导热电绝缘材料转让专利

申请号 : CN201880069119.0

文献号 : CN111279433A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 米切尔·T·黄罗伯特·H·特平

申请人 : 3M创新有限公司

摘要 :

本发明描述了一种导热电绝缘非织造材料,包含:20重量%至50重量%的有机组分,其中有机组分包含有机拉伸纤维、有机双组分粘结剂纤维和聚合物胶乳粘结剂,聚合物胶乳粘结剂包含丙烯酸胶乳、丙烯酸共聚物胶乳、腈胶乳和苯乙烯胶乳中的至少一种;以及50重量%至80重量%的无机组分,其中无机组分包含导热填料和粘土的共混物。有机双组分粘结剂纤维具有聚合物芯和围绕聚合物芯的外皮层,其中外皮层具有比芯更低的熔点。

权利要求 :

1.一种导热电绝缘非织造材料,包含:

20重量%至50重量%的有机组分,其中所述有机组分包含有机拉伸纤维、有机双组分粘结剂纤维和聚合物胶乳粘结剂,所述聚合物胶乳粘结剂包含丙烯酸胶乳、丙烯酸共聚物胶乳、腈胶乳和苯乙烯胶乳中的至少一种;和

50重量%至80重量%的无机组分,其中所述无机组分包含导热填料和粘土的共混物,其中所述有机双组分粘结剂纤维包含聚合物芯和围绕所述聚合物芯的外皮层,其中所述外皮层具有比所述芯更低的熔点。

2.根据权利要求1所述的非织造材料,其中所述有机拉伸纤维具有大于40%的结晶度。

3.根据前述权利要求中任一项所述的非织造材料,还包含未拉伸有机粘结剂纤维,其中所述未拉伸纤维具有小于约10%的结晶度。

4.根据权利要求1所述的非织造材料,其中有机双组分粘结剂纤维包含被聚苯硫醚外皮或共聚酯外皮围绕的聚酯芯。

5.根据前述权利要求中任一项所述的非织造材料,其中所述第一导热体和所述第二导热体可选自氮化硼、氮化硅、氮化铝、二氧化硅、氧化铝、碳酸钙和三水合物氧化铝。

6.根据前述权利要求中任一项所述的非织造材料,其中所述非织造材料在180℃下具有大于0.3W/m-K的热导率。

7.根据权利要求1-5中任一项所述的非织造材料,其中所述非织造材料在180℃下具有大于0.4W/m-K的热导率。

8.根据前述权利要求中任一项所述的非织造材料,其中所述非织造材料具有至少

200V/密耳的介电强度。

9.根据前述权利要求中任一项所述的非织造材料,其中所述非织造材料具有大于5lb/in的纵向拉伸强度。

10.根据前述权利要求中任一项所述的非织造材料,其中所述有机拉伸纤维包含聚苯硫醚(PPS)纤维、聚酯纤维、聚酯共聚物纤维、聚酰胺纤维、丙烯酸纤维、三聚氰胺纤维、聚醚醚酮(PEEK)纤维中的至少一种。

11.根据权利要求3所述的非织造材料,其中所述有机未拉伸纤维包含未拉伸聚苯硫醚(PPS)纤维和未拉伸聚酯纤维中的至少一种。

12.一种用于电气设备的电绝缘材料,其中所述电绝缘材料包含根据前述权利要求中任一项所述的非织造材料。

13.根据权利要求12所述的绝缘系统,其中所述电气设备包括变压器、马达和发生器中的一种。

14.一种导热绝缘材料,还包含聚合物膜,所述聚合物膜层合到根据权利要求1-12中任一项所述的所述非织造材料第一表面。

15.根据权利要求14所述的导热绝缘材料,其中所述聚合物膜为导热聚合物膜。

16.根据权利要求14或15所述的导热绝缘材料,还包含层合到所述聚合物膜的第二表面的第二层非织造材料。

17.根据权利要求14至16中任一项所述的导热绝缘材料,其中所述导热绝缘材料具有大于0.20W/mK的热导率。

18.根据权利要求14至16中任一项所述的导热绝缘材料,其中所述导热绝缘材料具有大于0.25W/mK的热导率。

19.根据权利要求14至18中任一项所述的导热绝缘材料,其中所述导热绝缘材料具有大于800V/密耳的介电强度。

20.根据权利要求14至18中任一项所述的导热绝缘材料,其中所述导热绝缘材料具有大于1000V/密耳的介电强度。

21.根据权利要求14至20中任一项所述的导热绝缘材料,其中所述导热绝缘材料具有大于5%的伸长率。

说明书 :

导热电绝缘材料

技术领域

[0001] 本发明涉及适用于电绝缘应用的材料。具体地,本发明涉及适用于在马达、发生器和其它电气装置中使用的自动插入式槽衬的电绝缘材料。具体地,本技术涉及一种包括导热非织造垫层合构造的导热电绝缘材料。

背景技术

[0002]
[0003] 热量为电力变压器、马达、发生器和其它电气装置的不期望的副产物。较高操作温度通常减小装置寿命和可靠性以及对实际装置设计施加设计约束。在电力变压器、马达和发生器中使用的电绝缘材料(诸如常规电绝缘非织造材料、非织造材料或层合材料)通常为不良热导体并且可限制装置的热耗散。槽衬绝缘件通常用于使导线绕组与定子或转子金属槽表面电绝缘。然而,用作槽衬的常规电绝缘材料具有相对低的热导率,并且槽衬绝缘件直接定位在载流件、发热线和定子或转子的金属之间的临界热路径中。
[0004] 改善电气装置的热转移性能可以为常规电气装置设计提供较低的温度增加或者可实现新的较小电气装置设计。较低装置操作温度根据阿仑尼乌斯方程提供改善的可靠性,该方程推断,操作温度减小10℃使绝缘材料的寿命延长一倍。较低装置操作温度也可以通过减少电阻(焦耳加热)损耗来改善电气装置的效率。较低装置操作温度还可使电气装置在较高功率水平下运行或提供较高过载容量。较低温度升高也可使装置重新设计为更紧凑的装置尺寸,并且通过使用少量金属来更有效地使用原材料,这可降低总装置系统成本。
[0005] 热转移性能可以通过将热传递介质改变成具有更高热导率的介质或者通过将具有高热阻的材料替换成具有更低热阻或者更高热导率的材料来改善。
[0006] 许多这些常规纸通常用于高温电绝缘应用中,在这些应用中这些纸的热稳定性、电学特性和机械特性十分重要。常规电绝缘非织造材料通常具有0.25W/m-K或更小的热导率。当这些纸用于电磁线圈绕组时,在导体中生成的热量积聚,并且线圈的温度升高,因为热量不能有效地从线圈绕组传输出去。由于可能因常规电绝缘非织造材料的相对低的热导率而引起的热量积聚,线圈的功率密度受到限制。
[0007] 最近,具有大于0.4W/m-K的热导率的导热电绝缘纸材料描述于美国专利公布2018-0061523中,该导热电绝缘纸材料包含芳族聚酰胺纤维、芳族聚酰胺纸浆、粘结剂材料;以及导热填料的共混物,其中该共混物包含初级导热填料;以及第二导热填料。这些纸可用作电气变压器芯或绕组的电绝缘材料,或者用作手工、手动插入式马达/发生器槽衬。
然而,将这些纸的低伸长率用于槽衬自动插入设备中不是期望的,其中槽衬在槽衬的端部处被套住并且在其自身上向后弯曲,以有助于在随后的绕线和线圈成形步骤期间将槽衬保持在适当位置。
[0008] 然而,仍然需要具有较高热导率的电绝缘材料以用于在电动马达、发生器和其它电气装置的自动插入设备中使用。

发明内容

[0009] 在某些电绝缘应用中,需要在电气设备应用中达到合适性能的具有较高热导率的材料。本文所述的示例性非织造材料和层合构造适用于到电气部件诸如马达、发生器和需要使电气部件绝缘的其它装置中的自动插入操作。
[0010] 本发明的至少一些实施方案提供一种导热电绝缘非织造材料,包含:20重量%-50重量%的有机组分,其中所述有机组分包含有机拉伸纤维、有机双组分粘结剂纤维和聚合物胶乳粘结剂,并且聚合物胶乳粘结剂包含丙烯酸胶乳、丙烯酸共聚物胶乳、腈胶乳和苯乙烯胶乳中的至少一种;以及50重量%-80重量%的无机组分,其中所述无机组分包含导热填料和粘土的共混物。所述有机双组分粘结剂纤维具有聚合物芯和围绕所述聚合物芯的外皮层,其中所述外皮层具有比所述芯更低的熔点。
[0011] 在示例性方面,本文所述的示例性非织造材料不含纤维素,并且因此适用于在电气绝缘系统热类155(F类)、180(H类)和200(N类)中使用。
[0012] 如本说明书中所用:
[0013] “非织造材料”是指主要由长纤维构成的片状材料;
[0014] “长纤维”是指长度大于或等于一英寸的纤维;
[0015] “MD”或“纵向”是指与材料的连续片材的卷绕方向平行的方向;并且[0016] “CD”或“横向”是指与材料的连续片材的卷绕方向垂直的方向。
[0017] 本发明的上述发明内容并非旨在描述本发明的每个公开的实施方案或每种实施方式。下文的具体实施方式更具体地示出了本发明的实施方案。

具体实施方式

[0018] 在以下说明中,应当理解,其它实施方案是可以预期的并且可以在不脱离本发明的范围的情况下完成。因此,以下具体实施方式不应被视为具有限制意义。
[0019] 除非另外指明,否则本说明书和权利要求书中所使用的表达特征尺寸、量和物理特性的所有数在所有情况下均应理解成由术语“约”修饰。因此,除非相反的指明,否则在本说明书和所附权利要求书中列出的数值参数均为近似值,这些近似值可根据本领域技术人员利用本文所公开的教导内容来寻求获得的期望特性而变化。由端值表述的数值范围的使用包括该范围内的所有数字和任何值(例如,1至5包括1、1.5、2、2.75、3、3.80、4和5)。
[0020] 本文所述的示例性导热绝缘非织造材料可改善电气装置的热耗散,从而导致较低操作温度。此外,来自较高导热纸的改善的热耗散可允许装置/线圈尺寸减小,其中来自较高导热纸的改善的热耗散/较低操作温度可有助于补偿由于装置尺寸减小而导致的操作温度升高,而不显著改变装置的操作温度,从而形成总系统材料成本降低的尺寸较小的变压器。
[0021] 如本文所述的示例性导热非织造材料或包含示例性导热非织造材料的导热层合体也具有在电动马达/发生器应用中用作槽衬的可能,在这些应用中槽衬被手动/手工插入。马达制造商期望马达/发生器中热耗散得以改善的较高热导率槽衬绝缘材料。为了充当槽衬,绝缘材料必须具有足够的柔韧性,以使得它能够弯曲并成形以用于插入马达定子和/或转子中的狭槽中。
[0022] 改善材料热导率的常规方法为将最高导热填料的最高负载放入材料中。高热导率填料包含具有大于50W/m-K的热导率的填料并且包含碳纳米管、金刚石颗粒和氮化硼。这些高热导率填料对于日常使用在用于电气部件(诸如变压器、马达、发生器等)的电绝缘材料中可能是昂贵的。
[0023] 本发明的示例性非织造材料可包含约20重量%至约50重量%、优选地约30重量%至约45重量%的有机组分和约50重量%至约80重量%、优选地约55重量%至约80重量%的无机组分,其中有机组分的一部分是纤维状的。有机组分可包含有机纤维和粘结剂材料。有机组分的一部分包含导热填料的共混物,其中该共混物包含第一导热填料;以及第二导热填料。无机组分也可包含其它导热填料、低导热填料、其它无机填料、无机阻燃剂、无机颜料等。
[0024] 本发明的至少一些实施方案的非织造材料包含由长纤维(即长度大于或等于一英寸(2.54cm)的纤维)制成的片状材料。示例性非织造材料通常主要由有机纤维制成但可以包含无机纤维。用于制备非织造织物的合适的有机纤维的示例包括但不限于聚苯硫醚(PPS)、包含聚对苯二甲酸乙二醇酯(PET)的聚酯(即,结晶度大于约40%)、未拉伸或低结晶度纤维(即,结晶质小于或等于10%)以及聚(环己烯-二亚甲基对苯二甲酸酯)(PCT)、乙二醇改性的聚酯、聚酰胺(尼龙)聚酯纤维、聚酯共聚物纤维、包含芯和外皮的双组分纤维,其中芯和外皮中的至少一者是上文提供的聚酯材料中的一种,而芯和外皮中的另一者可由聚酯材料、聚烯烃(诸如聚乙烯或聚丙烯)、聚酰胺和聚苯硫醚形成。适用于本发明的非织造织物的至少一些实施方案可包含聚酯纤维和双组分纤维。
[0025] 在本发明的至少一个实施方案中,非织造材料的有机组分还包含聚合物粘结剂以将无机组分涂覆并粘结到非织造材料中的有机纤维。聚合物粘结剂可占有机组分的约30%至50%。合适的聚合物粘结剂可包含胶乳基材料。在另一方面,合适的聚合物粘结剂可包括但不限于丙烯酸胶乳、丙烯酸共聚物胶乳、腈胶乳和苯乙烯胶乳。在一个示例中,电绝缘非织造材料包含按重量计约10%至约25%的聚合物粘结剂。
[0026] 合适的非织造材料包含有机拉伸纤维和粘结剂纤维的组合。有机纤维可占非织造材料的有机组分的约50%至70%。有机纤维可在化学组成以及尺寸上发生改变,并且可被选择以改善示例性非织造材料的可制造性以及最终特性。
[0027] 有机拉伸纤维通常包含向非织造材料提供强度和尺寸稳定性的定向聚合物。示例性未拉伸纤维可包含间位芳族聚酰胺和对位芳族聚酰胺纤维;聚苯硫醚(PPS)纤维;聚酯纤维;聚酰胺纤维、丙烯酸类纤维、三聚氰胺纤维、聚醚醚酮(PEEK)纤维、聚酰亚胺纤维或它们的组合。
[0028] 粘结剂纤维可为大体无定形(即,具有低结晶度)的未拉伸纤维,其中该大体无定形纤维包含未拉伸聚酯、共聚酯或聚苯硫醚纤维;或者可为有机双组分纤维。有机双组分粘结剂纤维包含聚合物芯和围绕聚合物芯的外皮层,其中外皮层具有比芯更低的熔点。在示例性实施方案中,有机双组分粘结剂纤维包含被聚苯硫醚外皮或共聚酯外皮围绕的聚酯芯。
[0029] 如上所述,电绝缘非织造材料包含导热填料的共混物,其中该共混物包含第一导热填料和第二导热填料。第一导热填料和第二导热填料可选自氮化硼(例如,具有各向异性热导率的六方氮化硼片状颗粒,其中报告值在(xy)基面方向上为400W/m-K并且在(z)片状厚度方向上为2W/m-K)、氮化铝(170W/m-K)、碳化硅(360W/m-K)、熔融无定形二氧化硅(1.5W/m-K)、碳酸钙(~2-5W/m-K)、二氧化锆(~2W/m-K)、氧化锌(21W/m-K)和氧化铝(26W/m-K)。
[0030] 仅举几例,虽然金属颗粒诸如铜颗粒、铁颗粒、铅颗粒和银颗粒具有超过100W/m-K的热导率,但是它们由于其电导率而不适用于当前应用。同样,石墨和碳纳米管不能用于本发明的绝缘非织造材料中。
[0031] 此外,示例性非织造材料的无机组分可以包含另一种无机填料。在一个方面,合适的其它无机填料包括但不限于高岭土、滑石、云母、蒙脱石、绿土、膨润土、伊利石、绿泥石、海泡石、绿坡缕石、埃洛石、蛭石、合成锂皂石、累托石、珍珠岩、以及它们的组合。这些其它无机填料可被表面处理以促进其掺入到示例性非织造材料中。合适类型的高岭土包括但不限于水洗高岭土;分层高岭土;煅烧高岭土;和经表面处理的高岭土。在一个示例中,电绝缘非织造材料包含按重量计约5%至约20%的高岭土。
[0032] 电绝缘非织造材料的无机组分可以任选地包含无机阻燃剂。无机阻燃剂可为任何合适的材料。合适的无机阻燃材料的示例包含金属氢氧化物,例如氢氧化镁(MgOH)和三水合氧化铝(ATH)。无机阻燃剂可占非织造材料的至多约20重量%,优选地至多约15重量%。在本发明的一些方面,无机阻燃剂可具有足够高的热导率,使得其可用作第二导热填料或用作第三导热填料。例如,ATH具有介于10W/m-K与30W/m-K之间的热导率。
[0033] 在示例性方面,有机纤维垫可用包含聚合物粘结剂和第一导热填料和第二导热填料、粘土颗粒和任选的无机阻燃材料的含水浆料饱和,并且然后被干燥并压延以产生本发明的导热电绝缘非织造材料。
[0034] 也可将本领域技术人员已知的另外的配方添加剂诸如润湿剂和分散剂、粘度调节剂、抗氧化剂、稳定剂、增粘剂、颜料等掺入含水浆料内。
[0035] 在一些实施方案中,示例性绝缘材料还可包括与本文所述的示例性非织造材料层合的膜或网增强件。示例性层合材料可包括一个或多个示例性非织造材料片材。可组合示例性非织造材料的多个层片或亚层以形成较厚的非织造层。层片或亚层可以是相同或不同的材料。非织造材料的层合体或亚层中的层可通过任何合适的方法组合,诸如使用化学粘合剂或通过诸如压延的工艺。在一个方面,与本文所述的示例性电绝缘导热非织造材料的厚度相比,相对薄的非导热膜可层合到示例性非织造物以提供机械或介电质增强,并且当与常规的非织造材料层合体相比时仍可导致改善的层合体热导率。例如,薄聚酯膜可以层合到本文所述的示例性非织造材料的一侧或两侧。层合可以是膜到非织造材料的直接层合或者还可包括将该膜结合至示例性非织造材料的薄粘合剂层。在另选的构造中,本文所述的示例性非织造材料可层合到聚合物膜的任一侧。由多于3层构成的更高阶层合体可由交替的非织造材料层和聚合物膜层形成。
[0036] 示例性聚合物膜或网可由聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚醚醚酮(PEEK)、聚苯砜、聚苯硫醚、聚萘二甲酸乙二醇酯和聚酰亚胺形成。在另选的方面,聚合物膜层可包括导热膜。示例性导热膜包括导热聚酰亚胺膜:购自紧固胶粘带制品公司(Fastel Adhesive Products)(加利福尼亚州圣克莱门特(San Clemente,CA))的Devinall THB 500聚酰亚胺和Devinall THB 300聚酰亚胺以及购自杜邦公司(DuPont)(特拉华州威明顿市(Wilmington,DE))的Kapton 200MT聚酰亚胺膜、Kapton 300MT聚酰亚胺膜;诸如描述于整体并入本文的美国专利公布2017-0240788和PCT专利申请PCT/IB2018/055615中的导热聚酯膜;以及诸如描述于整体并入本文的PCT专利申请PCT/IB2018/055674中的导热聚酯共聚物膜。
[0037] 在示例性方面,至少部分地由本文所述的示例性非织造材料形成的层合材料可用作电气设备诸如变压器、马达、发生器中的绝缘材料。热量为电力变压器、马达和发生器的不期望的副产物。例如,示例性层合材料可用作被定位在电气设备的发热导线和更导热金属部分之间的导热电绝缘槽衬。此外,示例性材料足够鲁棒,使得它们可与自动槽衬安装设备材料一起使用。
[0038] 低导热槽衬材料可为马达或发生器内可能限制热耗散的区域。
[0039] 本发明的示例性非织造材料应具有:至少200V/密耳,优选地大于250V/密耳的非织造物介电强度;在180℃下大于0.30W/mK、优选地大于0.35W/mK、或更优选地大于0.40W/mK的TC非织造物热导率;大于5%,优选地大于10%的伸长率;和/或大于5lb/in的纵向拉伸强度。
[0040] 由本发明的非织造材料形成的示例性层合体应具有:大于800V/密耳,优选地大于1000V/密耳的非织造物介电强度;大于0.20W/mK,优选地大于0.25W/mK的热导率;大于5%,优选地大于10%的伸长率;和/或大于50lb./in,优选地大于100lb./in的纵向拉伸强度。
[0041] 实施例
[0042] 以下提供的实施例和比较例有助于理解本发明,且这些实施例和比较例不应被理解为对本发明范围的限制。除非另外指明,否则所有的份数和百分比均按重量计。使用下述测试方法和方案来评估以下示例性实施例和比较例。
[0043] 材料
[0044]
[0045]
[0046] 比较材料
[0047]
[0048] 测试方法
[0049] 热导率
[0050] 根据ASTM E-1530,用Unitherm型号2021保护的热流量计测量热导率值。在180℃下进行测量。在不使用任何界面流体/材料的情况下测量样品,以避免使用渗入电绝缘纸的多孔区域的界面流体/材料的任何潜在复杂性。在不使用界面流体的情况下,在热导率测量中将包括在测试板表面和样品材料表面之间的界面处的热损失,这可使得在此报告的所测量的热导率值低于实际固有材料的热导率。将较薄样品堆叠在一起,直到热阻处于仪器的校准范围内。发现购自杜邦高级纤维系统(DuPont Advanced Fibers Systems)(弗吉尼亚州里士满(Richmond,VA))的常规 Paper Type 410的热导率为0.10W/m-K,并且发现购自3M公司(明尼苏达州圣保罗(St.Paul,MN))的常规3MTM TufQUIN 110混合无机/有机绝缘非织造材料的热导率为0.18W/m-K。
[0051] 透气度
[0052] 使用得自高级测试仪器公司(Advanced Testing Instruments)(南卡罗来纳州格里尔(Greer,SC))的FX3300透气度测试仪III测量透气度值。
[0053] 另外的测试方法
[0054] 根据以下标准化测试程序测量另外的机械、电和物理特性。
[0055]
[0056] 非织造材料的制备
[0057] 示例性电绝缘非织造纤维材料是使用在本领域中已知的方法制造的,如下:
[0058] 根据表1中提供的组合物以及表2中提供的对应物理特性和机械特性,形成由拉伸的聚酯(PET)短纤维、双组分聚酯粘结剂纤维和/或未拉伸的PET粘结剂纤维的共混物组成的非织造纤维共混物。使纤维混合物通过梳理机,以产生具有介于24gsm至30gsm(克每平方米)的基重的非织造絮。然后将非织造絮通过钢制棉夹进行压延,其中钢辊被加热到介于362℉至385℉(185℃至196℃)之间的温度,并且辊隙压力介于300pLI至750pLI(磅/线性英寸)之间。
[0059] 可用于本发明的常规非织造材料的物理特性和机械特性在表3中提供。常规的聚酯非织造材料可包含购自3M公司(马萨诸塞州黑弗里尔(Haverhill,MA))的样式3050、样式2030和样式2025聚酯非织造材料。
[0060] 表1.示例性非织造垫的组成和压延条件
[0061]
[0062] 表2.表1的非织造垫的物理特性和机械特性
[0063]
[0064] 表3.常规聚酯非织造材料的物理特性和机械特性
[0065]
[0066] 浆料制备
[0067] 通过在实验室混合器中用三叶螺旋桨使填料颗粒、聚合物粘结剂和水共混来制备含水颗粒填充的浆料溶液。含水浆料的固体含量介于约40%与70%之间。就固体含量而言,浆料组合物提供于表4中。所使用的浆料S1-S11的胶乳粘结剂为 14145,而浆料S12的胶乳粘结剂为65wt%/35wt%的 14145/ 1405的共混物。
[0068] 表4.浆料组合物浆料组合物的固体含量(wt.%)
[0069]浆料ID hBN-5 hBN-3 hBN-6 ATH FS-20 W3N 粘土 胶乳粘结剂
S1 40     32     8 20
S2       32 40   8 20
S3     10   22 40 8 20
S4     20     40 20 20
S5     30     30 20 20
S6     20     40 20 20
S7     40     20 20 20
S8 40         20 20 20
S9 60     12     8 20
S10             80 20
S11           60 20 20
[0070] 非织造物饱和
[0071] 对于示例性颗粒填充的非织造垫SSN1-SN6和SN8-SN16,非织造垫浸渍在规定浆料中以使非织造垫饱和,并且然后手工拉入位于非织造片材的相对侧上的两个#20迈耶棒之间以控制涂层厚度。然后将饱和的非织造物置于140℃烘箱中约2分钟。
[0072] 实施例SN7在连续浆料浸渍和涂覆工艺中以3英尺/分钟的线速度使用辊张力控件、偏置迈耶棒和温度为130℃的36英寸长度传送烘箱区1和温度为182℃的区2制得。
[0073] 颗粒填充的非织造垫在约225℉至280℉和约900PLI辊隙压力下且以约5英尺/分钟的线速度在钢-钢辊隙之间压延。关于颗粒填充垫的细节提供于表5中。
[0074] 示例性颗粒填充垫SN17在连续浆料浸渍和涂覆工艺中使用偏置方形棒以约80英尺/分钟的线速度制得并且然后在约180℃下干燥约1分钟。
[0075]
[0076] 非织造/聚合物膜层合体制备
[0077] 使用迈耶棒(#20线号)将层合粘合剂(诸如ROBONDTM L-330/CR 9-101层合粘合剂,购自(陶氏化学公司(Dow Chemical Company),密歇根州米德兰(Midland MI))涂覆到聚合物膜的表面上,然后在实验室烘箱中在250℉(121℃)下干燥1分钟。然后在实验室热辊层合机(荞伊司国际有限公司(Chemsultants International))中在250℉(121℃)下并以5英尺/分将颗粒填充的非织造垫层层合到具有层合粘合剂的膜。重复该过程以将颗粒填充的非织造垫的第二层施加在聚合物膜的另一侧上,以产生颗粒填充的非织造垫/聚合物膜颗粒填充的非织造垫。
[0078] 示例性L10层合体在约225℉至280℉和约900PLI辊隙压力下并以约5英尺/分钟的线速度在钢-钢辊隙之间压延。
[0079] 一系列的示例性层合材料的结果提供于表6中。比较可商购获得的层合材料的特性提供于表7中。需注意,层合体层符号在层合构造中的每一层的以密耳为单位的标称层厚度上提供输入。
[0080]
[0081] 表7.比较层合材料的特性
[0082]