气凸轮的中心线呈60°夹角,进气凸轮轴上不同
气缸之间的空气进气凸轮的夹角相差角度范围为45° ‑180°,其中若设有二个气缸,则选用
180°夹角,若设有三缸则夹角为120°夹角,四缸夹角为90°,五缸夹角为72°,六缸夹角为 
60°,八缸夹角为45°,即夹角按360°/气缸数设置,废气进气凸轮间的夹角与空气进气凸轮
夹角相同;
[0007] 所述排气道上还设有排气气门,并对应设有用于驱动排气气门开闭的排气凸轮驱动机构,所述排气凸轮驱动机构中设有排气凸轮轴,排气凸轮轴上设置排气凸轮。
[0008] 本发明所述EGR回路设有与废气稳压罐相连的中冷器、与中冷器相连的增压器以及设置在废气稳压罐与排气歧管之间的EGR阀,EGR 阀采用开度大小可调的三通阀,通过开
启或关闭EGR阀,控制废气直接排出或进入废气稳压罐进行废气进气循环。
[0009] 本发明所述空气稳压罐或废气稳压罐的容积在2‑4L,用于缓冲气流,减小气缸排气道中废气温度对进气温度的影响和压力波动,进而降低对气缸充气效率和进气分层效果
的干扰。
[0010] 本发明所述空气进气歧管或废气进气歧管均采用输出端具有至少两个分叉的歧管结构,进一步,同一个气缸上的空气进气歧管和废气进气歧管的对应分支经连接管路相
连通,连接管路上设置三通电磁阀,一端与废气进气歧管入口相连,一端与空气进气歧管相
连,一端为废气进气道入口,三通电磁阀根据工况,控制废气进气环路打开,并关闭其与空
气进气歧管的连接,此时为废气进气环路;或控制废气进气环路关闭,并打开与空气进气管
路的连接,此时为空气进气环路。
[0011] 本发明所述设有用于控制系统各部分协同工作的ECU控制器, ECU控制器根据发动机工况,计算废气管路压力,并将信号发送给压力调节器,实现调节废气进气管路压力,
从而精确控制再循环废气量,当发动机工况不需要废气再循环时,ECU控制器将关闭信号发
送到连接废气和空气进气歧管连接管路上的三通电磁阀上,关闭废气进气回路。废气进气
部分通过控制废气管路压力来控制再循环废气气量以及废气再循环回路的开闭。
[0012] 本发明与现有技术相比,在低负荷和大负荷的工况下,可以通过进气凸轮驱动机构使两个以上的空气进气门、废气进气门采用分时、分通道进入气缸,在此过程中,废气再
循环打开,空气与废气经过各自独立的管路分时段进入气缸,从而在时间和空间上避免空
气与废气的混合,提高系统分层效果,而在其他工况下,当采用一般燃烧模式时,关闭废气
再循环,将系统废气直接由排气道排出,使经过独立的管路分时段进入气缸的气体均为空
气;进而达到以下目的:(1)使用的时序进气系统可以在实现再循环废气与空气在气缸内分
层;(2)使用的时序进气系统可以提高柴油机再循环废气利用效率。(3)使用的双稳压腔设
计减小了气缸排气道中的废气温度对进气温度的影响和压力波动对气缸充气效率和进气
分层效果的影响。(4)通过使用空气稳压罐和废气稳压罐的双稳压腔设计避免对气缸盖进
行较大的改动。 (5)所使用的Y型废气进气歧管可以保证在低速和高负荷工况下,柴油机只
需要空气时,空气可以通过废气进气道进入气缸,在柴油机需要开启废气再循环时,废气通
过废气进气道进入气缸。(6)通过采用60°夹角凸轮轴和特殊凸轮型线可以保证空气气门与
EGR气门不同时开启,避免了再循环废气和新鲜空气进气时刻的重叠,使所设计的进气凸轮
轴可以完整的规划整个配气相位的每一个行程的任务,不会导致回流等现象的发生;双进
气腔可以避免废气与新鲜空气的过早混合以及进入气缸内气门周向的对撞混合;此外本发
明所使用的EGR 回路监控再循环废气温度、压力等信号,其电子控制单元根据工况控制EGR
回路的打开与关闭。
附图说明:
[0013] 附图1是本发明的结构示意图,图1(a)为空气进入空气。
[0014] 附图2为本发明所示的气缸盖结构示意图。
[0015] 附图3为本发明所示的进气凸轮轴。
[0016] 附图4为本发明所示的空气凸轮型线与凸轮夹角示意。
[0017] 附图5(a)和5(b)为本发明所示的EGR率控制原理图5(a)和三通阀开闭控制图5(b)。
[0018] 附图6为本发明所示的进气凸轮轴所控制的气缸的进气相位图。
[0019] 附图7为本发明所示的进气系统装配示意图。
[0020] 附图8为本发明进气系统的一种进气流向示意图。具体实施方式:
[0021] 下面结合附图和实施例,对本发明作进一步的说明。
[0022] 本发明提出了一种发动机废气分层进气系统,其中进气与排气凸轮轴对称的安装在气缸盖上,并且通过壳体固定,壳体非设计重点故省略;进气歧管也安装在气缸盖上,排
气歧管与进气歧管对称安装,通过螺栓装配;进气门安装在气缸盖内部;进气歧管包括空气
进气歧管和废气进气歧管。
[0023] 本发明所述进气系统由气缸盖、EGR回路、空气回路组成。
[0024] 所述的气缸盖为柴油机统一式燃烧室气缸盖。本实施例中,气缸盖共有十六个气道,如图2所示。进气道与排气道各有八个,分置在气缸盖的两侧。从左往右依次为一缸空气
进气道2.1.1、一缸废气进气道2.1.2、二缸空气进气道2.1.3、二缸废气进气道2.1.4、三缸
空气进气道2.1.5、三缸废气进气道2.1.6、四缸空气进气道2.1.7和四缸废气进气道2.1.8。
每个气缸分别设有两个排气道,两个气道横向对称。在图中为2.2.1‑2.2.8。气缸盖材料一
般为灰铸铁或合金铸铁。每个气道上均需安装气门机构。
[0025] 本发明所述的空气进气回路包括:空气进气歧管、凸轮轴、空气进气门、废气进气门。
[0026] 所述的空气进气歧管接受经增压器增压过后储存在稳压罐中的空气。如图1所示。空气从外界进入车内后,经过空气滤清器过滤、增压器增压后存入空气稳压罐中。空气稳压
罐的压力可调,保持与增压压力一致。空气稳压罐与空气进气歧管相连,通过空气进气歧
管、空气进气道、空气进气门进入气缸。
[0027] 所述的空气进气歧管包括1.3.1一缸空气进气管、1.3.3二缸空气进气管、1.3.5三缸空气进气管、1.3.7四缸空气进气管。
[0028] 所述的空气进气歧管与废气进气歧管之间有管道相连接,并且在废气进气歧管上安装了三通阀,分别是一缸三通阀1.4.1,二缸三通阀1.4.2,三缸三通阀1.4.3,四缸三通阀
1.4.4。
[0029] 所述的三通阀在低速和高负荷工况下,连接空气进气管和废气进气管,空气通过空气进气道和废气进气道进入气缸,废气回路关闭;在需要开启废气再循环的工况下,三通
阀仅连接空气进气管与空气进气道,空气仅通过空气进气道进入气缸,此时废气进气道内
进入的气体为再循环废气;其开闭受电子控制单元ECU控制。
[0030] 所述的空气进气道安装进气门通过凸轮轴的旋转带动凸轮旋转,凸轮的旋转会转变为气门机构的上下移动,实现空气进气门的开启和关闭。
[0031] 本发明中的气门采用顶置式气门,进气门与排气门均安装在气缸盖上。相应的,本发明中的凸轮轴采用双顶置凸轮轴的方案,其中第一凸轮轴为进气凸轮轴;第二凸轮轴为
排气凸轮轴。
[0032] 本发明中气门机构为现有技术,且为本技术领域的技术人员所熟知,例如气门机构可以包括气门,凸轮的转动使得气门会沿着气门的中心线在气门导管中上下往复移动从
而打开和关闭进气口和排气口,在此不再进行赘述。
[0033] 本发明中的进气凸轮轴负责控制废气进气门与空气进气门的开合,属于同缸异名凸轮轴,同一气缸对应的两个凸轮功能不同,两凸轮轴线夹角为60°。所述的进气凸轮轴如
图3所示。以第一缸为例,图中的3.1为一缸空气进气凸轮,3.2为一缸废气进气凸轮,3.3为
二缸空气进气凸轮,3.4为二缸废气进气凸轮,3.5为三缸空气进气凸轮,3.6 为三缸废气进
气凸轮,3.7为四缸空气进气凸轮,3.8为四缸废气进气凸轮,进气凸轮轴上不同气缸之间的
夹角按各缸点火顺序分别相差 (二缸发动机180°,三缸发动机120°,四缸发动机90°);但是
同一气缸内的空气凸轮与废气凸轮之间存在60°的夹角,从而使得空气进气门打开,空气进
气道开始进气后,经过60°凸轮轴转角,空气进气门关闭,废气进气门打开开始进气;此后再
经过60°凸轮轴转角后,废废气进气门关闭,废气进气结束。
[0034] 本发明中的空气进气凸轮和废气进气凸轮采取同样的凸轮型线,对应的气门升程曲线相同。当凸轮转动过基圆段后,把气门顶开,空气或再循环废气通过气门流入气缸。
[0035] 本发明中同一气缸的两个进气凸轮分别是空气进气凸轮与废气进气凸轮,两者之间存在60°夹角,如图4所示。空气凸轮与EGR凸轮气门升程段完全不重叠,不会同时顶开气
门,可以使空气气门开启时间与废气气门开启持续期不存在重叠,实现两者的不同时进气,
达到时序进气的目的。进气凸轮轴所控制的气缸中,所实现的进气相位图如图6所示,当曲
线高于x轴时,气门处于开启状态,新鲜空气或再循环废气进入气缸。
[0036] 本发明所述的EGR回路包括:排气门、排气管道、EGR阀、增压器、ECU、中冷器、废气稳压罐、废气进气歧管、废气进气道。如图5(a)和5(b)所示,该回路可以将气缸内燃烧所产
生的废气重新引入气缸内。
[0037] 所述的排气门安装在气缸盖的排气道上,连接排气管路,受排气凸轮轴控制。排气凸轮轴上的转动使得排气门会沿着气门的中心线在气门导管中上下往复移动从而打开或
者关闭,在此不再进行赘述。
[0038] 所述的排气凸轮轴负责控制排气门的开合,排气凸轮轴属于同缸同名凸轮,在同一气缸对应的两个凸轮功能相同,两凸轮轴线夹角为 0°。点火顺序是1‑3‑4‑2,发火间隔角
相差90°,即在气缸1点火后,经过90°凸轮轴转角后气缸2点火。排气凸轮轴与现有设计一
致,因此不再进行叙述。
[0039] 所述的排气管路与EGR回路相连。EGR回路包括EGR阀、中冷器及相应管路。其中EGR阀采用可以调节开度大小的三通阀,串联在排气歧管之后,末端是EGR回路中的中冷器。当
需要开启废气再循环时,一部分废气经过EGR阀进入EGR回路开始再循环,另一部分经由排
气管出口排入大气;当不需要开启废气再循环时,废气回路关闭,废气全部经由排气管出口
排入大气。
[0040] 所述的ECU是电子控制单元,通过传感器监视发动机工况、中冷器后温度、增压器后气体压力以及其他发动机运转所需信号。所使用的传感器为现有技术。根据柴油机运行
工况对三通阀开闭、EGR阀开度和增压压力进行控制,保证进入气缸内的EGR率实时可控,保
证进气压力实时可控。
[0041] 所述的中冷器后端通过管路连接废气进气口1.1.1,气体通过废气进气口进入废气稳压腔1.2.1,在柴油机需要进行时序分层近气时,受电子控制单元控制的三通阀连接废
气进气管和废气进气道,再循环废气通过废气进气管和废气气道进入气缸。
[0042] 所述的废气进气道受废气气门控制,当废气气门开启时,废气或者空气可以进入气缸。
[0043] 所述的废气气门受进气凸轮轴控制。由于进气凸轮轴上,同一气缸内的空气凸轮与废气凸轮之间存在60°的夹角,所以在空气进气道进气后,经过60°凸轮轴转角,废气进气
道开始进气。这样就实现了废气与空气不同时刻进入气缸,即时序进气。