一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料及其制备和应用转让专利

申请号 : CN202010100997.3

文献号 : CN111265672B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 朱利民陈霞牛世伟

申请人 : 东华大学

摘要 :

本发明涉及一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料及其制备和应用。该方法包括:壳聚糖接枝共聚物制备;H6R6‑CS‑g‑PNVCL制备;H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料制备。该方法简单易操作,制备条件相对温和,反应条件易于掌控,相对安全;制备得到的纳米复合材料具有响应肿瘤微环境特点的氧化还原/pH/温度三重敏感性,可有效达到靶向控释的作用。

权利要求 :

1.一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料,其特征在于,H6R6肽利用二硫键为连接修饰于壳聚糖和N‑乙烯基己内酰胺NVCL接枝共聚物表面,然后通过物理作用共负载阿霉素DOX和齐墩果酸OA得到。

2.一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料的制备方法,包括:(1)将壳聚糖乙酰化,将得到的乙酰化壳聚糖N‑CS通过RAFT聚合法接枝NVCL,然后去乙酰化,得到壳聚糖接枝共聚物CS‑g‑PNVCL;

(2)将步骤(1)中CS‑g‑PNVCL溶于溶剂中,分别加入巯基乙酸、EDC、NHS,搅拌反应,将得到的巯基乙酸修饰的CS‑g‑PNVCL加入Cys‑H6R6肽溶液,继续搅拌反应,透析,冻干,得到H6R6‑CS‑g‑PNVCL,其中,巯基乙酸的羧基与CS‑g‑PNVCL中CS的氨基摩尔比为1.98:1~2.2:

1,Cys‑H6R6肽与巯基乙酸修饰的CS‑g‑PNVCL摩尔比为1.5:1~2:1;

(3)将阿霉素DOX和齐墩果酸OA的混合溶液滴加到步骤(2)中H6R6‑CS‑g‑PNVCL溶液中,避光搅拌,透析,冷冻干燥,得到H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料,其中DOX和OA的总质量与H6R6‑CS‑g‑PNVCL的质量比为1:3~1:4;DOX和OA的质量比为0.98:1.0~1:1。

3.根据权利要求2所述方法,其特征在于,所述步骤(1)中将得到的乙酰化壳聚糖N‑CS通过RAFT聚合法接枝NVCL为:将N‑CS溶解于DMF中,分别加入链转移剂、DCC和DMAP,室温搅拌反应30‑50h,将得到的N‑CS‑RAFT溶于DMF中,加入AIBN和NVCL,50‑70℃搅拌20‑30h,沉淀,透析,冻干,得到N‑CS‑g‑PNVCL,其中N‑CS‑RAFT与NVCL的质量比为1:20~1:25。

4.根据权利要求2所述方法,其特征在于,所述步骤(2)中溶剂为:pH为7.4的PBS溶液;

EDC与NHS的摩尔比为0.98:1~1:1。

5.根据权利要求2所述方法,其特征在于,所述步骤(2)中搅拌反应为:氮气气氛下室温搅拌反应1.8~2.5h;继续搅拌反应为:氮气气氛下室温搅拌20~30h。

6.根据权利要求2所述方法,其特征在于,所述步骤(3)中阿霉素DOX和齐墩果酸OA的混合溶液的溶剂为DMF;H6R6‑CS‑g‑PNVCL溶液的溶剂为PBS溶液。

7.根据权利要求2所述方法,其特征在于,所述步骤(3)中避光搅拌温度为室温,避光搅拌时间为20h~24h。

8.一种如权利要求1所述复合材料在制备化疗药物中的应用。

说明书 :

一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料及其

制备和应用

技术领域

[0001] 本发明属于药物缓释生物材料及其制备和应用领域,特别涉及一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料及其制备方法和应用。

背景技术

[0002] 现如今癌症仍然是人类所面临的一个很难攻克的问题,虽然随着科学技术的发展已经有许多的治疗方法被提出,但是化疗在癌症治疗过程中依然占有重要地位。传统的化
疗具有许多缺陷,比如化疗药物大多是疏水性的,药物常常突释、泄露,杀伤肿瘤的同时避
免不了会对正常组织也造成严重的毒副作用,那么如何将疏水的药物精准地运送到肿瘤部
位,如何解决药物突释的问题,提高治疗效果,这就是有待解决的问题。为了解决这些问题,
一些依赖于肿瘤微环境特点的纳米技术被提出,同时科学研究者们也将目光转向了一些纳
米复合材料的探索和研究,这些技术的发展对于细胞内精准靶向给药起到了至关重要的作
用。
[0003] 肿瘤具有很多不同于正常组织的特点,比如增强渗透与滞留(EPR)效应,又比如肿瘤微环境具有相对较高的谷胱甘肽浓度,较高的温度,偏酸性的环境,这些都为肿瘤治疗提
供了契机。壳聚糖(CS)就是一种可溶于酸性溶液的生物材料,其在中性或碱性溶液中结构
基本不会发生变化。CS有良好的生物相容性,另外,相对于无机材料,它又容易降解,所以它
已经被广泛用于生物体。聚N‑乙烯基己内酰胺(PNVCL)是一种温度敏感性材料,可以通过改
变其与接枝物的含量来调节临界相转变温度(LCST)与人体温度接近,如今也被广泛的的应
用在生物医药领域。H6R6肽是一种细胞穿膜肽,因为它的氨基酸序列中有大量带正电荷的
精氨酸,由此可以与带负电荷的细胞膜相结合,这种特性可以穿透肿瘤细胞的细胞膜,也可
以穿透正常细胞的细胞膜。因此,对H6R6肽进行修饰,让它通过二硫键接枝在纳米复合材料
表面,就可以让载药的纳米复合材料停留在肿瘤细胞中,而依旧穿透正常细胞。
[0004] 阿霉素(DOX)和齐墩果酸(OA)都是两种疏水性的化疗药物,均可对多种恶性肿瘤的生长起到抑制作用。两种药物协同治疗就可以解决单一药物治疗效果不显著的问题,可
以提高抗癌效果。现有技术中最接近本发明的复合材料是先通过可逆加成‑断裂链转移
(RAFT)聚合法制备一种由CS和PNVCL组成的pH、温度双重敏感的接枝共聚物CS‑g‑PNVCL,并
负载两种化疗药物DOX和OA,最终制备一种以壳聚糖接枝温敏性材料自组装为双重敏感的
纳米材料(DOX/OA)@CS‑g‑PNVCL。此纳米材料可以克服化疗药物突释以及单一药物治疗效
果不佳等缺陷,但是对于肿瘤细胞缺乏主动靶向性,因此,本发明在此基础上进一步开发,
借助H6R6肽对现有纳米材料进行巧妙修饰,使其具有主动靶向肿瘤细胞的能力,减少化疗
药物对正常细胞的毒副作用,从而达到良好的治疗效果。

发明内容

[0005] 本发明所要解决的技术问题是提供一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料及其制备和应用,以克服现有技术中化疗药物突释、不能精准输送到肿瘤部位
以及单一药物治疗不佳等缺陷。
[0006] 本发明提供一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料,H6R6肽利用二硫键为连接修饰于壳聚糖和N‑乙烯基己内酰胺NVCL接枝共聚物表面,然后通过物理作用
共负载阿霉素DOX和齐墩果酸OA得到。
[0007] 本发明还提供一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料的制备方法,包括:
[0008] (1)将壳聚糖乙酰化,将得到的乙酰化壳聚糖N‑CS通过RAFT聚合法接枝NVCL,然后去乙酰化,得到壳聚糖接枝共聚物CS‑g‑PNVCL;
[0009] (2)将步骤(1)中CS‑g‑PNVCL溶于溶剂中,得到CS‑g‑PNVCL溶液,分别加入巯基乙酸、EDC、NHS,搅拌反应,将得到的巯基乙酸修饰的CS‑g‑PNVCL加入Cys‑H6R6肽溶液(N端修
饰了半胱氨酸的H6R6细胞穿膜肽),继续搅拌反应,透析,冻干,得到H6R6‑CS‑g‑PNVCL,其
中,巯基乙酸的羧基与CS‑g‑PNVCL中CS的氨基摩尔比为1.98:1~2.2:1,Cys‑H6R6肽与巯基
乙酸修饰的CS‑g‑PNVCL摩尔比为1.5:1~2:1;
[0010] (3)将阿霉素DOX和齐墩果酸OA的混合溶液滴加到步骤(2)中H6R6‑CS‑g‑PNVCL溶液中,避光搅拌,透析,冷冻干燥,得到H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料,
其中DOX和OA的总质量与H6R6‑CS‑g‑PNVCL的质量比为1:3~1:4;DOX和OA的质量比为0.98:
1.0~1:1。
[0011] 所述步骤(1)中将得到的乙酰化壳聚糖N‑CS通过RAFT聚合法接枝NVCL为:将N‑CS溶解于DMF中,分别加入链转移剂、DCC和DMAP,室温搅拌反应30‑50h,透析,冷冻干燥,将得
到的N‑CS‑RAFT溶于DMF中,加入AIBN和NVCL,氮气环境下50‑70℃搅拌20‑30h,沉淀,透析,
真空干燥,得到乙酰化的壳聚糖接枝共聚物纳米颗粒N‑CS‑g‑PNVCL,其中N‑CS‑RAFT与NVCL
的质量比为1:20~1:25。
[0012] 所述N‑CS、链转移剂、DCC、DMAP和DMF的比例为0.2‑0.3g:0.3‑0.45g:0.2‑0.3g:0.01‑0.02g:20‑35mL。
[0013] 所述链转移剂为2‑(十二烷基三硫代碳酸酯基)‑2‑甲基丙酸(DDACT)。
[0014] 所述沉淀采用冰乙醚,沉淀时间为14h~18h。
[0015] 所述步骤(1)中去乙酰化的方法为:将N‑CS‑g‑PNVCL溶于NaOH溶液中,室温搅拌20~30h。
[0016] 所述NaOH溶液的质量分数为10%。
[0017] 所述步骤(2)中溶剂为:pH为7.4的PBS溶液。
[0018] 所述步骤(2)中CS‑g‑PNVCL溶液的浓度为5mg/ml~10mg/ml。
[0019] 所述步骤(2)中EDC与NHS的摩尔比为0.98:1~1:1。
[0020] 所述步骤(2)中搅拌反应为:氮气气氛下室温搅拌反应1.8~2.5h,搅拌转速为200rmp。
[0021] 所述步骤(2)中继续搅拌反应为:氮气气氛下室温搅拌20~30h,搅拌转速为200rmp。
[0022] 所述步骤(3)中阿霉素DOX和齐墩果酸OA的混合溶液的溶剂为DMF。
[0023] 所述步骤(3)中H6R6‑CS‑g‑PNVCL溶液的溶剂为PBS溶液。
[0024] 所述步骤(3)中避光搅拌温度为室温,避光搅拌时间为20h~24h,搅拌转速为100rmp。
[0025] 本发明还提供一种H6R6肽修饰的三重敏感壳聚糖双载药纳米复合材料的应用。例如用于化疗药物制备中。
[0026] 有益效果
[0027] (1)本发明简单易操作,制备条件相对温和,反应条件易于掌控,相对安全。
[0028] (2)本发明制备的双载药纳米复合材料(DOX/OA)@H6R6‑CS‑g‑PNVCL的粒径大小约为190nm,符合EPR效应,该纳米复合材料可在肿瘤部位聚集,可减少系统毒性。
[0029] (3)本发明自组装的纳米复合材料具有响应肿瘤微环境特点的氧化还原/pH/温度三重敏感性,可有效达到靶向控释的作用,且这种靶向作用是对大多数肿瘤细胞普遍适用
的。
[0030] (4)本发明制备的纳米复合材料可以双负载化疗药物DOX和OA,达到共载药共运输的作用,且抗肿瘤效果比单载药的效果更好。
[0031] (5)本发明制备的纳米复合材料具有良好生物相容性,化疗药物DOX和OA通过物理吸附作用被负载于三重敏感载体H6R6‑CS‑g‑PNVCL中,这种物理吸附作用不同于化学键接
枝,更利于药物的有效释放。
[0032] (6)本发明制备的双载药纳米复合材料具有广谱抗肿瘤的作用。

附图说明

[0033] 图1为本发明三重敏感纳米复合材料的合成过程(A)及靶向控释(B)的原理图;
[0034] 图2为实施例2中(DOX/OA)@H6R6‑CS‑g‑PNVCL的结构式与1H‑NMR谱图(A)、TEM图(C)、DLS结果(D);(B)为实施例2中CS、NVCL、Cys‑H6R6、(DOX/OA)@H6R6‑CS‑g‑PNVCL的FT‑IR
图谱;
[0035] 图3为实施例2中(DOX/OA)@H6R6‑CS‑g‑PNVCL中的阿霉素(A)和齐墩果酸(B)在不同温度和pH下的体外药物累积释放率;
[0036] 图4为实施例3中采用MTT法测试不同材料组对HUVEC细胞(A)和SKOV3细胞(B)的细胞毒性;
[0037] 图5为实施例4和对比例1中采用共聚焦激光扫描显微镜CLSM观察SKOV3细胞对不同材料的摄取行为。

具体实施方式

[0038] 下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人
员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定
的范围。
[0039] 主要试剂:壳聚糖(CS,脱乙酰度>95%,Mw 200kDa)、N,N‑二甲基甲酰胺(DMF)、乙酸酐,购自国药集团化学试剂有限公司;N‑乙烯基己内酰胺(NVCL)购自泰坦科技有限公司;
醋酸、无水乙醇、氢氧化钠、乙醚、PBS溶液(pH=7.4)购自国药集团化学试剂有限公司;N,N‑
二环己基碳二亚胺(DCC)、4‑二甲氨基吡啶(DMAP)、2‑(十二烷基三硫代碳酸酯基)‑2‑甲基
丙酸(DDACT)、2,2‑偶氮二异丁腈(AIBN)、阿霉素(DOX)、齐墩果酸(OA),购于阿拉丁公司(中
国上海);Cys‑H6R6肽(序列:CKVRVRVRVDPTRVRERVK),购自丹港生物有限公司(中国杭州)。
[0040] 实施例1
[0041] (1)称取5g壳聚糖CS,加入1.0%的醋酸溶液(250mL),室温条件下搅拌至完全溶解后加入250mL的无水乙醇再次搅拌直至澄清。随后加入0.5mL乙酸酐,室温充分搅拌至澄清,
加入10%的NaOH溶液,析出CS,冻干,即得到乙酰化的壳聚糖(N‑CS);
[0042] (2)取步骤(1)中N‑CS(0.292g)充分溶解于DMF(30mL),将链转移剂DDACT(0.37g)缓慢加入其中,然后加入DCC(0.205g)和DMAP(0.015g),室温条件下搅拌40h,透析,冻干,得
到N‑CS‑RAFT;
[0043] (3)取步骤(2)中N‑CS‑RAFT(0.0468g)溶于DMF(5mL),加入AIBN(0.0016g)和NVCL(1g),在60℃油浴中同时磁力搅拌24小时,冰乙醚沉淀12h,透析,冻干,得到N‑CS‑g‑PNVCL。
将N‑CS‑g‑PNVCL溶于pH=10的NaOH溶液中,搅拌24h水解去N‑乙酰基,冻干,得到CS‑g‑
PNVCL。
[0044] (4)取步骤(3)中CS‑g‑PNVCL(0.05g)溶于PBS溶液(15mL,pH=7.4)中,分别加入巯基乙酸(0.02g),EDC(0.02g),NHS(0.0064g),避光,氮气气氛下搅拌2h。再取Cys‑H6R6肽
(0.04g)溶于PBS溶液(10mL,pH=7.4)中,缓慢加入上述溶液中,在氮气环境中,避光,室温
搅拌24h,透析3d,冻干得到H6R6‑CS‑g‑PNVCL。
[0045] (5)称取DOX(5mg),OA(5mg)溶于DMF(10mL),再称取步骤(4)中H6R6‑CS‑g‑PNVCL(30mg)溶于PBS溶液(25mL,pH=7.4)中,超声辅助分散,黑暗中搅拌24h,透析,冻干,得到
(DOX/OA)@H6R6‑CS‑g‑PNVCL。
[0046] 其中,(DOX/OA)@H6R6‑CS‑g‑PNVCL的制备流程如图1(A)所示。两种药物的释药原理如图1(B)所示。在肿瘤微环境谷胱甘肽存在时,纳米复合物中的二硫键会断裂,迫使最外
层的细胞穿膜肽脱落。这种行为促使载药的纳米复合物驻留在肿瘤部位,接着,由于在肿瘤
微环境中pH较低和温度较高,壳聚糖和PNVCL的结构会逐渐发生崩塌。纳米复合物这种自我
毁灭式的行为促使两种化疗药物的缓释,减少了药物突释的问题。
[0047] 实施例2
[0048] (1)对实施例1制备好的样品(DOX/OA)@H6R6‑CS‑g‑PNVCL进行核磁、红外、TEM和DLS的表征,特征峰的出现验证样品制备成功,如图2(A)、(B)所示;TEM观察样品形貌呈球
型,样品粒径为190nm,如图2(C)所示;DLS观察样品粒径分布,样品水动力学直径为268nm,
如图2(D)所示。图2表明,本发明所制备的三重纳米复合材料(DOX/OA)@H6R6‑CS‑g‑PNVCL具
有均规则的球型形貌,分散性良好,具有符合EPR效应的尺寸大小,可以积聚在肿瘤组织部
位。
[0049] (2)取实施例1冻干后的产物5mg(DOX/OA)@H6R6‑CS‑g‑PNVCL分别溶于5mL PBS溶液(pH=6.5和pH=7.4)中,将上述溶液分别倒入两个透析袋中,封口放入盛有相同PBS溶液
的容器中,将容器置于37℃水浴振荡器中,振动频率100次/min,定时从容器中取出1mL溶
液,随后补充1mL相同的PBS溶液。取出的溶液利用紫外可见分光光度计测量并计算两种药
物的包封率和载药率。改变水浴振荡器的温度为40℃,重复上述操作。DOX和OA在不同温度
和pH条件下的累计释放曲线如图3(A)、(B)所示。由药物累积释放曲线可以看出,两种药物
的释放曲线随着时间延长都呈现先逐渐上升再逐渐平缓的趋势,且两种药物的释放都受温
度和pH的影响,且当温度40℃,pH=6.5时,两种药物的累积释放率达到最大,分别为75%、
68%,表明所制备的材料具有良好的温度、pH敏感特性,可以有效触发药物的释放。
[0050] 实施例3
[0051] 对实施例1所制备的纳米复合材料进行细胞毒性评估,采用MTT法。培养两种细胞,一种人源的正常细胞HUVEC,另一种人源的卵巢癌细胞SKOV3。将两种细胞分别种入96孔板
4
中培养,每孔细胞数约为10个,培养过夜,当细胞充满80%时,吸弃旧培养基,用PBS溶液清
洗3遍。每孔分别加入200μL各组材料的PBS溶液:Free DOX、Free OA、H6R6‑CS‑g‑PNVCL、
DOX@H6R6‑CS‑g‑PNVCL、(DOX/OA)@H6R6‑CS‑g‑PNVCL,每组材料的浓度均以DOX的浓度为标
准,分别设置为0μg/mL、0.5μg/mL、1μg/mL、2μg/mL、5μg/mL、10μg/mL。孵育材料24h,然后吸
弃材料,用PBS清洗3次,每孔加入MTT(5mg/mL,20μL),培养基(180μL),孵育4h后吸弃,每孔
加入DMSO(200μL),振荡15min,用酶标仪测试。每组重复3次。结果如图4所示,表明本发明所
制备的三重敏感纳米复合材料(DOX/OA)@H6R6‑CS‑g‑PNVCL对正常细胞是具有生物安全性
的,但是对肿瘤细胞是具有杀伤作用,且空白载体H6R6‑CS‑g‑PNVCL对杀伤肿瘤细胞也具有
一定补充作用。同时,这种三重敏感纳米复合材料共载DOX和OA的治疗效果比只负载DOX的
治疗效果更好,说明两剂协同治疗显著提高了化疗的治疗效果。其中DOX@H6R6‑CS‑g‑PNVCL
的制备方法除不添加OA外,其余与实施例1相同。
[0052] 实施例4
[0053] 对实施例1所制备的纳米复合材料的肿瘤靶向性验证,借助激光共聚焦扫描显微镜CLSM进行观察。培养两种细胞,一种人源的正常细胞HUVEC,另一种人源的卵巢癌细胞
5
SKOV3。将两种细胞分别种入20mm小培养皿中,每孔种入约10 个,培养至细胞长满,每孔分
别加入各种材料的PBS溶液:Free DOX、(DOX/OA)@CS‑g‑PNVCL、(DOX/OA)@H6R6‑CS‑g‑PNVCL
各1mL,每孔再补1mL培养基,加入的最后浓度依据DOX的半数致死量计算。孵育2h,吸弃培养
基,PBS清洗3次,每孔加入戊二醛溶液(2.5%,1mL),固定15min后,用PBS清洗3次,每孔再分
别加入Hoechst 33342溶液(10μg/mL,0.5mL),5min后,用PBS溶液清洗3次,之后,在激光共
聚焦扫描显微镜下观察细胞摄取的行为,用于验证所制备的纳米复合材料的靶向作用。结
果如图5所示,HUVEC细胞对Free DOX、(DOX/OA)@CS‑g‑PNVCL、(DOX/OA)@H6R6‑CS‑g‑PNVCL
均没有吞噬现象,SKOV3细胞对Free DOX、(DOX/OA)@CS‑g‑PNVCL没有吞噬现象,但是对
(DOX/OA)@H6R6‑CS‑g‑PNVCL具有吞噬现象,说明这种三重敏感纳米复合材料可以有效地被
肿瘤细胞摄取,而不会被正常细胞摄取,表明利用这种材料可以减少对正常细胞的毒副作
用,提高治疗效果。
[0054] 现有技术中最接近本发明的复合材料是先通过可逆加成‑断裂链转移(RAFT)聚合法制备一种由CS和PNVCL组成的pH、温度双重敏感的接枝共聚物CS‑g‑PNVCL,并负载两种化
疗药物DOX和OA,最终制备一种以壳聚糖接枝温敏性材料自组装为双重敏感的纳米材料
(DOX/OA)@CS‑g‑PNVCL。这种纳米材料的制备方法除不修饰H6R6肽外,其余与实施例1相同。
本发明的纳米材料与现有技术中最接近本发明的复合材料相比,主要在于H6R6肽修饰。现
有技术中最接近本发明的复合材料可以克服化疗药物突释以及单一药物治疗效果不佳等
缺陷,但是对于肿瘤细胞缺乏主动靶向性,因此,本发明在此基础上进一步开发,借助H6R6
肽对现有技术中最接近本发明的复合材料进行巧妙修饰,本发明的纳米复合材料除了现有
技术中纳米材料的优点外,还具有对肿瘤细胞的主动靶向能力,可以减少化疗药物对正常
细胞的毒副作用,从而达到良好的治疗效果。现有技术中的最接近本发明的复合材料释药
效果与本发明复合材料释药效果类似,主要效果区别在于对肿瘤细胞的主动靶向作用,效
果如图5所示,HUVEC细胞对(DOX/OA)@CS‑g‑PNVCL和(DOX/OA)@H6R6‑CS‑g‑PNVCL均没有吞
噬现象,而SKOV3细胞对(DOX/OA)@CS‑g‑PNVCL没有吞噬现象,但是对(DOX/OA)@H6R6‑CS‑g‑
PNVCL具有吞噬现象,说明本发明的纳米复合材料可以在肿瘤细胞中停留,而不会在正常细
胞中停留,即可以主动靶向肿瘤细胞,因此减少药物对正常细胞毒副作用。