一种纳米绝热毡及其制备方法转让专利

申请号 : CN201911405052.6

文献号 : CN111070819B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 任大贵张成贺王振宇刘超赵瑞禄

申请人 : 山东鲁阳浩特高技术纤维有限公司

摘要 :

本发明提供了一种纳米绝热毡,包括基材层和复合在所述基材层上的增强层;基材层选自体积密度为60~140kg/m3,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯;所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,纳米二氧化硅胶浆包括20~40份纳米二氧化硅、3~5份浓度为45~55wt%柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份水。本发明通过采用特定组分制备的纳米二氧化硅胶浆将特定的基材层复合上特定种类的增强层,使得到的纳米绝热毡具有较高强度和较好保温隔热性。还具有较好的耐高温性能。

权利要求 :

1.一种纳米绝热毡,包括基材层和复合在所述基材层上的增强层;

3

所述基材层选自体积密度为60~140kg/m,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯;所述陶瓷纤维毯的氧化铝含量≥40wt%,氧化铝和氧化硅总含量≥96wt%;所述可溶纤维毯氧化铝含量≤1wt%;

所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;所述铝箔玻纤布

2 2 2

的克重≥90g/m;所述玻璃纤维布的克重≥95g/m;所述无纺布的克重≥70g/m;

所述基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。

2.根据权利要求1所述的纳米绝热毡,其特征在于,所述纳米二氧化硅的原生粒径为20~30nm。

3.根据权利要求1所述的纳米绝热毡,其特征在于,所述增强层的厚度为0.05~0.5mm。

4.一种权利要求1~3任一项所述纳米绝热毡的制备方法,包括以下步骤:将增强层和基材层同时放卷,增强层铺设在基材层的底部;

从基材层的上部喷淋预先配置的纳米二氧化硅胶浆,挤压,烘干,得到纳米绝热毡;

所述纳米二氧化硅胶浆以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。

5.根据权利要求4所述的制备方法,其特征在于,所述烘干的温度为90~150℃。

6.根据权利要求4所述的制备方法,其特征在于,所述挤压时的压缩厚度为1~2mm。

说明书 :

一种纳米绝热毡及其制备方法

技术领域

[0001] 本发明属于绝热毡技术领域,尤其涉及一种纳米绝热毡及其制备方法。

背景技术

[0002] 随着国家对节能减排力度的加大,无机高效绝热节能材料以其受热时无烟无味、节能效果突出等优点越来越受到市场的青睐。目前,陶瓷纤维毯和可溶纤维毯在管道保温方面应用广泛。气凝胶毡产品也因其优异的隔热性能,在管道保温方面越来越受到用户的认可。但是,陶瓷纤维毯和可溶纤维毯的导热系数偏高,平均500℃导热系数为0.13W/(m·K)左右;气凝胶毡产品目前主要是以玻璃纤维毡为基材生产的,其最高使用温度通常不超过650℃,这在一定程度上限制了其应用范围。
[0003] 专利(CN108083760A)“一种陶瓷纤维复合型二氧化硅气凝胶保温毡的制备工艺”公开的制备工艺复杂,且陶瓷纤维毯孔隙率大,对胶体的吸附能力强,且吸附胶体后的纤维毯基本无强度,后续的反复输送很容易造成纤维毯的破损、断裂。因此,现有技术中绝热毡的强度较低。

发明内容

[0004] 有鉴于此,本发明的目的在于提供一种纳米绝热毡及其制备方法,该纳米绝热毡具有较高的抗拉强度和较好的保温隔热效果。
[0005] 本发明提供了一种纳米绝热毡,包括基材层和复合在所述基材层上的增强层;
[0006] 所述基材层选自体积密度为60~140kg/m3,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯;
[0007] 所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;
[0008] 所述基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。
[0009] 优选地,所述陶瓷纤维毯的氧化铝含量≥40wt%,氧化铝和氧化硅总含量≥96wt%;
[0010] 所述可溶纤维毯氧化铝含量≤1wt%。
[0011] 优选地,所述铝箔玻纤布的克重≥90g/m2;所述玻璃纤维布的克重≥95 g/m2;所述2
无纺布的克重≥70g/m。
[0012] 优选地,所述纳米二氧化硅的原生粒径为20~30nm。
[0013] 优选地,所述增强层的厚度为0.05~0.5mm。
[0014] 本发明提供了一种上述技术方案所述纳米绝热毡的制备方法,包括以下步骤:
[0015] 将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0016] 从基材层的上部喷淋预先配置的纳米二氧化硅胶浆,挤压,烘干,得到纳米绝热毡;
[0017] 所述纳米二氧化硅胶浆以重量份数计,所述纳米二氧化硅胶浆包括20~40 份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。
[0018] 优选地,所述烘干的温度为90~150℃。
[0019] 优选地,所述挤压时的压缩厚度为1~2mm。
[0020] 本发明提供了一种纳米绝热毡,包括基材层和复合在所述基材层上的增强层;所3
述基材层选自体积密度为60~140kg/m ,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯;所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;所述基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。本发明通过采用特定组分制备的纳米二氧化硅胶浆将特定的基材层复合上特定种类的增强层,使得到的纳米绝热毡具有较高的强度和较好的保温隔热性。还具有较好的耐高温性能。实验结果表明:纳米绝热毡的体积密度为0.09
3
~0.205g/cm,平均500℃导热系数低于 0.1W/(m·K);抗拉强度为0.25~0.45MPa。

具体实施方式

[0021] 本发明提供了一种纳米绝热毡,包括基材层和复合在所述基材层上的增强层;
[0022] 所述基材层选自体积密度为60~140kg/m3,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯;
[0023] 所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;
[0024] 所述基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。
[0025] 本发明提供的纳米绝热毡包括基材层;所述基材层选自体积密度为 60~140kg/3
m ,纤维直径为3~5μm的纤维毯;纤维毯选自陶瓷纤维毯和/或可溶纤维毯。所述陶瓷纤维毯的氧化铝含量≥40wt%,氧化铝和氧化硅总含量≥ 96wt%;所述可溶纤维毯氧化铝含量
3
≤1wt%。具体实施例中,所述基材层选自体积密度为60kg/m ,纤维直径为3μm,氧化铝含量
3
为40wt%,氧化铝和氧化硅合量为96wt%的陶瓷纤维毯;或体积密度为128kg/m ,纤维直径为 4μm,氧化铝含量为52wt%,氧化铝和氧化硅总含量98wt%的陶瓷纤维毯;或体积密度为
3
140kg/m,纤维直径为5μm,氧化铝含量≤1wt%的碱土硅酸盐可溶纤维毯。
[0026] 本发明提供的纳米绝热毡包括复合在所述基材层上的增强层;所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种。在本发明中,所述铝箔玻纤布的克重优选2 2 2
≥90g/m ,更优选为90~120g/m ;所述玻璃纤维布的克重优选≥95g/m ,更优选为95~
2 2 2
125g/m ;所述无纺布的克重优选≥70g/m ,更优选为70~80g/m 。在具体实施例中,所述增
2 2 2
强层选自克重为100g/m的铝箔玻纤布;或克重为120g/m的玻璃纤维布;或克重为80g/m的无纺布。所述增强层的厚度为0.05~0.5mm。具体实施例中,所述增强层的厚度为0.05mm、 
0.25mm或0.5mm。
[0027] 本发明采用纳米二氧化硅胶浆将基材层和增强层复合。以重量份数计,所述纳米二氧化硅胶浆包括20~40份的纳米二氧化硅、3~5份浓度为 45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。所述纳米二氧化硅胶浆优选淋喷在所述基材层将基材层和增强层复合。所述基材层和增强层之间通过纳米二氧化硅胶浆中的柔性丙烯酸和硅溶胶作为结合剂进行粘合。所述纳米二氧化硅的原生粒径为20~30nm。具体实施例中,所述柔性丙烯酸乳液的浓度为55wt%、50wt%或45wt%;所述硅溶胶的浓度为40wt%、30wt%或20wt%。所述二氧化硅胶浆中的纳米二氧化硅淋喷后会填充到基材层中,保证纳米绝热毡的保温性能。
[0028] 所述纳米二氧化硅胶浆优选按照以下方法制得:
[0029] 在搅拌条件下,将水、柔性丙烯酸溶液、硅溶胶和纳米二氧化硅混合,得到纳米二氧化硅胶浆。
[0030] 本发明提供了一种上述技术方案所述纳米绝热毡的制备方法,包括以下步骤:
[0031] 将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0032] 从基材层的上部喷淋预先配置的纳米二氧化硅胶浆,挤压,烘干,得到纳米绝热毡;
[0033] 所述纳米二氧化硅胶浆以重量份数计,所述纳米二氧化硅胶浆包括20~40 份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5份浓度为20~40wt%的硅溶胶和50~74份的水。
[0034] 本发明通过挤压装置使基材层和增强层紧密贴合在一起,所述挤压时的压缩厚度优选为1~2mm。
[0035] 所述烘干的温度为90~150℃;具体实施例中,所述烘干的温度为90℃、 120℃或150℃。
[0036] 本发明提供的纳米绝热毡的体积密度优选为0.090~0.220g/cm3。本发明具体实3 3 3
施例制得的纳米绝热毡的体积密度为0.090g/m、0.162g/m或0.205g/m。
[0037] 本发明采用GB/T10294‑2008中的方法测试纳米绝热毡的导热系数;
[0038] 本发明采用GB/T17911‑2018中的方法测试纳米绝热毡的抗拉强度;
[0039] 本发明采用GB/T17430‑2015中的方法测试纳米绝热毡的最高使用温度。
[0040] 本发明提供的方法简单,制备的纳米绝热毡适用于各类管道的保温隔热,并可实现连续化生产。
[0041] 为了进一步说明本发明,下面结合实施例对本发明提供的一种纳米绝热毡及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
[0042] 实施例1
[0043] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为陶瓷3
纤维毯,陶瓷纤维毯体积密度为60kg/m ,纤维直径为3μm,氧化铝含量为40%,氧化铝和氧
2
化硅合量为96%。基材层为铝箔玻纤布,厚度为0.05mm,克重为100g/m。
[0044] 具体的制备方法包括以下步骤:
[0045] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0046] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:20重量份纳米二氧化硅、3重量份柔性丙烯酸乳液、3重量份硅溶胶、 74重量份水;其中纳米二氧化硅的原生粒径为20~30nm,柔性丙烯酸乳液浓度为45wt%,硅溶胶浓度为20%。首先向配胶罐中加入水并开启搅拌机,转速设置为600rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1000rpm,搅拌时间10min;
[0047] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0048] (4)通过热风烘干,烘干温度90℃,制得基材增强的纳米绝热毡。
[0049] 实施例2
[0050] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为陶瓷3
纤维毯,陶瓷纤维毯体积密度为128kg/m ,纤维直径为4μm,氧化铝含量为52%,氧化铝和氧
2
化硅合量98%。基材层为玻璃纤维布,厚度为0.25mm,克重为120g/m。
[0051] 具体的制备方法包括以下步骤:
[0052] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0053] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:30重量份纳米二氧化硅、4重量份柔性丙烯酸乳液、4重量份硅溶胶、 62重量份水;其中纳米二氧化硅原生粒径为20~30nm,柔性丙烯酸乳液浓度为50%,硅溶胶浓度为30%。首先向配胶罐中加入水并开启搅拌机,转速设置为700rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1100rpm,搅拌时间12min;
[0054] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0055] (4)通过热风烘干,烘干温度120℃,制得基材增强的纳米绝热毡。
[0056] 实施例3
[0057] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为碱土3
硅酸盐可溶纤维毯,纤维毯体积密度为140kg/m ,纤维直径为5μm,氧化铝含量≤1%。基材
2
层为无纺布,基材层的厚度为0.5mm,克重为80g/m。
[0058] 具体的制备方法包括以下步骤:
[0059] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0060] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:40重量份纳米二氧化硅、5重量份柔性丙烯酸乳液、5重量份硅溶胶、 50重量份水;其中纳米二氧化硅原生粒径为20~30nm,柔性丙烯酸乳液浓度为55%,硅溶胶浓度为40%。首先向配胶罐中加入水并开启搅拌机,转速设置为800rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1200rpm,搅拌时间15min;
[0061] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0062] (4)通过热风烘干,烘干温度150℃,制得基材增强的纳米绝热毡。
[0063] 对比例1
[0064] 陶瓷纤维复合型二氧化硅气凝胶保温毯的制备工艺包括以下步骤:二氧化硅胶液配制→陶瓷纤维毯气凝胶成型→老化→干燥→检测。配制如下体积比的二氧化硅气凝胶胶液:正硅酸乙酯:95%无水乙醇:水催化剂:添加剂=10:90:2:0.1。水催化剂分别为0.02mol/L盐酸溶液、0.01mol/L氨水溶液,添加剂为乙基纤维素,反应时间3h。将反应胶液
3
喷淋于厚度为10mm,密度为165kg/m的陶瓷纤维毯上,使陶瓷纤维毯饱和吸附胶液,陶瓷纤维毯无鼓泡、凹陷,上下表面均均匀平整,再送入38℃环境静置20min,形成陶瓷纤维毯气凝胶醇凝胶。将陶瓷纤维气凝胶的醇凝胶放入35℃乙醇溶液中浸泡24h。将老化过的陶瓷纤维气凝胶材料放入萃取釜中,将CO2流体注入萃取釜,调节萃取釜内温度和压力在CO2流体的超临界状态与材料接触,使材料中的溶剂溶解于超临界流体之中,超临界温度为45℃,压力为
12MPa;CO2流体通过萃取釜的流量为2000kg/h,从分离釜的萃取出口收集溶剂,停机取出材料。
[0065] 对比例2
[0066] 一种气凝胶复合纤维针刺毡,包括针刺毡主体,所述针刺毡主体从下至上依次为三层绝热布层A1、一层气凝胶颗粒A2、三层绝热布层B3、一层气凝胶颗粒B4、三层绝热布层C5;所述绝热布层A1、绝热布层B3及绝热布层C5为玻璃纤维布;所述三层绝热布层A1、一层气凝胶颗粒A2、三层绝热布层B3、一层气凝胶颗粒B4、三层绝热布层C5厚度比为3:1:3:1:3;所述针刺毡主体压实厚度为1cm;所述针刺毡主体间隔穿插有针刺形成的垂向短丝纤维,所述垂向短丝纤维与毡网各层纤维相互联结。
[0067] 气凝胶复合纤维针刺毡制备,包括以下步骤:
[0068] 1)玻璃纤维层的处理:首先将玻璃纤维丝切成60mm,将短玻璃纤维丝输入梳理机;梳理机将短玻璃纤维丝梳理成一根一根的单丝,形成薄薄的毡网层后输送给铺网机;铺网机将薄毡网层层叠达到1mm厚度;然后利用针刺机对毡网进行针刺,使纤维相互联接,成为具有一定强度的针刺玻璃纤维毡;
[0069] 2)气凝胶颗粒:使用的气凝胶粉粒径为1~2mm;所述气凝胶购自广东埃力生高新科技有限公司;
[0070] 3)气凝胶复合纤维针刺毡的制备:首先,在涂布机上铺三层玻璃纤维布布层;之后将上述步骤2)制备的气凝胶颗粒均匀喷洒在玻璃纤维层形成一气凝胶粉层,气凝胶粉层的厚度为1mm;然后继续铺上三玻璃纤维层,将气凝胶细粉均匀喷洒在玻璃纤维层形成气凝胶粉层,继续循环上述操作,直至10个复合层铺设完毕,将上述铺设好的材料输送至辊压机,经碾压得厚度为1cm 的气凝胶针刺毡。
[0071] 对比例3
[0072] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为可溶3
纤维毯,纤维毯体积密度为140kg/m,纤维直径为5μm,氧化铝含量≤1%。基材层为无纺布,
2
基材层的厚度为0.5mm,克重为80g/m。
[0073] 具体的制备方法包括以下步骤:
[0074] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0075] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:40重量份纳米二氧化硅、2重量份柔性丙烯酸乳液、2重量份硅溶胶、56重量份水。其中纳米二氧化硅原生粒径为20~30nm,柔性丙烯酸乳液浓度为55%,硅溶胶浓度为40%。首先向配胶罐中加入水并开启搅拌机,转速设置为800rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1200rpm,搅拌时间15min;
[0076] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0077] (4)通过热风烘干,烘干温度150℃,制得基材增强的纳米绝热毡。
[0078] 对比例4
[0079] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为陶瓷3
纤维毯,陶瓷纤维毯体积密度为60kg/m ,纤维直径为 3μm,氧化铝含量为40%,氧化铝和氧
2
化硅合量为96%。基材层为铝箔玻纤布,厚度为0.05mm,克重为100g/m。
[0080] 具体的制备方法包括以下步骤:
[0081] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0082] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:15重量份纳米二氧化硅、3重量份柔性丙烯酸乳液、3重量份硅溶胶、 79重量份水。其中纳米二氧化硅原生粒径为20~30nm,柔性丙烯酸乳液浓度为45%,硅溶胶浓度为20%。首先向配胶罐中加入水并开启搅拌机,转速设置为600rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1000rpm,搅拌时间10min;
[0083] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0084] (4)通过热风烘干,烘干温度90℃,制得基材增强的纳米绝热毡。
[0085] 对比例5
[0086] 一种基材增强的纳米绝热毡,该纳米绝热毡由基材层和增强层组成,基材层内部填充纳米材料,基材层和增强层之间靠纳米二氧化硅胶浆中的结合剂粘合。基材层为陶瓷3
纤维毯,陶瓷纤维毯体积密度为128kg/m ,纤维直径为4μm,氧化铝含量为52%,氧化铝和氧
2
化硅合量98%。基材层为玻璃纤维布,厚度为0.25mm,克重为120g/m。
[0087] 具体的制备方法包括以下步骤:
[0088] (1)将增强层和基材层同时放卷,增强层铺设在基材层的底部;
[0089] (2)从基材层的上部淋预先配好的纳米二氧化硅胶浆,胶浆的组成材料包括:60重量份纳米二氧化硅、4重量份柔性丙烯酸乳液、4重量份硅溶胶、 32重量份水。其中纳米二氧化硅原生粒径为20~30nm,柔性丙烯酸乳液浓度为50%,硅溶胶浓度为30%。首先向配胶罐中加入水并开启搅拌机,转速设置为700rpm,然后依次加入柔性丙烯酸溶液、硅溶胶和纳米二氧化硅,搅拌机转速调整为1100rpm,搅拌时间12min;
[0090] (3)完成淋胶的基材层和增强层,通过挤压装置,使基材层和增强层更紧密的贴合在一起;
[0091] (4)通过热风烘干,制得基材增强的纳米绝热毡,烘干温度120℃。
[0092] 将本发明实施例1~3制备得到的陶瓷纤维板依次编号为A、B、C,将对比例1、2、3、4和5制备的样品编号为D、E、F、G和H。分别测试样品的体积密度、平均500℃导热系数、抗拉强度和最高使用温度,得到如下表1所示数据:
[0093] 表1本发明实施例1~3和对比例1~5制备的绝热毡的性能测试结果
[0094]
[0095] 表1中数据显示,本发明所述的纳米绝热毡(样品A、B、C)平均500℃导热系数低于0.1W/(m·K),抗拉强度不低于0.25MPa,性能优异。对比例1 制备的样品D虽然导热系数低,但生产工艺复杂,纤维毯浸胶后基本无强度,成品率低,产品抗拉强度差。对比例2制备的样品E无法实现纳米材料的均匀分布,导致产品隔热性差,同时因其基体材料是玻璃纤维,使用温度不超过650℃,使用范围受限。对比例3中的胶浆含有的结合剂量较少,导致产品的抗拉强度较低。对比例4中胶浆内含有的纳米二氧化硅浓度偏低,导致产品内含有的纳米二氧化硅较少,使产品的导热系数增加。对比例5中胶浆内含有的纳米二氧化硅浓度过高,导致胶浆粘度过大,阻碍了纳米二氧化硅有效进入基材层,使产品的导热系数增加。
[0096] 由以上实施例可知,本发明提供了一种纳米绝热毡,包括基材层和复合在所述基3
材层上的增强层;所述基材层选自体积密度为60~140kg/m ,纤维直径为3~5μm的纤维毯;
纤维毯选自陶瓷纤维毯和/或可溶纤维毯;所述增强层选自铝箔玻纤布、玻璃纤维布和无纺布中的一种或多种;所述基材层和增强层采用纳米二氧化硅胶浆复合;以重量份数计,所述纳米二氧化硅胶浆包括 20~40份的纳米二氧化硅、3~5份浓度为45~55wt%的柔性丙烯酸乳液、3~5 份浓度为20~40wt%的硅溶胶和50~74份的水。本发明通过采用特定组分制备的纳米二氧化硅胶浆将特定的基材层复合上特定种类的增强层,使得到的纳米绝热毡具有较高的强度和较好的保温隔热性。还具有较好的耐高温性能。实验结果表明:纳米绝热毡
3
的体积密度为0.09~0.205g/cm ,平均500℃导热系数低于0.1W/(m·K);抗拉强度为0.25~0.45MPa。
[0097] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。