一种可实现低聚蓖麻油酸酯制备和原位分离的方法转让专利

申请号 : CN202010124194.1

文献号 : CN111269116B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 叶锋何良年游飞李红茹王庆瑞高嵩何兴崔晓莹

申请人 : 南开大学天津南开大学蓖麻工程科技有限公司

摘要 :

本发明涉及一种可实现低聚蓖麻油酸酯制备和原位分离的方法,以蓖麻油酸为原料,以质子酸型离子液体为催化剂,使蓖麻油酸分子之间发生脱水酯化反应,在减压条件下将生成的水不断蒸出,可获得聚合度在2~10之间的低聚蓖麻油酸酯。反应结束后,根据催化剂特性,选择水洗或静置分层的方法回收催化剂。本发明使用可再生原料,工艺清洁无污染,操作简单,产品在金属切削和食品、医药工业具有广泛的应用。

权利要求 :

1.一种可实现低聚蓖麻油酸酯制备和原位分离的方法,其特征在于:以蓖麻油酸为原料,以 酸性离子液体为催化剂使蓖麻油酸分子之间发生脱水酯化反应,使用真空泵将生成的水带出,能够获得平均聚合度小于等于10的低聚蓖麻油酸酯,包括以下步骤:步骤一:将蓖麻油酸、催化剂投入反应瓶内;所述的离子液体催化剂为1‑丁基磺酸‑1,

8‑二氮杂双环[5.4.0]十一碳七烯磷酸二氢盐[HSO3‑BDBU]H2PO4;

步骤二:开启真空泵调节反应体系真空度,在搅拌条件下加热至反应温度,开始脱水酯化反应;

步骤三:反应结束后,根据离子液体催化剂在室温下与反应体系不混溶的特点,通过静止分层法除去催化剂,最后获得产物,即低聚蓖麻油酸酯;

所用原料蓖麻油酸的酸值为150~190mg KOH/g,催化剂用量在1wt.%~30wt.%,脱水酯化反应的反应温度在160~230℃之间,真空度在70‑0kPa,反应时间为2~16h。

2.根据权利要求1所述的一种可实现低聚蓖麻油酸酯制备和原位分离的方法,其特征在于:制得的低聚蓖麻油酸酯的酸值在10~90mg KOH/g;平均聚合度小于等于10;40℃时,

2 2

运动粘度≤1000mm/s;100℃时,运动粘度≤100mm/s。

说明书 :

一种可实现低聚蓖麻油酸酯制备和原位分离的方法

技术领域

[0001] 本发明涉及一种可生物降解的水基金属切削油润滑剂低聚蓖麻油酸酯的制备方法,属于切削油制备技术领域。

背景技术

[0002] 在金属切削加工中,切削每次都在新生面上进行,切削时除外摩擦外,还有刀具与切入金属内部的分子内摩擦,切削区界面温度可达600~800℃。这样的高温高压会使刀具
的强度和硬度降低,因此在金属加工过程中需要用到切削油,起到冷却、润滑、清洗和防锈
四个作用。
[0003] 目前国内普通切削油存在的问题是闪点低,在高速切削时烟雾较重,危险系数较高,其挥发快,用户使用成本相应变高。此外,大多数切削油以矿物油为基础油,油性、极压
性不够,往往需要添加过量的、对环境有害的氯化物、硫化物等,在使用过程中产生的有害
物质以及使用完之后产生的废料都将污染环境。
[0004] 以蓖麻油酸为原料,通过分子与分子之间的脱水酯化反应聚合得到的低聚蓖麻油酸酯,具有生物降解性好、易乳化、分散效果好以及成膜均匀等特点,可作为金属切削液中
的润滑剂,是一种极具发展前景的绿色化工产品。
[0005] 低聚蓖麻油酸酯的传统合成工艺为硫酸、对甲苯磺酸等质子酸催化。然而,其造成的设备腐蚀以及后处理工艺繁琐等问题降低了工艺的效率,并且这种质子酸的催化会使产
品颜色加深。
[0006] 针对上述问题,提出了相应的酶催化方法,参见:(a)Bódalo‑Santoyo,A.;Bastida‑Rodríguez,J.;Máximo‑Martín,M.F.;Montiel‑Morte,M.C.;Murcia‑Almagro,
M.D.Enzymatic biosynthesis of ricinoleic acid estolides.Biochem.Eng.J.2005,
26,155‑158.(b)Bódalo,A.;Bastida,J.;Máximo,M.F.;Montiel,M.C.;Gómez,M.;Murcia,
M.D.Production of ricinoleic acid estolide with free and immobilized lipase 
from Candida rugosa.Biochem.Eng.J.2008,39,450‑456.(c)Bódalo,A.;Bastida,J.;Má
ximo,M.F.;Montiel,M.C.;Murcia,M.D.;Ortega,S.Influence of the operating 
conditions on lipase‑catalysed synthesis of ricinoleic acid estolides in 
solvent‑free systems.Biochem.Eng.J.2009,44,214‑219.(d)Horchani,H.;Bouaziz,A.;
Gargouri,Y.;Sayari,A.Immobilized staphylococcus xylosus lipase‑catalysed 
synthesis of ricinoleic acid esters.J.Mol.Catal.B:Enzym.2012,75,35‑42.(e)
Yoshida,Y.;Kawase,M.;Yamaguchi,C.;Yamane,T.Syntheses of estolides with 
immobilized lipase.J.Jpn.Oil Chem.Soc.1995,44,328‑333.(f)Erhan,S.M.;Kleiman,
R.;Isbell,T.A.Estolides from  meadowfoam  oil fatty acids and other 
monounsaturated fatty acids.J.Am.Oil Chem.Soc.1993,70,461‑465.另一方面,酶促反
应成本高、效率低、操作不稳定,不利于工业化生产。
[0007] 近年来,一些路易斯酸催化剂也被开发出来用于合成低聚蓖麻油酸酯,如氯化亚锡,辛酸亚锡等,非均相Lewis酸催化剂具有易分离、对设备无腐蚀的特点,但相界面间的传
质限制会降低该类催化剂的催化性能。参见:(a)李海云,王永垒,方红霞等.多羟基聚蓖麻
油酸超分散剂的合成及表征.应用化工,2014,43:1064‑1067.(b)Vadgama,R.N.;Odaneth,
A.A.;Lali,A.M.New synthetic route for polyricinoleic acid with Tin(II)2‑
ethylhexanoate.Heliyon 2019,5,e01944.(c)游飞,李红茹,陈凯宏,赵凤革,叶锋,崔晓
莹,何良年.一种低聚蓖麻油酸酯的制备方法[P]:中国,201811438980.8.2019.05.17.
[0008] 离子液体催化剂兼具均相催化剂的高效和非均相催化剂易分离的特点,同时,该类催化剂的结构和性质可进行设计,因而在有机合成中很有吸引力。目前虽然有将酸性离
子液体催化剂[HSO3‑BMim]TS(1‑丁基磺酸‑3‑甲基咪唑对甲苯磺酸盐)用于低聚蓖麻油酸
酯合成的报道,但其在最优操作条件下的催化效率与氯化亚锡,辛酸亚锡等非均相催化剂
尚有差距,未能体现出离子液体作为催化剂的优越性。另外,反应后离子液体催化剂的分
离、回收和重复使用性能仍缺乏相关报道。参见:(a)Wang,G.;Sun,S.Synthesis of 
ricinoleic acid estolides by the esterification of ricinoleic acids using 
functional acid ionic liquids as catalysts.J.Oleo Sci.2017,66,753‑759.
[0009] 鉴于离子液体催化剂具有结构和性质可设计的特点,根据酯化反应催化机理设计离子液体催化剂,将有助于开发一种高效、绿色、且操作简单的低聚蓖麻油酸酯制备工艺。

发明内容

[0010] 本发明的目的是提供一种以离子液体为催化剂的低聚蓖麻油酸酯高效制备和分离的方法。通过设计合成含有一个或多个可电离质子的离子液体作为催化剂,用于低聚蓖
麻油酸酯的合成,该方法所得到的低聚蓖麻油酸酯的聚合度可方便的通过反应时间进行调
节,因而产品低聚蓖麻油酸酯具有广泛的用途,其中平均聚合度为4的产品能作为润滑剂添
加到金属切削油中。该制备工艺清洁无污染,操作简单,反应结束后,产品低聚蓖麻油酸酯
和催化剂可通过水洗或静置分层实现原位分离,且催化剂可循环多次使用,因而具有商业
化应用前景。
[0011] 本发明的技术方案:
[0012] 一种低聚蓖麻油酸酯的制备和原位分离的方法,以蓖麻油酸为原料,以酸性离子液体为催化剂,在减压条件下使蓖麻油酸分子之间发生脱水酯化反应,具体制备
步骤如下:
[0013] 步骤一:将蓖麻油酸、催化剂投入反应瓶内;
[0014] 步骤二:开启真空泵调节反应体系的真空度,在搅拌条件下加热至反应温度,开始脱水酯化反应;
[0015] 步骤三:反应结束后,除去催化剂,最后获得产物低聚蓖麻油酸酯。
[0016] 上述制备过程的反应式为:
[0017]
[0018] 所述的催化剂为离子液体催化剂,其阳离子为N‑甲基吡咯烷酮离子([NMP]+)、N‑+ +
丁基磺酸吡啶离子([HSO3‑BPy])、1‑丁基磺酸‑3‑甲基咪唑离子([HSO3‑BMim])、N‑(4‑丁
+
基磺酸)三乙胺离子([HSO3‑BNEt3])或1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯离
+ ‑ ‑
子([HSO3‑BDBU]) 中的一种或几种,阴离子为硫酸氢根(HSO4)、磷酸二氢根(H2PO4)、三氟
‑ ‑
甲磺酸离子(CF3SO3)或对甲苯磺酸离子(PTSA)中的一种或几种自由组合得到的离子液
体,催化剂用量占反应体系总重量的1wt.%~30wt.%。
[0019] 所述的催化剂分离方法是水洗或静止分层法。
[0020] 所用原料蓖麻油酸的酸值为150~190mg KOH/g。
[0021] 所述的温度为160~230℃,真空度为70‑0kPa,反应时间为2~16h。
[0022] 本发明制得的低聚蓖麻油酸酯的酸值在20~90mg KOH/g;聚合度小于等于10;402 2
℃时,运动粘度≤1000mm /s;100℃时,运动粘度≤100mm /s。低聚蓖麻油酸酯的结构式如
下:
[0023]
[0024] 其中,n为2‑10的整数。
[0025] 本发明具有的优点和积极效果是:
[0026] 1原料为蓖麻油酸,可通过蓖麻油水解得到,是一种易得、价格低廉、来源广泛的可再生资源,并且方便储存运输,在工业生产方面具有明显优势;
[0027] 2制备过程操作简单,副反应少,生产周期短,提高了效益;
[0028] 3本方法对设备要求低,不使用任何溶剂,降低了投资成本以及节约能耗,同时整个工艺流程环境友好;
[0029] 4本方法使用离子液体催化剂,其催化剂可回收,循环多次使用,这大大降低了生产成本,具有可观的经济效益;
[0030] 5本发明制备的低聚蓖麻油酸酯具有良好的润滑性能以及低温流动性能,可用作金属加工的切削油,属清洁环保产品;
[0031] 6该方法制备的低聚蓖麻油酸酯,收率高达90%以上,产品使用后的废料,可生物降解,符合环保要求,具有工业化生产前景。

附图说明

[0032] 图1是合成低聚蓖麻油酸酯的反应式。
[0033] 图2是产物的FT‑IR谱图。
[0034] 图3是产物的1H NMR谱图。
[0035] 图4是产物的13C NMR谱图。
[0036] 图5是产物的ESI‑MS谱图。

具体实施方式

[0037] 本发明涉及一种可实现低聚蓖麻油酸酯制备和原位分离的方法(反应式参见图1),为了适应工业化的需要,通过实验和筛选,研发一种环境友好、廉价、操作方便且高收率
的制备方法。蓖麻油酸作为一种来源广泛的可再生资源,能够大量应用于工业生产,故本发
明方案以蓖麻油酸为单体通过脱水酯化反应制备低聚蓖麻油酸酯。
[0038] 实施例1
[0039] 在反应瓶中加入10g蓖麻油酸,0.5g N‑甲基吡咯烷酮硫酸氢盐([NMP]HSO4),开启真空泵调节反应体系的真空度为50kPa,同时搅拌升温到160℃。随着反应的进行,不断有水
被泵抽出,反应5h后停止反应。然后水洗除去催化剂即得到产品,收率93%。测得产物酸值
2
为76mg KOH/g,平均聚合度在2左右,40℃的运动粘度为163.8mm /s,100℃的运动粘度为
2
31.4mm/s。
[0040] 催化剂[NMP]HSO4的制备方法:将当量的硫酸加入到0.1mol(9.9g)的N‑甲基吡咯烷酮中。反应混合物在80℃下搅拌24小时,然后于80℃真空干燥24h,即得[NMP]HSO4。
[0041] 实施例2
[0042] 在反应瓶中加入10g蓖麻油酸,1gN‑丁基磺酸吡啶对甲苯磺酸盐([HSO3‑BPy]PTSA),开启真空泵并调节反应体系真空度为30kPa,同时搅拌升温到230℃。随着反应的进
行,不断有水被泵抽出,反应2h后停止反应。然后水洗除去催化剂即得到产品。最终收率为
2
92%,测得酸值为27mg KOH/g,平均聚合度在8左右,40℃的运动粘度为884.4mm/s,100℃
2
的运动粘度为89.7mm/s。
[0043] 催化剂[HSO3‑BPy]PTSA的制备方法:将0.05mol(10.8g)的N‑丁基磺酸吡啶内盐加入到50mL的二氯甲烷中,再加入当量的对甲苯磺酸。反应混合物在60℃下搅拌4小时,然后
将上层的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥24h,即得[HSO3‑BPy]PTSA。
[0044] 实施例3
[0045] 在反应瓶中加入10g蓖麻油酸,1.5g N‑(4‑丁基磺酸)三乙胺磷酸二氢盐([HSO3‑BNEt3]H2PO4),开启真空泵至并调节反应体系真空度为70kPa,同时搅拌升温到200℃。随着
反应的进行,不断有水被泵抽出,反应6h后停止反应。然后水洗除去催化剂即得到产品。最
2
终收率为92%,测得酸值为35mg KOH/g,平均聚合度在6左右,40℃的运动粘度为712.5mm /
2
s,100℃的运动粘度为81.7mm/s。
[0046] 催化剂[HSO3‑BNEt3]H2PO4的制备方法:将0.05mol(11.9g)的N‑(4‑丁基磺酸)三乙胺内盐加入到50mL的二氯甲烷中,再加入当量的磷酸。反应混合物在60℃下搅拌4小时,然
后将上层的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥24h,即得[HSO3‑BNEt3]
H2PO4。
[0047] 实施例4
[0048] 在反应瓶中加入10g蓖麻油酸,2g 1‑丁基磺酸‑3‑甲基咪唑三氟甲磺酸盐([HSO3‑BMim]CF3SO3),开启真空泵并调节反应体系真空度为30kPa,同时搅拌升温到210℃。随着反
应的进行,不断有水被泵抽出,反应4h后停止反应。然后水洗除去催化剂即得到产品。最终
2
收率为94%,测得酸值为56mg KOH/g,平均聚合度在3‑4之间,40℃的运动粘度为391.6mm /
2
s,100℃的运动粘度为42.2mm/s。
[0049] 催化剂[HSO3‑BMim]CF3SO3的制备方法:将0.05mol(10.9g)的1‑丁基磺酸‑3‑甲基咪唑内盐加入到50mL的二氯甲烷中,再加入当量的三氟甲磺酸。反应混合物在60℃下搅拌4
小时,然后将上层的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥24h,即得[HSO3‑
BMim]CF3SO3。
[0050] 实施例5
[0051] 在反应瓶中加入1g蓖麻油酸,0.01g N‑丁基磺酸吡啶磷酸二氢盐([HSO3‑BPy]H2PO4),在常压下反应,同时搅拌升温到190℃。随着反应的进行,不断有水被泵抽出,反应
16h后停止反应。然后水洗除去催化剂即得到产品。最终收率为91%,测得酸值为20mg KOH/
2 2
g,平均聚合度在9左右,40℃的运动粘度为911.4mm/s,100℃的运动粘度为91.7mm/s。
[0052] 催化剂[HSO3‑BPy]H2PO4的制备方法:将0.05mol(10.8g)的N‑丁基磺酸吡啶内盐加入到50mL的二氯甲烷中,再加入当量的磷酸。反应混合物在60℃下搅拌4小时,然后将上层
的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥24h,即得[HSO3‑BPy]H2PO4。
[0053] 实施例6
[0054] 在反应瓶中加入0.5g蓖麻油酸,0.025g N‑(4‑丁基磺酸)三乙胺硫酸氢盐([HSO3‑BNEt3]HSO4),开启真空泵并调节反应体系真空度为70kPa,同时搅拌升温到210℃。随着反应
的进行,不断有水被泵抽出,反应3h后停止反应。然后水洗除去催化剂即得到产品。最终收
2
率为93%,测得酸值为39mg KOH/g,平均聚合度在6左右,40℃的运动粘度为698.5mm /s,
2
100℃的运动粘度为79.5mm/s。
[0055] 催化剂[HSO3‑BNEt3]HSO4的制备方法:将0.05mol(11.9g)的N‑(4‑丁基磺酸)三乙胺内盐加入到50mL的二氯甲烷中,再加入当量的硫酸。反应混合物在60℃下搅拌4小时,然
后将上层的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥24h,即得[HSO3‑BNEt3]
HSO4。
[0056] 实施例7
[0057] 在反应瓶中加入50g蓖麻油酸,5g催化剂1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯磷酸二氢盐([HSO3‑BDBU]H2PO4),开启真空泵至50kPa,同时搅拌升温到170℃。随
着反应的进行,不断有水被泵抽出,反应16h后停止反应。静置1小时使反应体系达到室温,
可发现产物和催化剂分层,产物位于上层而催化剂位于下层,通过倾倒即可分离产物和催
化剂。最终产物收率为95%,测得酸值为17mg KOH/g,平均聚合度在10左右,40℃的运动粘
2 2
度为962.5mm/s,100℃的运动粘度为95.0mm/s。
[0058] 催化剂[HSO3‑BDBU]H2PO4的制备方法:将0.05mol(14.4g)的1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯内盐加入到50mL的二氯甲烷中,再加入当量的磷酸。反应混合物
在60℃下搅拌4小时,然后将上层的粘稠液体分离,再用乙醚洗涤两次,在100℃真空干燥
24h,即得[HSO3‑BDBU]H2PO4。
[0059] 实施例8催化剂用量的考察
[0060] 在反应瓶中加入10g蓖麻油酸,催化剂1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯磷酸二氢盐([HSO3‑BDBU]H2PO4)的用量分别为原料质量的1%,5%,15%,20%和
30%,开启真空泵至50kPa,同时搅拌升温到200℃。随着反应的进行,不断有水被泵抽出,反
应5h后停止反应。静置1小时使反应体系达到室温,通过静置和倾倒分离产物和催化剂,可
得到催化剂用量对产品收率和性质的影响,见表1。
[0061] 表1不同催化剂用量制备产品的理化性质
[0062]
[0063] 实施例9反应真空度的考察
[0064] 在反应瓶中加入10g蓖麻油酸,1.5g的催化剂1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯磷酸二氢盐([HSO3‑BDBU]H2PO4),开启真空泵分别调节真空度至0‑
70kPa,同时搅拌升温到190℃。随着反应的进行,不断有水被泵抽出,反应8h后停止反应。静
置1小时使反应体系达到室温,通过静置和倾倒分离产物和催化剂,可得到真空度对产品收
率和性质的影响,见表2。
[0065] 表2不同真空度制备产品的理化性质
[0066]
[0067] 实施例10催化剂回收和反复利用的考察
[0068] 在反应瓶中加入10g蓖麻油酸,3g 1‑丁基磺酸‑1,8‑二氮杂双环[5.4.0]十一碳七烯磷酸二氢盐([HSO3‑BDBU]H2PO4),开启真空泵并调节反应体系真空度为50kPa,同时搅拌
升温到220℃。随着反应的进行,不断有水被泵抽出,反应5h后停止反应。然后静置分层,倾
倒出上层的产品A并称重计算收率,称量留在反应瓶中的催化剂并记录其质量为2.8g,向反
应瓶中加入10g的新鲜的蓖麻油酸,重复上述酯化反应的操作5h后,再次通过静置分层和倾
倒将产品和催化剂分离,获得产品B同时称重得剩余的催化剂为2.7g,继续向盛有催化剂的
反应瓶中加入10g新鲜的蓖麻油酸,保持操作条件不变,继续反应5h获得产品C。测量产品A、
B、C的理化性质结果见表3。
[0069] 表3催化剂循环使用制备产品的理化性质
[0070]
[0071] 本组实施例说明离子液体具有较好的稳定性并能够在低聚蓖麻油酸酯的合成中反复使用。
[0072] 实施例11催化剂的组合对反应的影响
[0073] 在反应瓶中加入10g蓖麻油酸,加入2g质量比为1:1的1‑丁基磺酸‑3‑甲基咪唑三氟甲磺酸盐([HSO3‑BMim]CF3SO3)和N‑丁基磺酸吡啶磷酸二氢盐([HSO3‑BPy]H2PO4)的混合
物作为催化剂,开启真空泵并调节真空度至50kPa,同时搅拌升温到230℃。随着反应的进
行,不断有水被泵抽出,反应8h后停止反应。通过水洗去除催化剂。最终产品的收率为92%,
2
测得酸值为20mg KOH/g,平均聚合度在9左右,40℃的运动粘度为920.1mm /s,100℃的运动
2
粘度为92.3mm/s。
[0074] 产物低聚蓖麻油酸酯的表征:
[0075] 外观:黄色油状液体
[0076] FT‑IR(KBr)Vmax/cm‑1:3416.44,3010.55,2927.89,2855.81,1733.38,1711.66,1464.22,1245.41,1183.74,725.11;ESI‑MS:m/z(+)579.3,876.6,1139.7,1437.8,1716.9,
1997.1.(如图2所示)。
[0077] 1HNMR(400MHz,CDCl3)δ:0.85‑0.88(t,J=3.9Hz,3H),1.26‑1.29(m,16H),1.51‑1.60(m,4H),2.00‑2.01(m,2H),2.25‑2.26(m,4H),4.86‑4.89(m,1H),5.30‑5.46(m,2H)
ppm.(如图3所示)。
[0078] 13C NMR(100MHz,CDCl3)δ:14.08,22.58,25.11,25.35,27.20‑27.35,29.03‑29.71,31.75,31.98,33.62,34.65,73.69,124.30,132.51,173.58ppm(如图4所示)。
[0079] ESI‑MS:m/z(+)579.3,876.6,1139.7,1437.8,1716.9,1997.1.(如图5所示)。
[0080] 以上对本发明的几个实施例进行了详细说明,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范
围之内。