一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式转让专利

申请号 : CN202010016916.1

文献号 : CN111175276B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 徐抒平田雨徐蔚青丛丽丽

申请人 : 吉林大学

摘要 :

一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式,属于表面增强拉曼散射(SERS)技术领域。该SERS芯片为金属二聚体复合非对称平面介质波导的结构。用阳极氧化铝(AAO)为模板,通过两次方向相反的斜蒸镀,在波导表面获得具有与AAO周期一致的金属二聚体阵列结构。与其他SERS芯片不同,本专利中入射光斜入射至金属二聚体,在共振角下由于金属二聚体可以近场耦合波导模式,进一步增强了SERS信号。通过实验和理论模拟证明了入射光斜入射时,波导模式可以被直接激发,从而得到更强的SERS信号。

权利要求 :

1.一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片的制备方法,其步骤如下:

a)在干净且干燥的折射率为1.516的BK‑7玻璃片上,生长35nm厚的银膜,再生长一层

600nm厚折射率为1.480的二氧化硅,得到平面介质波导片;

b)所得的波导片的二氧化硅层表面用氧等离子体处理,获得亲水表面;

c)将两侧通孔的阳极氧化铝(AAO)模板转移至波导片二氧化硅层表面,得到附有AAO的波导片;

d)固定蒸发源与附有AAO的波导片的法线之间夹角为10°,蒸镀30nm厚的具有表面增强活性的金属膜;再将夹角调整为方向相反的‑10°后,蒸镀39nm厚的具有表面增强活性的金属膜;

e)用胶带将AAO模板和多余的金属粘下来,得到基于金属二聚体近场耦合波导模式的SERS芯片。

2.如权利要求1所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片的制备方法,其特征在于:金属二聚体阵列位于波导片的二氧化硅层表面。

3.一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:是由权利要求1 2任一项所述方法制备得到。

~

4.如权利要求3所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:该表面增强拉曼散射芯片的工作原理是通过金属二聚体的近场耦合激发波导模式。

5.如权利要求3所述的一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片,其特征在于:该表面增强拉曼散射芯片的工作方式是以43°倾斜的入射光照射在构建于波导表面的金属二聚体阵列上,表面增强拉曼散射光谱是由与芯片法线呈60°方向收集。

说明书 :

一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射

芯片及其制备方法和工作方式

技术领域

[0001] 本发明属于表面增强拉曼光谱技术领域,具体涉及一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和工作方式。

背景技术

[0002] 表面增强拉曼散射(Surface‑enhanced Raman Scattering,SERS)光谱是一种能够在分子尺度上获得物质丰富结构信息的分析方法,作为一种快速、简单、免标记、无损伤
的测试手段,它适合于研究分子在吸附界面的表面状态、分子的界面取向及构型构象等,在
生物、医药、环境检测、爆炸物检测等领域得到了广泛的应用。
[0003] SERS得益于金属薄膜和金属纳米粒子上自由电子的集体振荡所产生的高强度局域电磁场,即表面等离子体共振(Surface Plasmon Resonance,SPR)效应。目前,对SERS芯
片的研究主要集中在提高电磁场增强方面。例如,申请公布号CN109748238A的发明专利介
绍了基于可调紫外全息光刻技术构建大面积、均匀的纳米二聚体阵列的方法;以及授权公
告号CN105911044B的发明专利介绍了具有纳米间隙的表面增强拉曼光谱基底。但是,这些
研究都是采用入射光直接激发金属微纳结构的SPR,增强入射场同样可以提高电磁场强度。
平面介质波导是一种基于干涉相长,能产生增强消逝场的光学结构。申请公布号
108693160A的发明专利介绍了一种基于光栅耦合长程等离子波导的SERS芯片,有效增强了
SERS强度。授权公告号为CN104007098B的发明专利介绍了一种共振镜增强拉曼光谱检测装
置,入射光由棱镜耦合进波导层,并利用波导表面产生的增强消逝场来增强金属纳米粒子
的SPR,在金属纳米粒子一侧收集到增强的SERS光谱。这种能产生增强消逝场的波导通常需
要一个光栅或棱镜帮助入射光耦合进波导结构。
[0004] 与其他SERS芯片不同,本发明利用金属二聚体近场耦合波导模式的原理,不需要棱镜或光栅结构耦合,入射光以43°倾斜照射在构建于波导表面的金属二聚体阵列上,并在
与芯片法线呈60°方向收集到增强的SERS谱。本发明的SERS芯片不仅利用波导来增强纳米
粒子的SPR,还满足了简化波导增强SPR结构的检测需求。

发明内容

[0005] 本发明旨在提供一种基于金属二聚体近场耦合波导模式的表面增强拉曼散射芯片及其制备方法和独特的工作方式,实现超灵敏检测。本发明的技术方案如下:
[0006] 该SERS芯片的具体结构是金属二聚体复合非对称平面介质波导。平面介质波导由多层膜构成,包括在BK‑7玻璃片上依次沉积银膜和二氧化硅波导层。将阳极氧化铝(AAO)模
板转移至波导表面,再经过方向相反的两次倾斜蒸镀,得到金属二聚阵列。其工作方式为:
以倾斜的入射光直接照射金属二聚体,收集与芯片法线呈60°方向的SERS光谱。实验和理论
模拟(在实施例部分进行详细说明)都证明,斜入射的激光通过金属二聚体的SPR有效激发
出波导共振模式,这使得金属二聚体的SPR进一步放大,最终增强效果优于二聚体阵列无波
导时的SPR,因而其具有更强的SERS增强效应,提高了检测的灵敏度。
[0007] 为了实现以上目的,本发明所采用的具体步骤如下:
[0008] a)将BK‑7玻璃片(折射率为1.516)进行表面清洁。依次用去离子水、乙醇、丙酮、乙醇、去离子水超声清洗各10分钟。烘干或用氮气吹干。随后蒸镀35nm厚的银膜。
[0009] b)由等离子体电感耦合化学气相沉积在银膜上生长600nm的二氧化硅(折射率为1.480),得到非对称平面介质波导片。
[0010] c)将步骤(b)所得的波导片用氧等离子体处理,获得亲水表面。
[0011] d)将两侧通孔的AAO模板转移至波导片表面。得到附有AAO的波导片。
[0012] e)以10°的倾斜角在步骤(d)所得的附有AAO的波导片上蒸镀30nm厚的金属膜。再将倾斜角调整为方向相反的‑10°后,蒸镀39nm的金属膜。
[0013] f)用胶带将AAO模板和多余的银粘下来,得到金属二聚体近场耦合波导模式的SERS芯片。
[0014] g)该金属二聚体近场耦合波导模式的SERS芯片的工作方式为:在步骤(f)所得的SERS芯片表面滴上待测样品溶液,待溶液完全干燥后以倾斜的入射光照射金属二聚体,金
属二聚体将入射光近场耦合进波导层中,在波导层中干涉的光会在波导表面产生增强的消
逝场,进一步增强金属二聚体的SPR,收集与芯片法线呈60°方向的SERS谱。
[0015] 本发明芯片的优点在于:
[0016] 1.具有超高的检测灵敏度。一方面,金属二聚体中两个单体之间8nm的间隙可以提供高强度的局域场。另一方面,波导能提供增强的消逝场,进一步增强二聚体的SPR。SERS信
号与无波导时相比有约一个数量级的增强。
[0017] 2.入射光可以通过金属二聚体的近场耦合激发波导模式,无需采用传统的棱镜耦合方式,简化了该类型SERS检测结构。
[0018] 3.在保持二聚体间隙的前提下,用消逝场增强了间隙里的局域电磁场,有利于通过SERS光谱检测大尺寸生物分子。

附图说明

[0019] 图1:基于金属二聚体近场耦合波导模式的SERS芯片示意图;
[0020] 各部分名称为:BK‑7玻璃基底1、35nm银膜2、600nm二氧化硅层3、银二聚体阵列4;
[0021] 图2:实施例1制备的金属二聚体阵列的扫描电子显微镜照片;
[0022] 图3:实施例2中反射谱和SERS谱的检测方式示意图;
[0023] 各部分名称为:BK‑7玻璃基底1、35nm银膜2、600nm二氧化硅层3、银二聚体阵列4;入射激光5;1/4波片6;半波片7;反射探头8;拉曼探头9;
[0024] 图4:实施例2中SERS芯片和对照组芯片的反射谱;
[0025] 图5:实施例2中SERS芯片和对照组芯片以对巯基苯甲酸为探针分子的SERS谱图。激发光波长为532nm(450μW),积分时间10秒,积分两次;
[0026] 图6:实施例3中采用时域有限差分法(FDTD)对SERS芯片的反射谱和共振角下的电磁场增强进行模拟。模拟过程所用模型参数与实施例1中的结构参数一致;
[0027] 图7:实施例4中SERS芯片以不同浓度对巯基苯甲酸为探针分子的SERS谱图。将5.0‑13 ‑11 ‑9 ‑7 ‑5
μL浓度为1.0×10 M,1.0×10 M,1.0×10 M,1.0×10 M,1.0×10 M对巯基苯甲酸的乙
醇溶液分别滴在芯片二聚体阵列表面,待样品完全干燥后以实施例2中的方法检测其SERS
信号。激发光波长为532nm(450μW),积分时间10秒,积分两次;

具体实施方式

[0028] 实施例1:
[0029] 一种基于金属二聚体近场耦合波导模式的SERS芯片制备方法,方法步骤如下,
[0030] a)将BK‑7玻璃片(尺寸为1.0×1.3×0.1cm2,折射率为1.516)进行表面清洁。依次用去离子水、乙醇、丙酮、乙醇、去离子水超声清洗各10分钟。烘干或用氮气吹干。随后将玻
璃片放在热蒸镀腔体内,蒸镀35nm厚的银膜。再由等离子体电感耦合化学气相沉积法在银
膜上生长600nm厚的二氧化硅层(折射率为1.480),膜厚由台阶仪表征,得到非对称平面介
质波导片。
[0031] b)将步骤(a)所得的波导片用氧等离子体处理2分钟,获得具有羟基的亲水表面。
[0032] c)将周期,孔径和厚度分别为125,95,430nm的AAO模板与波导片贴紧,浸泡在丙酮溶液中,去除支撑AAO模板的聚合物层。每次浸泡15分钟后取出,待丙酮完全挥发后再次浸
泡在丙酮中,浸泡四次即可完全去除聚合物层,将AAO模板转移至波导片表面。得到附有AAO
的波导片。
[0033] d)以10°的倾斜角在步骤(c)所得的附有AAO的波导片上蒸镀30nm厚的金属膜。再将倾斜角调整为方向相反的‑10°后,蒸镀39nm的金属膜。
[0034] e)用胶带将AAO模板和多余的银粘下来,得到金属二聚体近场耦合波导模式的SERS芯片,示意图如图1所示,l1、l2、g分别为金属二聚体中的长轴直径、短轴直径、两个单体
的间隙。
[0035] 采用扫描电子显微镜(SEM,JEOL JSM‑6700F)对实施例1中得到的金属二聚体阵列形貌进行观察。如图2a所示,可以观察到一个大范围有序的纳米二聚体阵列,各结构单元间
以六方密堆积形式周期排列,且二聚体阵列的范围与AAO模板一致(为厘米尺寸)。在图2b
中,可以看到每个纳米二聚体由两个长轴直径l1和短轴直径l2分别为74和46nm的半椭球体
组成。在我们的实验条件下,每个纳米二聚体单元的平均间隙g约为8nm。
[0036] 实施例2:
[0037] 对实施例1中获得的SERS芯片分别进行反射谱和SERS谱测试。
[0038] 选用对巯基苯甲酸(分子式为C7H6O2S)为探针分子。将5.0μL 1.0×10‑3M对巯基苯甲酸的乙醇溶液滴在芯片二聚体阵列表面,待样品完全干燥后测试,检测方式如图3所示。
入射光是功率为450μW,波长为532nm的激光。入射光经过一个1/4波片和一个半波片后,偏
振方向垂直于入射面(入射光和芯片纵向法线构成的平面)。入射角度θ1可以从0°转动到
80°,在相应的反射角θ1处收集反射谱,在与芯片法线呈60°方向收集SERS谱。选择硅基底上
无波导参与的二聚体阵列作为对照组,以上述同样的方法分别进行反射谱和SERS谱测试。
获取的两个芯片的反射谱如图4所示。其中,两个芯片都存在一个共振峰,导致反射谱强度
减弱。由于基底的材料不同,硅芯片的共振峰位于60°,波导芯片的共振峰位于43°。获取的
两个芯片的SERS谱如图5所示,积分时间为10秒,积分两次。其中,波导芯片获得的SERS信号
(曲线2)强度明显高于硅芯片获得的SERS信号(曲线1)强度,增强了约一个数量级。
[0039] 实施例3:
[0040] 根据实施例1中获得的SERS芯片结构参数,采用时域有限差分法(FDTD)对SERS芯片的电磁场增强进行模拟。
[0041] 根据图2所示的二聚体结构,在FDTD中建立的模型参数为:周期间距125nm并以六方密堆积排列,每个周期单元由两个长轴直径和短轴直径分别为74和46nm的半椭球体组
成,每个纳米二聚体单元的平均间隙距离约为8nm。波导由35nm的银膜和600nm的二氧化硅
层构成。532nm波长的入射光以25°至60°的角度扫描入射角,收集到相应角度下的反射光强
度,并模拟了共振角下的电磁场分布(见图6)。其中,图6(a)为模拟的SERS芯片反射谱,与实
验得到的反射谱都存在一个宽的共振峰。图6(b)为共振角38°下的电磁场分布,标尺表示电
磁场的增强程度。可以看出在二氧化硅波导层中,存在着增强的电磁场,证明波导模式被激
发了。
[0042] 实施例4:
[0043] 对实施例1中获得的SERS芯片进行应用,利用二聚体阵列的近场耦合波导模式增强二聚体的局域场,实现超灵敏检测。选用对巯基苯甲酸为探针分子,将5.0μL浓度为1.0×
‑13 ‑11 ‑9 ‑7 ‑5
10 M,1.0×10 M,1.0×10 M,1.0×10 M,1.0×10 M对巯基苯甲酸的乙醇溶液分别滴在
芯片二聚体阵列表面,待样品完全干燥后以实施例2中的方法测试SERS光谱。激发光波长为
532nm(450μW),积分时间10秒,积分两次,得到不同浓度对巯基苯甲酸的SERS谱图(见图7)。
‑13
该SERS芯片最低检测浓度可达到1.0×10 M。证明该芯片具有超高的灵敏度,能够被广泛
用于微量物质的检测。