一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法转让专利

申请号 : CN201911345170.2

文献号 : CN111129169B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周建新徐廉鹏何哲

申请人 : 南京航空航天大学

摘要 :

本发明提供一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法,属于半导体光电探测技术领域,该光电器件结构自下而上依次为厚度为衬底层、绝缘层、二硒化锡层、二硒化钨层、石墨烯层;二硒化锡层和石墨烯层两端分别连接金属电极;本发明光电器件结构简单,无需栅压调控,光响应度及增益高,响应速度快。

权利要求 :

1.一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述光电器件从下到上依次为:衬底(1),绝缘层(2),二硒化锡层(3),二硒化钨层(4)和石墨烯层(5);

所述衬底(1)与绝缘层(2)上表面积相同,所述二硒化锡层(3)上表面积小于绝缘层(2);所述二硒化钨层(4)覆盖于二硒化锡层(3)上表面且二硒化钨层(4)的一侧延伸至绝缘层(2)上表面;所述石墨烯层(5)覆盖于二硒化钨层(4)上表面且石墨烯层(5)的一侧延伸至绝缘层(2)上表面;

第一金属电极(6)和第二金属电极(7)分别位于叠层结构两侧,其中,所述第一金属电极(6)位于绝缘层(2)一侧的上表面且与二硒化锡层(3)接触;所述第二金属电极(7)位于绝缘层(2)另一侧的上表面且与石墨烯层(5)延伸至绝缘层(2)的区域接触。

2.根据权利要求1所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述的衬底(1)包括绝缘衬底和非绝缘衬底;当所述衬底(1)为绝缘衬底时,衬底(1)与绝缘层(2)材质相同且二者固为一体。

3.根据权利要求2所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述绝缘层衬底的材质包括氧化铝、普通玻璃、石英玻璃、云母、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷中的至少一种;衬底(1)与绝缘层(2)的总厚度为0.1‑5毫米。

4.根据权利要求2所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述非绝缘衬底的材质包括硅、锗、金箔、铜箔、镍箔中的至少一种;所述绝缘层(2)的材质为二氧化硅、云母、六方氮化硼、氧化铝或氧化铪中的一种;衬底(1)的厚度为0.1‑5毫米,绝缘层(2)的厚度为10‑300纳米。

5.根据权利要求2所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述二硒化锡层(3)、二硒化钨层(4)、石墨烯层(5)的厚度依次分别为4‑50纳米、15‑

55纳米和0.7‑6纳米。

6.根据权利要求1所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述的第一金属电极(6)和第二金属电极(7)的材质为铟镓合金,或添加铟镓合金的金属;所述金属包括铜、铝、金、铂、钯中的一种或多种;所述的第一金属电极(6)和第二金属电极(7)的厚度均为10‑500纳米。

7.根据权利要求6所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其特征在于,所述添加铟镓合金的金属中,铟镓合金的含量为5‑50%。

8.如权利要求1‑7任一所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件的制备方法,其特征在于,具体步骤如下:

1)衬底清洗

将待洗的衬底依次放入丙酮溶液、异丙酮、无水乙醇浸泡5‑7分钟后,分别依次以超声、去离子水冲洗,吹干后备用;

2)绝缘层的制备

当衬底为非绝缘衬底时,利用热氧化法、气相化学沉积法、原子层沉积法或机械转移法在衬底表面制备绝缘层;

3)层状材料的制备

用机械剥离法或化学气相沉积法分别制备二硒化锡、二硒化钨、石墨烯层状材料;

4)石墨烯/二硒化钨/二硒化锡叠层结构的制备在二硒化锡层上旋涂PPC,加热使PPC与二硒化锡层结合,然后将PPC‑二硒化锡转移到绝缘层上,然后加热,并以丙酮清洗去除PPC;

用同样的转移方法,将二硒化钨层堆叠到二硒化锡层上得到二硒化钨‑二硒化锡叠层,再将石墨烯层堆叠到双层上得到石墨烯‑二硒化钨‑二硒化锡叠层;

5)电极的制备

分别在二硒化锡层和石墨烯层的端部刷涂液态铟镓合金,或蒸镀仪蒸镀铟镓‑金属合金,或磁控溅射仪中溅射铟镓‑金属合金,即获得所述基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件。

说明书 :

一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及

其制备方法

技术领域

[0001] 本发明涉及光电传感器领域,特别是一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法。

背景技术

[0002] 光电探测器是通过电过程探测光信号的半导体器件,可分为热探测器和光探测器,目前市场上主要应用的是基于量子光电效应的光探测器。相比传统的利用体相半导体
异质结或PN结的光电探测器,石墨烯和MX2等二维材料的研究为超薄光电探测器件奠定了
基础,由于二维材料纳米级别的厚度和高的光吸收率,二维材料叠层结构光电传感器在尺
度和响应度上都会带来巨大提升。
[0003] 专利CN107749433 A设计了一种二维范德华异质结光电探测器,形成叠层结构拓展探测器响应波段,提高了响应度。专利CN208366907 U设计了一种基于二硒化钨的柔性离
子传感器,在二硒化钨层表面覆盖氮化硼层形成叠层结构,以提升传感器的稳定性。Chen Z
等人研究了一种基于石墨烯/InSe/MoS2异质结构的新型自驱动光电探测器,在自驱动模式
下,它表现出高光响应度和探测率(Chen Z,Zhang Z,Biscaras J,Shukla A.A high 
performance self‑driven photodetector based on a graphene/InSe/MoS2 vertical 
heterostructure.Journal of Materials Chemistry C.2018;6(45):12407‑12)。虽然上
述研究已经在一定程度上改善了光电器件的性能,但是仍然还存在一些共性问题,例如电
极和二维材料、二维材料和二维材料之间接触时容易形成肖特基势垒,大幅降低了光电流
等(Schottky W.Halbleitertheorie der sperrschicht[J].Naturwissenschaften,1938,
26(52):843‑843.),并不能完全满足对光电器件响应度的要求。

发明内容

[0004] 针对上述问题,本发明旨在提供了一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法,以提高光电器件的灵敏度、光响应度和光探测率。
[0005] 为实现上述目的,本发明采取以下技术方案:
[0006] 一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件,其结构从下到上依次为:衬底1,绝缘层2,二硒化锡层3,二硒化钨层4和石墨烯层5;二硒化锡层3,二硒化钨层4和
石墨烯层5三层材料依次堆叠形成叠层结构;所述衬底1与绝缘层2上表面积相同,所述二硒
化锡层3上表面积小于绝缘层2;所述二硒化钨层4覆盖于二硒化锡层3上表面且二硒化钨层
4的一侧延伸至绝缘层2上表面;所述石墨烯层5覆盖于二硒化钨层4上表面且石墨烯层5的
一侧延伸至绝缘层2上表面,石墨烯层5与二硒化锡层3互不接触;所述第一金属电极6和第
二金属电极7分别位于叠层结构两侧,其中,所述第一金属电极6位于绝缘层2一侧的上表面
且与二硒化锡层3接触,第一金属电极6与二硒化钨层4和石墨烯层5均不接触;所述第二金
属电极7位于绝缘层2另一侧的上表面且与石墨烯层5延伸至绝缘层2的区域接触,第二金属
电极7与二硒化钨层4和二硒化锡层3均不接触。
[0007] 进一步而言,本申请提供的基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件中,所述的衬底1的材质可为任意具有光滑表面的固体。具体而言,衬底1包括绝缘衬底和非
绝缘衬底两种;当衬底1为绝缘衬底时,衬底1与绝缘层2材质相同且二者固为一体,所述绝
缘层衬底的材质包括氧化铝、普通玻璃、石英玻璃、云母、PET(聚对苯二甲酸乙二醇酯)、
PDMS(聚二甲基硅氧烷)中的至少一种;衬底1与绝缘层2的总厚度为0.1‑5毫米;当衬底1为
非绝缘衬底时,利用热氧化法、气相化学沉积法、原子层沉积法或机械转移法在衬底表面制
备绝缘层2,绝缘层2的材质包括SiO2、云母、六方氮化硼、氧化铝或氧化铪中的一种,非绝缘
材质的材质包括硅、锗、金箔、铜箔、镍箔中的至少一种;绝缘层2的厚度为10‑300纳米,非绝
缘衬底的厚度为0.1‑5毫米;不同的材质和厚度对光的吸收效率不同,导致光电流不同,影
响灵敏度。
[0008] 进一步而言,本申请提供的基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件中,所述的二硒化锡层3、二硒化钨层4、石墨烯层5,可以通过机械剥离法或通过化学气相沉
积法制备;不同的材质和厚度对光的吸收效率不同,本申请中,上述二硒化锡层3、二硒化钨
层4、石墨烯层5的厚度依次分别优选为4‑50纳米、15‑55纳米和0.7‑6纳米;上述机械剥离法
及化学气相沉积法均为本领域的常规方法,如机械剥离法可以参见文献“Novoselov K S,
Geim A K,Morozov S V,et al.Electric field effect in atomically thin crbon 
films.Science,2004,306(5696):666‑669.”中所公开的方法,化学气相沉积法。
(J.M.Blocher Jr.,Structure/property/process relationships in chemical vapor 
deposition CVD,J.Vac.Sci.Technol.11(1974)680‑686)
[0009] 石墨烯/二硒化钨/二硒化锡叠层结构可以通过机械转移法制备,该方法同样为本领域的常规方法,如文献“Dean C R,Young A F,Meric I,et al.Boron nitride 
substrates for high‑quality graphenelectronics[J].Nature Nanotechnology,2010,
5(10):722‑726”中所公开的方法。
[0010] 进一步而言,本申请提供的基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件中,所述的第一金属电极6和第二金属电极7的材质相同,厚度为10‑500纳米;二者的材质可
以为铟镓合金,或添加了铟镓合金的金属;所述添加了铟镓合金的金属中,铟镓合金的质量
百分数优选5‑50%;所述金属优选铜、铝、金、铂、钯中的一种。
[0011] 本发明同时提供了上述基于石墨烯/二硒化钨/二硒化锡叠层结构光电器件的制备方法,其具体步骤如下:
[0012] 1)衬底清洗
[0013] 将待洗的衬底1依次放入丙酮溶液、异丙酮、无水乙醇浸泡5‑7分钟,20KHz下超声清洗10分钟清洗完毕后用去离子水进行冲洗,氮气吹干后备用。
[0014] 2)绝缘层的制备
[0015] 当衬底1为绝缘衬底时,二者固为一体,无需另行制备绝缘层2;
[0016] 当衬底1为非绝缘衬底时,通过常规的热氧化法(典型衬底如硅)(参见文献:A.S.Grore,Physics and Technology of Semiconductor Devices,John Wiley and Sons 
Inc.,New York,1967.)、化学气相沉积方法(典型衬底如氧化硅,氧化铝)、原子层沉积(典
型衬底如氧化铝,氧化铪)(参见文献:T.Suntola and J.Antson.US Pat 4058.430(1977))
或机械转移法(典型衬底如云母,六方氮化硼)在衬底1表面制备绝缘层2。
[0017] 3)层状材料的制备
[0018] 用机械剥离法或化学气相沉积法分别在绝缘层2上制备石墨烯、二硒化钨、二硒化锡三种层状材料,具体如下:
[0019] 机械剥离法制备所述三种的层状材料的方法与常规石墨烯机械剥离法相同:即将所需剥离的块体层状薄片置于粘性胶带上,进行反复粘贴剥离该块体材料,使其变为较薄
的层状薄片。将胶带上层状薄片粘贴在绝缘层上,反复压实使其与目标基底粘结紧密,静止
5分钟后将胶带缓慢剥离,使材料置留在基底上。选取厚度为4‑50纳米的二硒化锡、厚度为
15‑55纳米的二硒化钨和厚度为0.7‑6纳米的石墨烯层状材料作为制备叠层结构的材料。
[0020] 或者,本步骤也可以通过化学气相沉积法制备所述的三种层状材料,主要是通过将衬底置于石英管中,以粉末或气体为源,在管式炉的加热下挥发,沉积到衬底上成核,在
一定的温度和气压下生长成层状的薄膜。通过控制气体的流速、生长温度、生长气压和原料
的配比,制备出厚度为4‑50纳米的二硒化锡层状材料,厚度为15‑55纳米二硒化钨层状材
料,厚度为0.7‑6纳米石墨烯层状材料。4)石墨烯/二硒化钨/二硒化锡叠层结构的制备
[0021] 在已制备好的二硒化锡层上旋涂一层PPC(聚甲基乙撑碳酸酯),PPC厚度为50‑200纳米;在90‑100℃下加热5分钟使PPC层与二硒化锡层结合;用粘性胶带粘在PPC‑二硒化锡
层的PPC一侧,在显微转移台里将PPC‑二硒化锡转移到器件衬底或绝缘层的指定位置处;在
120℃下加热10分钟使PPC‑二硒化锡层与胶带分离;之后180℃下3分钟热处理,增加界面结
合性;再在室温下将结合于绝缘层的二硒化锡层在丙酮中清洗5分钟,去除残留PPC;
[0022] 用同样的转移方法,将二硒化钨层堆叠到二硒化锡层上得到二硒化钨‑二硒化锡叠层,再将石墨烯层堆叠到双层上得到石墨烯‑二硒化钨‑二硒化锡叠层。
[0023] 5)电极的制备
[0024] 第一金属电极6和第二金属电极7材质为铟镓合金或添加了铟镓合金的金属;
[0025] 当第一金属电极6和第二金属电极7材质为铟镓合金时,其制备方法如下:在显微转移台中将两根钨探针蘸取少量液态铟镓合金,然后将探针分别移动到器件电极的位置,
使探针与器件表面稳定接触,形成第一金属电极6和第二金属电极7;
[0026] 当第一金属电极6和第二金属电极7材质为铟镓‑金属合金时,其制备方法如下:在蒸镀仪中蒸镀铟镓‑金属合金,或在磁控溅射仪中溅射铟镓‑金属合金制备第一金属电极6
和第二金属电极7;所述铟镓‑金属合金是指添加铟镓合金的金属,铟镓合金含量(质量百分
数)占铟镓‑金属合金质量的5‑50%;所述金属优选铝、铜、金、铂、钯。
[0027] 以上绝缘层、衬底、叠层结构制备时逐层叠加,叠加完成加入电极后,即获得所述终产品石墨烯/二硒化钨/二硒化锡叠层结构的光电器件。
[0028] 本申请中,技术术语“电极”包括第一金属电极6和第二金属电极7。
[0029] 与现有技术相比,本发明专利的优点在于:本发明选用石墨烯/二硒化钨/二硒化锡叠层结构制备光电器件,无需栅压调控,制备工艺简单,无偏压下也能工作。叠层结构中,
层材料与铟镓合金具备优异的欧姆接触特性(非肖特基接触导致光电流和响应度大),且叠
层结构由于层间耦合作用和其它特性,因此制备的光电器件具有高的光响应度和灵敏度。

附图说明

[0030] 图1为本发明实施例的石墨烯/二硒化钨/二硒化锡叠层结构光电器件结构示意图;
[0031] 图2为本发明实施例的石墨烯/二硒化钨/二硒化锡叠层结构光电器件直角坐标输出曲线示意图;
[0032] 图3为本发明实施例的石墨烯/二硒化钨/二硒化锡叠层结构光电器件对数坐标输出曲线示意图;
[0033] 图4为实施例3获得的光电器件结构示意图。

具体实施方式

[0034] 下面结合附图和具体的实施例对本发明做进一步的详细描述,实施例仅仅对本发明进行解释和说明,本发明并不仅限于此实施例。
[0035] 石墨烯片购自苏州碳丰石墨烯科技有限公司;
[0036] 二硒化锡片和二硒化钨片购自HQ graphene有限公司;
[0037] 氧化硅‑硅衬底购自苏州晶硅科技有限公司(总厚度为0.5毫米,氧化硅厚度约为90nm)。
[0038] 实施例1
[0039] 1、制备光电探测器,具体制备步骤如下:
[0040] 1)衬底清洗
[0041] 将待洗的氧化硅‑硅衬底依次放入丙酮溶液、异丙酮、无水乙醇浸泡5分钟并在20KHz下超声清洗10分钟,清洗完毕后用去离子水进行冲洗,氮气吹干后备用。
[0042] 2)层状材料的制备
[0043] 在本实施例中,采用机械剥离法制备所述的三种层状材料。将所要剥离的二硒化钨、二硒化锡和石墨烯层状材料分别置于粘性胶带上,进行反复粘贴剥离该块体材料,使其
变为较薄层状薄片。将胶带上的层状薄片粘贴到氧化硅‑硅衬底上,反复压实,静止5分钟后
将胶带缓慢剥离,使材料置留在基底上,从而分别制备出所述三种层状材料。
[0044] 3)叠层结构的制备
[0045] 在本实施例中,采用机械转移法制备叠层结构。在已制备好的二硒化锡层上旋涂一层PPC;在100℃下加热5分钟使PPC与二硒化锡层结合;用粘性胶带粘在PPC‑二硒化锡层
的PPC一侧,在显微转移台里将PPC‑二硒化锡转移到绝缘层(二氧化硅层)的指定位置处;在
120℃下加热10分钟使PPC‑二硒化锡层与胶带分离;之后180℃下3分钟热处理,增加界面结
合性;再在室温下将结合于绝缘层的二硒化锡层在丙酮中清洗5分钟,去除残留PPC。
[0046] 用同样的转移方法,将二硒化钨层堆叠到二硒化锡层上得到二硒化钨‑二硒化锡叠层,再将石墨烯层堆叠到双层上得到石墨烯‑二硒化钨‑二硒化锡叠层。
[0047] 4)电极的制备
[0048] 本实施例中,采用刷涂液态铟镓合金的方法制备电极。将铟镓合金加热到25摄氏度,在显微转移台中将两根钨探针蘸取少量液态铟镓合金,然后将探针分别移动到器件预
设电极6和电极7的位置,使探针与器件表面稳定接触,形成第一金属电极6和第二金属电极
7。基于石墨烯/二硒化钨/二硒化锡的光电探测器即制备完成。
[0049] 本实施例制备的光电器件结构示意图如图1所示。该光电器件的结构从下到上依次为:衬底1,绝缘层2,二硒化锡层3,二硒化钨层4和石墨烯层5;二硒化锡层3,二硒化钨层4
和石墨烯层5三层材料依次堆叠形成叠层结构;衬底1与绝缘层2上表面积相同,二硒化锡层
3上表面积小于绝缘层2;二硒化钨层4覆盖于二硒化锡层3上表面且二硒化钨层4的一侧延
伸至绝缘层2上表面;石墨烯层5覆盖于二硒化钨层4上表面且石墨烯层5的一侧延伸至绝缘
层2上表面,石墨烯层5与二硒化锡层3互不接触;第一金属电极6和第二金属电极7分别位于
叠层结构两侧,其中,所述第一金属电极6位于绝缘层2一侧的上表面且与二硒化锡层3接
触,第一金属电极6与二硒化钨层4和石墨烯层5均不接触;所述第二金属电极7位于绝缘层2
另一侧的上表面且与石墨烯层5延伸至绝缘层2的区域接触,第二金属电极7与二硒化钨层4
和二硒化锡层3均不接触。
[0050] 本实施例中,衬底1为硅材质,厚度为0.5毫米;绝缘层(2)的材质为氧化硅,厚度为150纳米;二硒化锡层3的厚度为10纳米,二硒化钨层4的厚度为20纳米,纳米石墨烯层5的厚
度为0.7纳米;第一金属电极6和第二金属电极7的材质均为铟镓合金。
[0051] 在具体实施中,作为制备叠层结构的材料,二硒化锡厚度在4‑50纳米之间、二硒化钨厚度在15‑55纳米之间、石墨烯层状材料厚度在0.7‑6纳米之间,均可实现发明之目的。
[0052] 具体实施中,衬底1的材质可以选择任意具有光滑表面的固体,厚度为0.1‑5毫米;衬底1可以选择绝缘衬底或非绝缘衬底。当衬底1为绝缘衬底时,衬底1与绝缘层2的材质相
同且二者固为一体,其材质可以选择氧化铝、普通玻璃、石英玻璃、云母、PET(聚对苯二甲酸
乙二醇酯)、PDMS(聚二甲基硅氧烷)中的至少一种;衬底1与绝缘层2的总厚度为0.1‑5毫米。
当衬底1为非绝缘衬底时,利用热氧化法、气相化学沉积法、原子层沉积法或机械转移法在
衬底表面制备绝缘层2,绝缘层2的材质包括SiO2、云母、六方氮化硼、氧化铝或氧化铪中的
一种,非绝缘材质的材质包括硅、锗、金箔、铜箔、镍箔中的至少一种;绝缘层2的厚度为10‑
300纳米,非绝缘衬底的厚度为0.1‑5毫米。以上两种衬底材质,均可实现发明之目的。
[0053] 2、光电流测试
[0054] 本实施例中,选用发光二极管作为测试光源,其峰值发射功率密度1.1W/cm2,中心波长为650纳米,采用该光源照射本实施例中制备的光电探测器,在电表(Keithley 2400通
用性源表)下分别测量光照条件和暗环境下器件的VDS和IDS,并作出输出曲线。
[0055] 如图2所示,光伏效应的开路电压为0.3V,短路电流为5.5μA,响应度高达7.5A/W,Chen Z等人研究的一种基于石墨烯/InSe/MoS2异质结构的新型自驱动光电探测器的光响
应度只有110mA/W(Chen Z,Zhang Z,Biscaras J,Shukla A.A high performance self‑
driven  photodetector  based  on  a  graphene/InSe/MoS2vertical 
heterostructure.Journal of Materials Chemistry C.2018;6(45):12407‑12),说明本
实施例获得的光电器件具有优异光电性能。
[0056] 实施例2
[0057] 本实施例中与实施例1不同的是,选用厚度为0.6毫米的石英玻璃1作为衬底,表面覆盖厚度为120纳米的氮化硼层2。氮化硼层上由下往上依次堆叠厚度为10纳米二硒化锡层
3、厚度为20纳米二硒化钨层4、厚度为0.7纳米石墨烯层5.第一金属电极6和第二金属电极7
为添加了铟镓合金的金电极。
[0058] 在本实施例中,采用机械转移法将厚度120纳米的氮化硼层堆叠到厚度0.6毫米的石英衬底上形成绝缘层2。采用蒸镀铟镓‑金属合金的方法制备电极。即在蒸镀仪中,以铟
镓‑金属合金为靶材,在0.6毫米厚的石英玻璃表面蒸镀铟镓‑金属合金6分钟,制备第一金
属电极6和第二金属电极7。
[0059] 本实施例中电极6和电极7材质中铟镓合金的含量(质量百分数)为30%。其他实施步骤均与实施例1相同。
[0060] 在具体实施中,第一金属电极6和第二金属电极7的厚度均为10‑500纳米之间,其材质也可以选择铟镓合金,或者铟镓‑金属合金,所述铟镓‑金属合金是指添加了铟镓合金
的金属(如金、铂、钯中的一种或多种),铟镓‑金属合金中,铟镓合金含量(质量百分数)占铟
镓‑金属合金质量的5‑50%。
[0061] 选用发光二极管作为测试光源,其峰值发射功率密度1.1W/cm2,中心波长为650纳米,采用该光源照射本实施例中制备的光电探测器。
[0062] 结果与如图3所示,输出曲线与实施例1的类似。光伏效应的开路电压为0.28V,短路电流为5.4μA,说明本实施例获得的光电器件具有优异光电性能。
[0063] 实施例3
[0064] 本实施例中与实施例2不同的是,选用厚度为1毫米的云母作为衬底1,由于云母为绝缘衬底,所以本实施例中衬底1与绝缘层2固为一体,二者均为云母材质。衬底1/绝缘层2
上由下往上依次堆叠厚度为8纳米二硒化锡层3、厚度为17纳米二硒化钨层4、厚度为1纳米
石墨烯层5。第一金属电极6和第二金属电极7为铟镓合金,其结构如图4所示。
[0065] 本实施例中,分别用机械剥离法和机械转移法制备层状材料和叠层结构,刷涂液态铟镓合金制备第一金属电极6和第二金属电极7。实施步骤与实施例1中相同。
[0066] 选用发光二极管作为测试光源,其峰值发射功率密度1.1W/cm2,中心波长为650纳米,采用该光源照射本实施例中获得的样品。光伏效应的开路电压为0.18V,短路电流为4.8
μA,说明本实施例获得的光电器件具有优异光电性能。