一种基于范德华异质结的非易失光存储单元及其制备方法转让专利

申请号 : CN202010096346.1

文献号 : CN111276561A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 彭波周思宇王雅倩

申请人 : 电子科技大学

摘要 :

本发明涉及半导体光存储器技术领域,尤其涉及一种基于范德华异质结的非易失光存储单元及其制备方法。本发明器件包括两个电极、两层石墨烯层以及量子点层;量子点层设置于两层石墨烯层之间,构成石墨烯/量子点/石墨烯的三层垂直异质结构,层与层之间的界面态俘获电荷载流子使得整个非易失光存储单元具有非易失光存储的特性;两电极分别制作在两层石墨烯上。本发明基于层间界面态俘获电子的基本原理实现了单元非易失多级光存储的特性。该非易失光存储单元结构简单,稳定性强,能耗低,能与目前的CMOS工艺兼容,且具有多级存储的特性。

权利要求 :

1.一种基于范德华异质结的非易失光存储单元,其特征在于:

包括两个电极、两层石墨烯层以及量子点层;量子点层设置于两层石墨烯层之间,构成石墨烯/量子点/石墨烯的三层垂直异质结构,两电极分别制作在两层石墨烯上;两层石墨烯与量子点在垂直方向上有重叠区域;整个基于范德华异质结的非易失光存储单元的总厚度为6-20nm;

所述量子点层作为吸光层,石墨烯层不仅充当电子传输的高速通道,而且还是量子点层的保护层,整个非易失光存储单元通过光照作为写入,在两个电极间施加电场,以电阻状态做为读出。

2.如权利要求1所述基于范德华异质结的非易失光存储单元,其特征在于:所述覆盖在量子点层上的石墨烯层为完全覆盖,作为量子点层的保护层,以防止其在暴露于周围环境后被损坏。

3.如权利要求1所述基于范德华异质结的非易失光存储单元,其特征在于:所述电极为金、银、铜、铬或铝。

4.如权利要求1所述基于范德华异质结的非易失光存储单元,其特征在于:使用的硅/二氧化硅作为基底,两层石墨烯层均为单层石墨烯,量子点层为排列均匀的单层量子点薄膜。

5.如权利要求1所述基于范德华异质结的非易失光存储单元,其特征在于:所述量子点层材料为CdSe、CdS、CdTe或ZnS。

6.如权利要求1所述基于范德华异质结的非易失光存储单元的制备方法,包括如下步骤:步骤1、选用硅/二氧化硅基片作为基底,基片经过氧离子轰击;

步骤2、在石墨烯上旋涂聚甲基丙烯酸甲酯PMMA,用饱和三氯化铁溶液溶解掉铜后,将石墨烯转移到步骤1所得的基底上,再用丙酮溶液去除PMMA;

步骤3、取10μL量子点溶液,将其滴入5mL的乙腈溶液中,待量子点漂浮在乙腈溶液表面形成一层单原子层薄膜;

步骤4、将步骤2所制得的样品浸入步骤3制得的溶液中捞起量子点薄膜,待其自然风干,其中需保证量子点薄膜落在石墨烯上;

步骤5、采用步骤2的转移技术,用胶带粘取一块旋涂有PMMA的石墨烯,用饱和三氯化铁溶液溶解掉铜后,将石墨烯转移到步骤4所得样品的量子点薄膜上,形成石墨烯/量子点/石墨烯三层结构,并保证两层石墨烯与量子点在垂直方向上有重叠区域;

步骤6、在两层石墨烯上分别制备金属电极,即可制得基于范德华异质结的非易失光存储单元。

说明书 :

一种基于范德华异质结的非易失光存储单元及其制备方法

技术领域

[0001] 本发明涉及半导体光存储器技术领域,尤其涉及一种基于范德华异质结的非易失光存储单元及其制备方法。

背景技术

[0002] 在大数据和人工智能时代,对高性能的处理,存储和通信设备的需求变得更加迫切。但是传统的存储器由于尺寸、工艺以及生产成本等限制,正面临严峻的性能瓶颈与技术挑战[1]。光电存储器件引入光作为新的参量,可以实现光和电共同控制电荷储存,极大的丰富了存储器件的应用。在传统的冯·诺依曼计算体系结构中,分开的存储和处理单元会导致更多的能耗和较慢的数据传输速度。光电存储器可以实现直接在一个单元中感测、存储和处理光学信息,是打破冯·诺依曼系统的重要手段,有望突破现有的技术瓶颈,提升存储器件的性能[2,3]。
[0003] 在用于光电存储器件的材料系统中,二维材料具有丰富的物理与化学性能,如强的光与物质相互作用、大的表面体积比、栅极可调性和柔韧性,在柔性光电子器件和非易失存储器件中具有极大的应用前景[4,5,6]。因此,利用二维材料来设计并制作光电存储器件具有重大的意义。
[0004] [1]Waldrop,M.M.,The chips are down for Moore’s law.Nature 2016,530(7589),144-147.
[0005] [2]Zhou,F.;Chen,J.;Tao,X.;Wang,X.;Chai,Y.,2D Materials Based Optoelectronic Memory: Convergence of ElectronicMemory and Optical Sensor.Research(Wash DC)2019,2019,9490413.
[0006] [3]Zhou,F.;Zhou,Z.;Chen,J.;Choy,T.H.;Wang,J.;Zhang,N.;Lin,Z.;Yu,S.;Kang,J.;Wong, H.P.;Chai,Y.,Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol 2019,14(8),776-782.[0007] [4]Britnell L,Ribeiro R M,Eckmann A,et al.Strong light-matter interactions in heterostructures of atomically thin films.Science,2013,340(6138):1311-1314.
[0008] [5]Minh,Dao,Tran,et al.Role of Hole Trap Sites in MoS2 for Inconsistency inOptical and Electrical Phenomena.ACS Applied Materials&Interfaces,2018,10(12):10580-10586.
[0009] [6]Wang  X,Xie W,Xu  J B.Graphene based non-volatile  memory devices.Advanced Materials, 2014,26(31):5496-5503.

发明内容

[0010] 针对上述存在问题或不足,本发明提供了一种基于范德华异质结的非易失光存储单元及其制备方法,本发明结合两种低维材料的优势,在性能上实现了存储器的低功耗和多级存储的功能。
[0011] 一种基于范德华异质结的非易失光存储单元,包括两个电极、两层石墨烯层以及量子点层;量子点层设置于两层石墨烯层之间,构成石墨烯/量子点/石墨烯的三层垂直异质结构,层与层之间的界面态俘获电荷载流子使得整个非易失光存储单元具有非易失光存储的特性;两电极分别制作在两层石墨烯上。
[0012] 整个基于范德华异质结的非易失光存储单元的总厚度为6-20nm。
[0013] 所述量子点层作为吸光层,石墨烯层不仅充当电子传输的高速通道,而且还是量子点层的保护层,以防止其在暴露于周围环境后被损坏。整个非易失光存储单元通过光照作为写入,在两个电极间施加电场,以电阻状态做为读出。
[0014] 进一步的,所述覆盖在量子点层上的石墨烯层为完全覆盖。
[0015] 进一步的,所述电极为金、银、铜、铬或铝。
[0016] 进一步的,使用的硅/二氧化硅作为基底,两层石墨烯层均为单层石墨烯,量子点层为排列均匀的单层量子点薄膜。
[0017] 进一步的,所述量子点层材料为CdSe、CdS、CdTe或ZnS。
[0018] 本发明实现非易失多级光存储是基于石墨烯与量子点间的界面态俘获电子的基本原理。当不同材料接触形成异质结时,界面间会形成肖特基势垒和表面态。光照射到单元表面时,量子点作为吸光层会吸收光的能量,使得量子点价带中的电子被激发到导带。在偏压的作用下,导带中的电子会越过肖特基势垒向石墨烯流动,被界面间的表面态俘获,从而改变了界面间的状态,实现非易失多级光存储的特性。
[0019] 本发明采用自组装的方式,在硅/二氧化硅基片上堆叠了三层垂直异质结构,在上下两层上制备电极,制作成了非易失多级光存储单元。该单元可以在室温条件下,通过连续的光脉冲来写入信号,通过极低的电压来读取信号。多个光脉冲可以把单元的电阻激发到不同的状态,并可以保存较长的时间,这将会极大地提高信息的存储密度。除此之外,该单元结构简单,能耗低,且能与目前的CMOS工艺兼容。

附图说明

[0020] 图1是本发明实施例的结构示意图。
[0021] 图2是实施例的非易失多级光存储测试图。
[0022] 图3是本发明基于范德华异质结的非易失光存储单元工作的能带结构图。
[0023] 图4是不同光强、不同偏压下,实施例的光电性能测试图。
[0024] 图5是实施例在撤掉偏压后存储状态保持时间图。

具体实施方式

[0025] 下面结合具体实施例,并参照附图,对本发明做进一步详细说明。
[0026] 本实施例设计并制作了一种基于范德华异质结的非易失光存储单元。如图1所示,该单元包括:上下两层石墨烯导电层,中间CdSe量子点光吸收层,银作为电极分别制备在上下两层石墨烯上。
[0027] 一种基于范德华异质结的非易失光存储单元,其制备方法如下:
[0028] 步骤1、选用硅/二氧化硅基片作为基底,其中二氧化硅层为285nm。基片经过氧离子轰击以清洁基片表面和增强基片亲水性。
[0029] 步骤2、在石墨烯上旋涂聚甲基丙烯酸甲酯(PMMA),用饱和三氯化铁溶液溶解掉铜后,将石墨烯转移到步骤1所得的基底上,再用丙酮溶液去除PMMA。
[0030] 步骤3、取10μLCdSe量子点溶液,将其滴入5mL的乙腈溶液中,量子点会漂浮在乙腈溶液表面形成一层单原子层薄膜。
[0031] 步骤4、将步骤2所制得的样品浸入步骤3制得的溶液中捞起量子点薄膜,待其自然风干,其中需保证量子点薄膜落在石墨烯上。
[0032] 步骤5、类似步骤2的转移技术,用胶带粘取一块旋涂有PMMA的石墨烯,用饱和三氯化铁溶液溶解掉铜后,将石墨烯转移到步骤4所制得的样品上,保证两层石墨烯与量子点在垂直方向上有重叠区域,构成石墨烯/量子点/石墨烯的三层垂直异质结构。
[0033] 步骤6、在两层石墨烯上分别制备金属电极,即可制得基于范德华异质结的非易失光存储单元。
[0034] 实施例制备的基于范德华异质结的非易失光存储单元,在光照的激发下,单元的阻值会发生改变,即使撤掉光照后其阻值也不会恢复。如图2所示,仅仅施加0.5V的偏压,就能读取到其电阻值状态。用637nm的连续脉冲光照写入,其阻值状态发生非易失的改变且能保持稳定。
[0035] 在图3所示的能带图中,我们揭示了本发明的工作原理。当石墨烯与量子点接触时,由于他们的费米能级不同,他们的能带会发生弯曲形成肖特基势垒。在偏压(Vds)的作用下,顶部石墨烯(Gt)与底部石墨烯(Gb)的能级位置会发生变化,导致量子点中能带发生倾斜。当激光照射到该单元时,量子点中的电子从价带激发到导带,向能带的倾斜方向移动。当其越过肖特基势垒时,部分电子会被界面态俘获,导致了单元状态的非易失变化。
[0036] 在图4a,b,c中,从1490Ω到1420Ω,该单元展示了24种电阻状态,这显示了存储稳定性和高的存储容量。图4d为光电流的mapping图,以直观地显示单元光电性能。随着光功率的增加,更多的光子激发更多的电子形成价带以导带,因此更多的电子将通过肖特基势垒隧穿,从而产生更大的光电流。此外,更多的激发电子将与价带中的空穴复合,从而导致电流的弛豫量也对应增加。随着偏压的增加,更大的电势会赋予被激发的电子更大的能量,以越过肖特基势垒,从而增加了光电流。
[0037] 图5的测试显示,在撤去偏压后,单元状态依然能保持450s以上,显示出单元的存储稳定性。
[0038] 综上,本发明提出了一种基于石墨烯/量子点/石墨烯三层垂直异质结构的非易失光学存储单元,其中层与层之间的界面态俘获电荷载流子使得单元具有非易失光存储的特性。该单元具有多层存储能力和较长的存储时间。此外,低的写入激光功率和低的读取偏压降低了存储单元的能耗。这种新型的异质结构在非易失性存储器中具有巨大的潜力,这为制造新型光存储器件提供了参考。