一种长存储性能的锂离子电池的制备方法转让专利

申请号 : CN202010099589.0

文献号 : CN111276755A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 钱起

申请人 : 钱起

摘要 :

本发明提供了一种长存储性能的锂离子电池的制备方法,所述锂离子电池中的正极中的活性物质为LiCo0.97Al0.1Mg0.2O2,并且正极中还包括占活性物质2-3质量%的聚苯胺;所述锂离子电池的负极为石墨负极,可选自天然石墨或人造石墨;所述锂离子电池的电解液中链状碳酸酯占电解液总体积的20%以下,并且包含由二甲亚砜(DMSO),三氟乙基膦酸(TTFP)和己基苯(CHB)所组成的添加剂。所述制备方法包括,将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液后,进行化成,所述化成包括在预定电压下的恒压充电过程,经过本发明的制备方法得到的锂离子电池,能够存储很长时间而不出现容量衰减,具有良好的存储性能。

权利要求 :

1.一种长存储性能的锂离子电池的制备方法,所述锂离子电池中的正极中的活性物质为改性的钴酸锂,并且正极中还包括占活性物质2-3质量%的聚苯胺;所述锂离子电池的负极为石墨负极,可选自天然石墨或人造石墨;所述锂离子电池的电解液中链状碳酸酯占电解液总体积的20%以下,并且包含由二甲亚砜(DMSO),三氟乙基膦酸(TTFP)和己基苯(CHB)所组成的添加剂,所述化成方法包括:

1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置;

2)脉冲充电至预定电压;

3)以预定电压恒压充电,直至充电电流小于预定数值;

4)静置;

5)调整电池温度至预定温度,以所述预定电压再次恒压充电,直至充电电流小于预定数值;

6)在预定温度下静置老化;

7)调整至室温;

8)恒流充电至充电截止电压,然后以充电截止电压恒压充电,直至充电电流小于预定数值;

9)在充电截止电压和放电截止电压之间进行恒流充放电循环;

10)抽真空,封口。

2.如上述权利要求所述的化成方法,所述预定电压为3.75-3.80V。

3.如上述权利要求所述的化成方法,所述预定温度为40-50℃。

4.如上述权利要求所述的化成方法,所述预定数值为0.01C以下。

5.如上述权利要求所述的化成方法,所述步骤2中,脉冲电流为0.02-0.1C,脉冲时间为

30-60s,间隔2-5s。

6.如上述权利要求所述的方法,电解液中链状碳酸酯占电解液总体积的10%以下。

7.如上述权利要求所述的方法,电解液中,二甲亚砜(DMSO)为0.8-1.2体积%,三氟乙基膦酸(TTFP)为1.5-2.0体积%;己基苯(CHB)为2.2-2.6体积%。

8.如上述权利要求所述的方法,所述电池的正极活性物质为LiCo0.97Al0.1Mg0.2O2。

说明书 :

一种长存储性能的锂离子电池的制备方法

技术领域

[0001] 本发明涉及一种长存储性能的锂离子电池的制备方法。

背景技术

[0002] 锂离子电池的存储性能直接影响电池的持续使用性能,大部分锂离子电池在经过存储后,由于局部自放电和活性物质溶解,均会发生容量衰减等情况,更有严重的由于活性物质溶解导致负极表面产生金属支晶,导致电池短路等危险。

发明内容

[0003] 本发明提供了一种长存储性能的锂离子电池的制备方法,所述锂离子电池中的正极中的活性物质为LiCo0.97Al0.1Mg0.2O2,并且正极中还包括占活性物质2-3质量%的聚苯胺;所述锂离子电池的负极为石墨负极,可选自天然石墨或人造石墨;所述锂离子电池的电解液中链状碳酸酯占电解液总体积的20%以下,并且包含由二甲亚砜(DMSO),三氟乙基膦酸(TTFP)和己基苯(CHB)所组成的添加剂。所述制备方法包括,将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液后,进行化成,所述化成包括在预定电压下的恒压充电过程,经过本发明的制备方法得到的锂离子电池,能够存储很长时间而不出现容量衰减,具有良好的存储性能。具体的方案如下:
[0004] 一种长存储性能的锂离子电池的制备方法,所述锂离子电池中的正极中的活性物质为改性的钴酸锂,并且正极中还包括占活性物质2-3质量%的聚苯胺;所述锂离子电池的负极为石墨负极,可选自天然石墨或人造石墨;所述锂离子电池的电解液中链状碳酸酯占电解液总体积的20%以下,并且包含由二甲亚砜(DMSO),三氟乙基膦酸(TTFP)和己基苯(CHB)所组成的添加剂,所述化成方法包括:
[0005] 1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置;
[0006] 2)脉冲充电至预定电压;
[0007] 3)以预定电压恒压充电,直至充电电流小于预定数值;
[0008] 4)静置;
[0009] 5)调整电池温度至预定温度,以所述预定电压再次恒压充电,直至充电电流小于预定数值;
[0010] 6)在预定温度下静置老化;
[0011] 7)调整至室温;
[0012] 8)恒流充电至充电截止电压,然后以充电截止电压恒压充电,直至充电电流小于预定数值;
[0013] 9)在充电截止电压和放电截止电压之间进行恒流充放电循环;
[0014] 10)抽真空,封口。
[0015] 进一步的,所述预定电压为3.75-3.80V。
[0016] 进一步的,所述预定温度为40-50℃。
[0017] 进一步的,所述预定数值为0.01C以下。
[0018] 进一步的,所述步骤2中,脉冲电流为0.02-0.1C,脉冲时间为30-60s,间隔2-5s。
[0019] 进一步的,电解液中链状碳酸酯占电解液总体积的10%以下。
[0020] 进一步的,电解液中,二甲亚砜(DMSO)为0.8-1.2体积%,三氟乙基膦酸(TTFP)为1.5-2.0体积%;己基苯(CHB)为2.2-2.6体积%。
[0021] 进一步的,所述电池的正极活性物质为LiCo0.97Al0.1Mg0.2O2。
[0022] 本发明具有如下有益效果:
[0023] 1)、本发明的发明人发现,钴酸锂相比较其他活性物质例如三元材料或锰酸锂,其过渡金属Co的溶出速度更慢,并且当聚苯胺添加到钴酸锂材料中,能够抑制Co元素的溶出,并且具有更好的电极稳定性。
[0024] 2)、较低含量的链状碳酸酯能够有效抑制电解液在石墨负极表面的分解反应,提高电池存储性能。
[0025] 3)、发明人发现,由二甲亚砜(DMSO),三氟乙基膦酸(TTFP)和己基苯(CHB)所组成的添加剂能够有效提高电池的存储性能,尤其是三种添加剂以特定的比例加入后,存储性能提升明显。
[0026] 4)、针对本发明特定的正极活性物质以及电解液成分,发明人经过无数次试验偶然发现在预定电压下的恒压化成更能够有效促进该电池的电介质层的形成,机理尚不明确,初步分析,可能是由于所述添加剂在该电压下的分解速率更为均一稳定,从而能够共沉积形成较好的SEI膜。

具体实施方式

[0027] 本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
[0028] 提供的正极的活性材料为LiCo0.97Al0.1Mg0.2O2,正极中聚苯胺相对于正极活性材料的质量百分含量为2.5%;电解液包括1M的六氟磷酸锂,有机溶剂为DMC10体积%+EC50体积%+PC40体积%,以及添加剂;负极的活性材料为天然石墨负极。
[0029] 实施例1
[0030] 1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置2h,电解液中,二甲亚砜(DMSO)为0.8体积%,三氟乙基膦酸(TTFP)为1.5体积%;己基苯(CHB)为2.2体积%;
[0031] 2)脉冲充电至3.75V,脉冲电流为0.02C,脉冲时间为60s,间隔5s;
[0032] 3)以3.75V恒压充电,直至充电电流小于0.01C;
[0033] 4)静置1h;
[0034] 5)调整电池温度至40℃,以3.75V再次恒压充电,直至充电电流小于0.01C;
[0035] 6)在40℃下静置3h老化;
[0036] 7)调整至室温;
[0037] 8)0.1C恒流充电至4.2V,然后以4.2V恒压充电,直至充电电流小于0.01C;
[0038] 9)在4.2V和2.7V之间以0.1C恒流充放电循环3次;
[0039] 10)抽真空,封口。
[0040] 实施例2
[0041] 1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置2h,电解液中,二甲亚砜(DMSO)为1.2体积%,三氟乙基膦酸(TTFP)为2.0体积%;己基苯(CHB)为2.6体积%;
[0042] 2)脉冲充电至3.80V,脉冲电流为0.1C,脉冲时间为30s,间隔2s;
[0043] 3)以3.80V恒压充电,直至充电电流小于0.01C;
[0044] 4)静置1h;
[0045] 5)调整电池温度至50℃,以3.80V再次恒压充电,直至充电电流小于0.01C;
[0046] 6)在50℃下静置3h老化;
[0047] 7)调整至室温;
[0048] 8)0.1C恒流充电至4.2V,然后以4.2V恒压充电,直至充电电流小于0.01C;
[0049] 9)在4.2V和2.7V之间以0.1C恒流充放电循环3次;
[0050] 10)抽真空,封口。
[0051] 实施例3
[0052] 1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置2h,电解液中,二甲亚砜(DMSO)为1体积%,三氟乙基膦酸(TTFP)为1.8体积%;己基苯(CHB)为2.4体积%;
[0053] 2)脉冲充电至3.78V,脉冲电流为0.05C,脉冲时间为40s,间隔3s;
[0054] 3)以3.78V恒压充电,直至充电电流小于0.01C;
[0055] 4)静置1h;
[0056] 5)调整电池温度至45℃,以3.78V再次恒压充电,直至充电电流小于0.01C;
[0057] 6)在45℃下静置3h老化;
[0058] 7)调整至室温;
[0059] 8)0.1C恒流充电至4.2V,然后以4.2V恒压充电,直至充电电流小于0.01C;
[0060] 9)在4.2V和2.7V之间以0.1C恒流充放电循环3次;
[0061] 10)抽真空,封口。
[0062] 对比例1
[0063] 1)将正极,隔膜,负极层叠并制成电芯,置于电池壳体中,注液,静置2h;
[0064] 2)在45℃下静置3h老化;
[0065] 3)调整至室温;
[0066] 4)0.1C恒流充电至4.2V,然后以4.2V恒压充电,直至充电电流小于0.01C;
[0067] 5)在4.2V和2.7V之间以0.1C恒流充放电循环3次;
[0068] 6)抽真空,封口。
[0069] 对比例2
[0070] 所述电解液中仅含有二甲亚砜(DMSO),其他工艺参数与实施例1相同。
[0071] 对比例3
[0072] 所述电解液中仅含有三氟乙基膦酸(TTFP),其他工艺参数与实施例1相同。
[0073] 对比例4
[0074] 所述电解液中仅含有己基苯(CHB),其他工艺参数与实施例1相同。
[0075] 对比例5
[0076] 所述电解液中仅含有三氟乙基膦酸(TTFP)和己基苯(CHB),其他工艺参数与实施例1相同。
[0077] 对比例6
[0078] 所述电解液中仅含有二甲亚砜(DMSO)和己基苯(CHB),其他工艺参数与实施例1相同。
[0079] 对比例7
[0080] 所述电解液中仅含有二甲亚砜(DMSO)和三氟乙基膦酸(TTFP),其他工艺参数与实施例1相同。
[0081] 对比例8
[0082] 正极中不含聚苯胺,其他工艺参数与实施例1相同。
[0083] 实验与数据
[0084] 按照实施例1-3和对比例1-8的化成方法分别得到的电池,测量容量,然后在45℃下存储90天,然后充放电循环3次,再次测试容量,计算容量保持率,结果见下表。可见本发明的添加剂的特定组合对于存储性能的影响,以及聚苯胺对于存储性能的影响,并且本发明的化成方式也能够进一步提高电池的存储性能。
[0085] 表1
[0086]
[0087]
[0088] 尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。