半导体装置转让专利

申请号 : CN201780096258.8

文献号 : CN111279476A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 江森健太林哲也

申请人 : 日产自动车株式会社

摘要 :

一种半导体装置,具有直接或间接地配置在平面部件上、且构成相互以具有时间差进行导通、断开动作的上臂以及下臂的至少三个半导体元件,各半导体元件的上面电压施加区域(3)构成为比该半导体元件整体的俯视的面积窄,以使构成上臂的半导体元件(1a)与(1b)之间的最短距离(L1)比构成上臂的半导体元件(1a)与构成下臂的半导体元件(2a)之间的最短距离(L2)长的方式,配置各半导体元件。

权利要求 :

1.一种半导体装置,其具有直接或间接地配置在平面部件上、且构成相互以具有时间差进行导通、断开动作的上臂以及下臂的至少三个半导体元件,其特征在于,各所述半导体元件的作为施加电压的区域的电压施加区域在从所述平面部件的法线方向的俯视下比半导体元件整体的面积窄,以使构成所述上臂以及下臂中的一方的臂的第一半导体元件与构成所述一方的臂的最近的第二半导体元件的端部之间的最短距离,比所述第一半导体元件与构成另一方的臂的最近的第三半导体元件的端部之间的最短距离长的方式,配置各半导体元件。

2.如权利要求1所述的半导体装置,其特征在于,构成所述上臂的半导体元件以及构成下臂的半导体元件分别设有两个以上,连结构成所述上臂的半导体元件的端部彼此之间最短的线与连结构成所述下臂的半导体元件的端部彼此之间最短的线相交叉。

3.如权利要求1或2所述的半导体装置,其特征在于,构成所述上臂的半导体元件以及构成所述下臂的半导体元件中的至少一方由纵向型半导体元件构成。

4.如权利要求1或2所述的半导体装置,其特征在于,各所述半导体元件仅由横向型半导体元件构成,且在所述平面部件的同一面上相接而配置。

5.如权利要求1~4中任一项所述的半导体装置,其特征在于,所述半导体元件具有MOS结构或HEMT结构,且包含碳化硅或氮化镓。

6.如权利要求1~4中任一项所述的半导体装置,其特征在于,所述上臂以及下臂串联连接,并具有:

第一主电极,其与串联连接的所述上臂以及下臂中的一方的端部连接,且连接到直流电源的高电位侧;

第二主电极,其与串联连接的所述上臂以及下臂中的另一方的端部连接,且连接到所述直流电源的低电位侧;

第三主电极,其与所述上臂和下臂之间的连接点连接,各所述半导体元件的电压施加区域与所述第一主电极、所述第二主电极、所述第三主电极中的至少两个连接,所述平面部件设置在所述半导体元件的与设有所述电压施加区域的面相反的面上,且与所述第二主电极电连接。

7.如权利要求6所述的半导体装置,其特征在于,所述平面部件呈矩形状,所述第一主电极以及第二主电极从所述平面部件的一侧边引出到外部,所述第三主电极从与所述一侧边相对的另一侧边引出到外部。

8.如权利要求6或7所述的半导体装置,其特征在于,所述第一主电极、第二主电极以及第三主电极的、从所述平面部件的法线方向的俯视的面积按照第二主电极、第一主电极、第三主电极的顺序依次由大变小。

9.如权利要求6~8中任一项所述的半导体装置,其特征在于,所述第二主电极在从所述平面部件的法线方向的俯视下与所述第一主电极以及所述第三主电极重叠。

10.如权利要求6~9中任一项所述的半导体装置,其特征在于,所述第一主电极、所述第二主电极、所述第三主电极以及所述半导体元件相互平行地配置,在与所述平面部件平行的方向的侧视中,在所述第二主电极与所述半导体元件之间设置有所述第一主电极以及第三主电极。

11.如权利要求6~10中任一项所述的半导体装置,其特征在于,各所述半导体元件具有连接部,

所述第一主电极、第二主电极以及第三主电极分别具有用于与该半导体装置的外部连接的连接端子,所述第一主电极、第二主电极以及第三主电极存在两个以上的从与所述半导体元件连接的连接部到达各自的连接端子的电流路径。

12.如权利要求6~11中任一项所述的半导体装置,其特征在于,所述半导体元件具有两个连接部,

所述第一主电极和第二主电极与所述两个连接部中成为所述平面部件的外周侧的一连接部连接,所述第三主电极与另一连接部连接。

13.如权利要求6~12中任一项所述的半导体装置,其特征在于,驱动所述第一主电极、第二主电极、第三主电极以及所述半导体元件的驱动电路设置在同一基板上。

14.如权利要求13所述的半导体装置,其特征在于,所述基板由印刷基板构成,在所述印刷基板的一面设置有所述半导体元件。

15.如权利要求1~14中任一项所述的半导体装置,其特征在于,还具有驱动构成所述上臂的半导体元件的第一驱动器IC、以及驱动构成下臂的半导体元件的第二驱动器IC,构成所述上臂的半导体元件和所述第二驱动器IC在从所述平面部件的法线方向的俯视下重叠,构成所述下臂的半导体元件和所述第一驱动器IC在所述俯视下重叠。

说明书 :

半导体装置

技术领域

[0001] 本发明涉及具有多个半导体元件的半导体装置,特别涉及降低半导体元件的热阻而抑制发热的技术。

背景技术

[0002] 例如,在专利文献1中公开了在并联连接两个系统的三相逆变器时,通过在各相中使构成一系统的上臂的模块与构成另一系统的下臂的模块相邻,将构成同一臂的模块配置为交错状,抑制构成逆变器的各半导体元件的温度上升。
[0003] 专利文献
[0004] 专利文献1:国际公开2008/111544号
[0005] 但是,在上述专利文献1中公开的现有例中,虽然配置成使构成上臂或下臂的模块之间的距离变长,但没有涉及在同一模块内的半导体元件的配置,存在无法进一步降低热阻的问题。

发明内容

[0006] 本发明是为了解决上述现有的课题而完成的,其目的在于提供一种能够进一步降低热阻的半导体装置。
[0007] 为了达到上述目的,本发明使各半导体元件的电压施加区域构成为比该半导体元件整体的俯视的面积窄,而且以使构成上臂以及下臂中的一方的臂的第一半导体元件与构成一方的臂的最近的第二半导体元件之间的最短距离,比所述第一半导体元件与构成另一方的臂的最近的第三半导体元件之间的最短距离长的方式,配置各半导体元件。
[0008] 发明效果
[0009] 本发明的半导体装置能够降低热阻。

附图说明

[0010] 图1是本发明的第一实施方式的半导体装置的四个半导体元件的俯视图。
[0011] 图2是图1所示的半导体元件的A-A’剖面图。
[0012] 图3是表示逆变器的一个相的上臂和下臂的电路图。
[0013] 图4是第一实施方式的半导体装置的俯视图。
[0014] 图5是图4所示的半导体装置的B-B’剖面图。
[0015] 图6是在图4所示的俯视图中标记了电流方向的说明图。
[0016] 图7A是表示用现有的方法配置了半导体元件时的热干扰的说明图。
[0017] 图7B是表示作为第一实施方式的半导体元件的配置时的热干扰的说明图。
[0018] 图8是在一个基板上设置了构成两个相的半导体元件的半导体装置的侧面方向的剖面图。
[0019] 图9是第二实施方式的半导体装置的侧面方向的剖面图。
[0020] 图10是第二实施方式的半导体装置的俯视图。
[0021] 图11是第三实施方式的半导体装置的四个半导体元件的俯视图。
[0022] 图12A是第三实施方式的半导体元件的俯视图。
[0023] 图12B是第三实施方式的半导体元件的背面图。
[0024] 图13是图11所示的半导体装置的C-C’剖面图。

具体实施方式

[0025] 以下,基于附图对本发明的实施方式进行说明。
[0026] [第一实施方式的说明]
[0027] 参照图1~图6说明本发明的第一实施方式。图1是表示第一实施方式的半导体装置中所设置的半导体元件的俯视图,图2是图1所示的半导体元件的A-A’剖面图,图3是表示逆变器的一个相的上臂、下臂的电路图。图4是表示在半导体元件中设置有具有电极的基板的结构的俯视图,图5是图4的B-B’剖面图,图6是表示在各电极间流动的电流的说明图。
[0028] 如图3所示,逆变器的一个相具备构成上臂的MOSFET(Q1)和构成下臂的MOSFET(Q2),各MOSFET(Q1)、(Q2)串联连接。例如,在3相逆变器中设置了如图3所示的三个系统的串联连接电路。
[0029] 在第一实施方式中,以各MOSFET(Q1)、(Q2)分别由两个半导体元件的并联连接而构成的情况为例进行说明。即,图1所示的四个半导体元件中,半导体元件1a、1b对应MOSFET(Q1),半导体元件2a、2b对应MOSFET(Q2)。各MOSFET(Q1)、(Q2)具有时间差而进行导通、断开动作。另外,在本实施方式中,对使用MOSFET作为逆变器的开关元件的示例进行说明,但也可以使用例如IGBT等其他的半导体开关。另外,图1所示的各半导体元件使用主电极设置在一主面,电流流动方向为横向的横向型半导体元件而构成。
[0030] 如图3所示,构成上臂的MOSFET(Q1)的漏极连接到例如直流电源(省略图示)的正极等成为高电位的第一主电极5,源极连接到作为输出电极的第三主电极7。另一方面,构成下臂的MOSFET(Q2)的漏极连接到第三主电极7,源极连接到直流电负极等成为低电位的第二主电极6。低电位例如是接地电位。即,两个上臂以及下臂串联连接,作为串联连接电路的一个端部的MOSFET(Q1)的漏极连接到第一主电极5,进而连接到直流电源的高电位侧。另外,作为另一个端部的MOSFET(Q2)的源极连接到第二主电极6,进而连接到直流电源的低电位侧。双方的连接点连接到第三主电极7。
[0031] 上臂的MOSFET(Q1)由图1所示的两个半导体元件1a、1b并联连接而构成。下臂的MOSFET(Q1)由两个半导体元件2a、2b并联连接而构成。当然,各MOSFET也可以由三个以上的半导体元件的并联连接而构成,或者MOSFET(Q1)由一个半导体元件构成,MOSFET(Q2)由两个半导体元件构成。只要设置上臂和下臂的合计为三个以上的半导体元件即可。
[0032] 如图1、图2所示,四个半导体元件1a、1b、2a、2b设置在呈矩形状的平面部件17的上面。其中,两个半导体元件1a、1b配置在对角的位置,剩余的两个半导体元件2a、2b也同样配置在对角的位置。即,构成上臂的MOSFET(Q1)的半导体元件1a、1b、以及构成下臂的MOSFET(Q2)的半导体元件2a、2b相互错开地配置(呈交错状)。进一步,如图4所示,以将连结构成上臂的半导体元件1a和1b的线S1与连结构成下臂的半导体元件2a和2b的线S2进行交叉的方式、配置各半导体元件。另外,各半导体元件1a、1b、2a、2b在平面部件17上相接而配置。
[0033] 另外,在构成各MOSFET(Q1)、(Q2)的半导体元件分别为三个的情况下,与图1所示的上臂的半导体元件1b相邻地设置下臂的半导体元件,与下臂的半导体元件2b相邻地设置上臂的半导体元件。也就是说,各三个半导体元件相互错开地配置。另外,在图1、图2中,表示各半导体元件直接连接到平面部件17上的例子,但也可以通过其他部件间接地连接。
[0034] 在半导体元件与平面部件17的连接中,可以使用焊锡或焊料等的直接接合或者润滑油脂等的间接接合的方法。也可以采用设置有冷却装置的结构,以使从半导体元件发出的热量通过平面部件17高效地释放。冷却方式可以是空冷也可以是水冷。可以是在平面部件17上安装省略图示的散热片的结构,也可以是在半导体元件的相反主面26上直接设置散热片的结构。进而,平面部件17也可以设置在一主面25侧,而不是设置在相反主面26侧。
[0035] 一主面25和相反主面26为绝缘或半绝缘状态。平面部件17可以是绝缘物,但是也可以作为导电性部件而与图3所示的高电位、输出电位、低电位(接地)电连接。
[0036] 进而,如图1、图2所示,在构成上臂的半导体元件1a、1b和构成下臂的半导体元件2a、2b的各元件上面(一主面25上)的中央部,形成有作为施加电压的区域的上面电压施加区域3。所谓“电压施加区域”,例如是MOSFET的源极区域、漏极区域,是通过直流电源施加直流电压而使电流流过的区域。MOSFET工作时,电流在电压施加区域流动而产生发热。各半导体元件是只在上面设置了电压施加区域的横向型半导体元件。然后,电流向横向(水平方向)流动,承担开关动作和回流动作。
[0037] 另外,上面电压施加区域3的面积小于半导体元件整体的俯视的面积。即,半导体元件的作为施加电压的区域的上面电压施加区域3构成为从平面部件17的法线方向的俯视下比半导体元件整体的面积窄。
[0038] 并且,如图4所示,各半导体元件的上面电压施加区域3与上述的第一主电极5、第二主电极6、第三主电极7中的至少两个连接。另外,如图2所示,各半导体元件的相反主面26与平面部件17相接。另外,虽然省略了图示,但平面部件17和第二主电极6也可以电连接。
[0039] 另外,各半导体元件可以分别单独使用仅进行开关或者仅进行回流的半导体元件。另外,也可以使用能够进行开关、回流这双方的半导体元件。
[0040] 优选半导体元件具有MOS结构或HEMT结构。另外,作为半导体元件的材料,优选为由Si(硅)、SiC(碳化硅)、GaN(氮化油)、其他构成的材料或其组合。
[0041] 另外,由于构成同一臂的各半导体元件相互错位地配置,构成同一臂的最近的半导体元件之间的距离比构成不同臂的最近的半导体元件之间的距离长。具体而言,图1所示的半导体元件1a与1b的端部之间的最短距离L1(同一臂的半导体元件的最短距离)比半导体元件1a与2a的端部之间的最短距离L2(不同臂的半导体元件的最短距离)长。
[0042] 即,以构成上臂的半导体元件1a(第一半导体元件)与构成上臂的最近的半导体元件1b(第二半导体元件)之间的最短距离(L1),比半导体元件1a与构成下臂的最近的半导体元件2a(第三半导体元件)之间的最短距离(L2)更长(L1>L2)的方式,配置各半导体元件。
[0043] 另外,与半导体元件整体的俯视(从平面部件17的法线方向的俯视)的面积相比,半导体元件所搭载的上面电压施加区域3的面积更窄。即,上面电压施加区域3形成在半导体元件的一主面25上的内侧。因此,上臂半导体元件1a所搭载的上面电压施加区域3与下臂半导体元件2a所搭载的上面电压施加区域3之间的最短距离L3(参照图1)成为双方的绝缘距离,“L3>L2”。因此,只要在必要的耐电压下设定最短距离L3即可,可以缩短半导体元件间的最短距离L2。
[0044] 另外,如图4、图5所示,在各半导体元件的一主面上设置有基板11。基板11和各半导体元件构成半导体模块10。基板11是内置了用于连接各半导体元件的第一主电极5、第二主电极6、第三主电极7的多层基板。基板11可以由印刷基板或LTCC(低温同时烧制陶瓷;Low Temperature Co-fired Ceramics)等形成,也可以包含各端子设置在印刷基板等上。另外,在图4中透视记载了第二主电极6,并且省略了图5中记载的填料9。
[0045] 如图4所示,第一主电极5设置在搭载各半导体元件的平面部件17的外周侧,由半导体元件1a的外周侧的连接部(一连接部)和端部5a连接,并且,由半导体元件1b的外周侧的连接部和端部5b连接。即,半导体元件1a、1b具有两个连接部,第一主电极5与两个连接部中成为平面部件17的外周侧的一方的连接部连接。然后,第一主电极5经由高电位输入端子22(连接端子)引出到外部。
[0046] 第三主电极7设置在平面部件17的内侧,通过端部7a~7d与各半导体元件的内侧的连接部(另一连接部)连接。即,第三主电极7通过端部7a与半导体元件1a的内侧的连接部连接,通过端部7b与半导体元件2a的内侧的连接部连接,通过端部7c与半导体元件2b的内侧的连接部连接,通过端部7d与半导体元件1b的内侧的连接部连接。然后,第三主电极7经由输出端子24(连接端子)引出到外部。
[0047] 第二主电极6以与第一主电极5、第三主电极7大致平行,并且在平面部件17的法线方向的俯视下覆盖(以重叠的方式)各半导体元件的方式配置在上方。然后,第二主电极6通过连接孔8与半导体元件2a的外周侧的连接部(一连接部)连接,并且通过连接孔8与半导体元件2b的外周侧的连接部连接。然后,第二主电极6经由低电位输入端子23(连接端子)引出到外部。主电极和端子可以是一块金属,也可以用焊锡等连接、组合多个金属而构成。
[0048] 高电位输入端子22和低电位输入端子23设置在同一侧边,其相反侧的侧边设置有输出端子24。即,第一主电极5和第二主电极6从呈矩形状的平面部件17的一侧边引出到外部,第三主电极7从与一侧边相对的另一侧边引出到外部。
[0049] 另外,使各主电极5、6、7形成为从平面部件17的法线方向俯视时的面积,按照第二主电极6、第一主电极5、第三主电极7的顺序依次由大变小。通过相对减小第三主电极7的面积,能够抑制电振动和寄生的浮游容量。第二主电极6在俯视下与第一主电极5和第三主电极7重叠而配置。
[0050] 如图5所示,上面电压施加区域3和各个主电极5、6、7经由连接孔8通过焊锡等电连接。并且,为了填埋连接区域的间隙而填充有树脂等的填料9,以确保连接周边的绝缘。进而,第一主电极5、第二主电极6、第三主电极7以及各半导体元件大致平行地配置。
[0051] 如图4所示,第一主电极5、第二主电极6以及第三主电极7分别存在两个以上的到达各连接端子的电流路径。具体而言,第一主电极5具有连接到端部5a的路径和连接到端部5b的路径这两个电流路径。第二主电极6具有连接到图4所示的两个连接孔8的两个电流路径。另外,第三主电极7具有连接到四个端部7a~7d的四个电流路径。
[0052] 另外,如图5所示,第一主电极5、第二主电极6、第三主电极7以及各半导体元件1、2在与平面部件17平行的方向的侧视中相互平行地配置。而且,在侧视中,在第二主电极6与半导体元件之间设置有第一主电极5和第三主电极7。
[0053] [第一实施方式的作用的说明]
[0054] 接着,对上述构成的第一实施方式的半导体装置的作用进行说明。如图1所示,构成上臂的两个半导体元件1a、1b相互错开地配置。因此,构成上臂的半导体元件1a与1b之间的最短距离L1比构成上臂的半导体元件1a与构成下臂的半导体元件2a之间的最短距离L2长。
[0055] 如现有那样,在没有相互错开地配置的情况下,即,如图7A所示,在使半导体元件1a和1b邻接、使半导体元件2a和2b邻接配置的情况下,发热区域的重叠范围变宽,从而产生较大的热干扰。即,如果将半导体元件1a、1b产生的发热区域分别设为R1、R2,则在图7A的情况下,发热区域R1、R2在较大范围内发生重叠。但是,图7B中几乎没有重叠。因此,可以理解,与现有的配置相比,能够降低热干扰,降低热阻。其结果是,能够有效地散热所发热的热量。
[0056] 另外,如图6所示,与第一主电极5连接的高电位输入端子22和与第二主电极6连接的低电位输入端子23从基板11的同一侧边引出。因此,电流向图中的箭头Y1以及Y2的方向流动,电流的流向成为相反流向。因此,产生互感,通过该互感能够降低寄生电感。
[0057] 另外,在两个相的同一臂之间可以使第一主电极5以及第二主电极6共通。图8是构成逆变器的两个相(第一相、第二相;例如,U、V、W中的U相和V相)由一个半导体模块构成时的侧面方向的剖面图。如图8所示,构成第一相的上下臂的半导体元件1a-1、2a-1以及构成第二相的上下臂的半导体元件1a-2、2a-2在横方向排列配置。在这样的结构中,使与半导体元件2a-1连接的第一主电极5和与半导体元件1a-2连接的第一主电极5共通化。关于第二主电极6也同样,通过设置连接孔8,能够使第一相和第二相的第二主电极6共通化。
[0058] [第一实施方式的效果的说明]
[0059] 第一实施方式的半导体元件能够达到如下所示的效果。
[0060] (1)由于构成上臂的半导体元件1a、1b与构成下臂的半导体元件2a、2b相互错开地配置,所以在不改变半导体元件的面积的情况下,能够隔开构成同一臂的半导体元件彼此之间的最短距离。因此,如图7B所示,能够降低热干扰,从而能够抑制半导体装置的发热。
[0061] 另外,由于使上面电压施加区域3(电压施加区域)的面积比半导体元件整体的俯视的面积更窄地构成(图1的L3>L2),因此,只要能够确保用于绝缘的最短距离L3,则可以缩短上下臂的元件之间的最短距离L2。因此,能够使半导体装置更小型化。
[0062] 即,一直以来,虽然以牺牲热阻为代价缩小上下臂之间的半导体元件的距离而试图实现小型化,但由于IGBT和MOSFET等纵向型结构的功率半导体元件的相反主面(背面)与元件的芯片尺寸相等,因此无法将上下臂之间的半导体元件的距离缩小到必要的绝缘距离以上。但是,在本实施方式中,能够使上下臂之间的元件间距离设为绝缘距离以下,因此,能够更加小型化。因此,在本实施方式中,能够同时实现降低热干扰以及小型化。
[0063] (2)连结构成上臂的半导体元件1a和1b之间的线与连结构成下臂的半导体元件2a和2b之间的线交叉。因此,能够在不扩大半导体模块10的面积的情况下,延长构成同一臂的半导体元件彼此之间的最短距离。因此,能够降低半导体元件间产生的热干扰,能够降低热阻。
[0064] (3)通过将半导体元件全部设为横向型半导体元件,能够使半导体元件的相反主面26与上面电压施加区域3绝缘,因此,能够使所有的半导体元件集中在平面部件17上的同一面上。因此,能够实现简单化、小型化,容易集成化。另外,通过使具有半导体元件的上面电压施加区域3的面的朝向一致,可增加配线等电连接的布局的自由度。另外,通过平面部件17有效地释放由各半导体元件产生的热量,能够抑制半导体装置的发热。
[0065] (4)通过使平面部件17与第二主电极6具有相同的电位,能够获得屏蔽效果。另外,在GaN等HEMT结构中具有电流崩塌问题的半导体元件中,能够发挥电解缓和的作用,能够减轻电流崩塌的问题。
[0066] (5)通过使用MOS结构以及HEMT结构等可以双向动作的半导体元件,就不需要像IGBT+二极管那样使用两种元件。另外,通过利用使用了SiC以及GaN等宽带间隙半导体的半导体元件,从而能够提供小型且低损失的半导体装置。
[0067] (6)由于使流向作为高电位的第一主电极5以及作为低电位的第二主电极6的电流以经由半导体元件而进行折返的方式流动,因此产生互感,利用该互感可以降低寄生电感。
[0068] (7)通过使各主电极5、6、7构成为按照第二主电极6、第一主电极5、第三主电极7的顺序面积依次由大变小,能够使具有输出侧电位的第三主电极7的面积相对变小,从而能够抑制电振动和寄生的浮游容量。
[0069] (8)通过使第二主电极6配置为覆盖第一主电极5和第三主电极7,能够获得屏蔽效果,进而,能够提高电极间的磁场强度,因此,能够通过互感的作用降低寄生电感。
[0070] (9)通过大致平行地配置各主电极5、6、7以及各半导体元件,能够提高互感和磁场强度,从而能够提高寄生电感的降低效果。其结果是,能够抑制半导体元件以及第三主电极7产生的噪声。
[0071] (10)通过使从各主电极5、6、7到达连接端子的电流路径存在两个以上,能够分散流向各主电极5、6、7的电流,从而能够降低发热。另外,由于能够使电流在多处经由半导体元件而折返流动(参照图6),因此能够进一步提高利用互感的寄生电感的降低效果。
[0072] (11)第一主电极5和第二主电极6与配置在平面部件17上的各半导体元件的外周侧的连接部连接,第三主电极7与内侧的连接部连接。因此,相互邻接的两个相的第一主电极5之间可以容易地共通化。如上所述的图8所示,半导体元件2a-1和1a-2可以容易地通过第一主电极5连接而实现共通化。因此,能够减小第一主电极5的必要面积,能够实现装置整体的小型化。或者,与一个相的情况相比,由于可以采用更宽的面积,因此提高了散热效率,可以使更大的电流流动。另外,由于第二主电极6也能够共通化,因此能够提高屏蔽2相整体的效果和电感的降低效果。并且,第三主电极7能够以比第一主电极5更小的面积构成,因此能够降低电振动和寄生的浮游容量。
[0073] (12)通过在同一基板11内设置各个主电极5、6、7,可以将各个主电极5、6、7与驱动电路集成。另外,因为能够缩短连结驱动电路和半导体元件之间的配线距离,所以能够使半导体元件更高速地动作。
[0074] (13)作为基板11,通过利用印刷基板等的量产性高的基板,能够确保绝缘性,并且能够容易地平行地配置各主电极5、6、7以及半导体元件。因此,薄型化、小型化变得容易,从而能够提高通用性、量产性。并且,能够相对于第一主电极5以及第二主电极6的平面平行地进行树脂密封、成形,因此,能够相对于第三主电极7维持精度高的平行度。因此,可以更有效地产生互感。
[0075] 如以上说明的那样,在第一实施方式的半导体装置中,能够改善以及同时实现小型化和低热阻化、低电感化和低热阻化各自的折中平衡。
[0076] 另外,在上述第一实施方式的半导体装置中,可以考虑如下所示的各种变更。例如,即使在更换第一主电极5、第二主电极6、第三主电极7各自的位置的情况下,通过考虑周围状况而进行配置,也能够获得降低寄生电感的效果。另外,在图1中表示了3相逆变器中的1相的上下臂的构成,在图8中表示了2相的上下臂的构成,但即使是3相以上,也能够获得同样的效果。
[0077] 而且,只要能够确保相互邻接的上面电压施加区域3彼此之间的绝缘所需的最短距离L3,上下臂之间的最短距离L2就可以为零,即上下臂之间的元件可以相接,在这种情况下,与现有相比,也可以降低热干扰。
[0078] 另外,本实施方式的半导体元件的形状为长方形,并表示了朝向长边方向配置不同的臂的半导体元件的例子,但即使在将半导体元件沿长方形的短边方向并排排列的情况下,也能够获得同样的效果。而且,在半导体元件为正方形的情况下也可以获得同样的效果。
[0079] 另外,在第一实施方式中表示了对每个上下臂各设置两个、合计共设置四个半导体元件的例子,但本发明不限于该例,即使上下臂的元件数增加、任意一方的臂的半导体元件设为一个的情况下也都能够获得降低热干扰的效果。例如,可以设置3行、3列的合计9个半导体元件,也可以将半导体元件的排列固定为2列,在行方向上增加数量。根据构成上下臂的半导体装置的要件以及逆变器的布局,可以进行适当变更。
[0080] 另外,在本实施方式中表示了将各半导体元件与同一平面部件17相接而设置的例子,但也可以经由其他部件间接地与平面部件17相接。进而,如果不在同一平面上而牺牲配线的复杂性,则即使在平面部件17的表面和背面都配置半导体元件,也能够获得降低热干扰、降低热阻的效果。
[0081] [第二实施方式的说明]
[0082] 接着,参照图9、图10对第二实施方式进行说明。图9是第二实施方式的半导体装置的侧面方向的剖面图,图10是图9的俯视图。如图9所示,与第一实施方式相比,第二实施方式的半导体装置在基板11内设置有第一驱动电路层18以及第二驱动电路层19这一点、以及设置有两个驱动器IC20、21这一点上不同。除此之外的结构与第一实施方式所示的图5相同,因此,施加相同的符号并省略结构说明。
[0083] 如图9所示,在基板11内的第二主电极6的上方设置有平板形状的第二驱动电路层19,并且在其上方设置有第一驱动电路层18。即,在同一基板11上设置有驱动第一主电极5、第二主电极6、第三主电极7以及半导体元件的驱动电路。
[0084] 第一驱动电路层18搭载有各种驱动电路。可以使第二驱动电路层19接地或者设为低电位。另外,在基板11的上面设置有用于驱动构成上臂的半导体元件1a、1b的上臂侧驱动器IC20(第一驱动器IC)、以及用于驱动构成下臂的半导体元件2a、2b的下臂侧驱动器IC21(第二驱动器IC)。此时,如图10所示,在构成下臂的半导体元件2a的上面设置有上臂侧驱动器IC20,在构成上臂的半导体元件1a的上面设置有下臂侧驱动器IC21。即,构成上臂的半导体元件和下臂侧驱动器IC21在俯视下重叠,构成下臂的半导体元件和上臂侧驱动器IC20在俯视下重叠。
[0085] 并且,在这样的结构中,也能够获得与上述第一实施方式同样的效果。进而,通过在构成下臂的半导体元件2a的上面设置用于驱动上臂的半导体元件1a、1b的上臂侧驱动器IC20,能够使从上臂侧驱动器IC20到各半导体元件1a、1b的距离均匀。同样地,通过在构成上臂的半导体元件1a的上面设置用于驱动下臂的半导体元件2a、2b的下臂侧驱动器IC21,能够使从下臂侧驱动器IC21到各半导体元件2a、2b的距离均匀。
[0086] 通过这样的结构,能够使从驱动器IC到各半导体元件的距离相等、最短,因此,能够高速地动作并联驱动的各半导体元件。
[0087] 现有那样从纵向或横向排列的各半导体元件到驱动电路的配线长度难以获取中心位置,存在配线长度不均匀、或者为了使长度一致而变长等问题。在本实施方式中,能够使向多个半导体元件的配线尽可能相等,同时能够缩短配线长度,因此,能够使并联驱动的半导体元件高速动作。
[0088] 另外,如果构成为在同一基板内集成化驱动电路和各主电极,则通过使第二驱动电路层19接地或设为低电位,能够分离驱动电路侧的弱电和主电极侧的强电,可获得屏蔽效果、以及降低噪声水平的效果。另外,在本实施方式中,如图9所示,表示了由第一驱动电路层18和第二驱动电路层19的两层构成的例子,但也可以由一层或三层以上构成。
[0089] 另外,在上述第二实施方式中,如果牺牲屏蔽效果,则也可以将具有第一驱动电路层18、第二驱动电路层19的基板、和具有各主电极5、6、7的基板形成为分别单独的基板。
[0090] [第三实施方式的说明]
[0091] 接着,对第三实施方式进行说明。图11是表示第三实施方式的半导体装置的结构的俯视图、图12A、图12B分别是用于半导体装置的纵向型半导体元件的俯视图以及背面图。图13是图11所示的C-C’剖面图。
[0092] 如图11所示,第三实施方式的半导体装置具有构成上臂的两个半导体元件31a、31b以及构成下臂的两个半导体元件32a、32b,各半导体元件设置在平面部件17上。另外,半导体元件31a、31b配置在对角的位置,半导体元件32a、32b也同样配置在对角的位置。即,构成上臂的半导体元件31a、31b与构成下臂的半导体元件32a、32b相互错开地配置。
[0093] 如图12A和12B所示,在各半导体元件31和32的上面(在一主面上)形成有栅极16和上面电压施加区域3,在背面(在相反主面)形成有下面电压施加区域4。半导体元件31、32在一主面以及相反主面双方都具有电压施加区域(上面电压施加区域3、下面电压施加区域4),并且各电压施加区域3、4的面积比半导体元件31、32的俯视的面积窄。然后,电流从一主面流向相反主面,或者从相反主面流向一主面。即,电流在纵向流动。
[0094] 另外,在图11中,表示了构成上臂的半导体元件31a、31b以及构成下臂的半导体元件32a、32b全部是纵向型半导体元件的例子,但也可以是将构成任意一个臂的半导体元件置换为横向型半导体元件,将纵向型和横向型组合而构成。
[0095] 另外,构成上臂的半导体元件31a、31b和构成下臂的半导体元件32a、32b的相反主面26分别具有下面电压施加区域4,需要对两者进行绝缘。因此,在相反主面26和平面部件17之间设置绝缘基板33以防止双方发生短路。
[0096] 并且,在第三实施方式的半导体装置中,与上述第一实施方式相同,构成上臂的半导体元件31a、31b与构成下臂的半导体元件32a、32b在平面部件17上相互错开地配置。因此,如图11所示,配置成使得构成上臂的半导体元件31a和31b之间的最短距离(第一半导体元件和构成一方的臂的最近的第二半导体元件之间的最短距离)比构成上臂的半导体元件31a和构成下臂的半导体元件32a之间的最短距离(第一半导体元件和构成另一方的臂的最近的第三半导体元件之间的最短距离)长。其结果是,与使同一臂的半导体元件相邻接的情况相比,能够降低热阻。
[0097] 另外,与各半导体元件31、32的面积(俯视的面积)相比,上面电压施加区域3和下面电压施加区域4的面积构成为较窄。因此,如图13所示,与构成上臂的半导体元件31a、31b和构成下臂的半导体元件32a、32b之间的最短距离L2相比,能够确保电压施加区域间的距离即绝缘距离L12更长。其结果是,在能够确保必要的电压施加区域间的距离的范围内,能够缩小绝缘距离L12,因此,与现有相比,能够降低热干扰,且能够同时实现小型化和热阻的降低。
[0098] 在图11中,虽然表示了四个半导体元件为纵向型半导体的例子,但是也可以将构成上臂和下臂中的任一臂的半导体元件设为纵向型半导体,而将构成另一臂的半导体元件设为横向型半导体而构成。
[0099] 在上述第三实施方式中,半导体元件的形状和配置方法不限于图11所示的例子,也可以是使用长方形状的半导体元件,或者相对于一个臂将三个以上的半导体元件相互错开地进行配置的结构。
[0100] 另外,如果半导体的种类使用MOSFET等可以双向流过电流的元件,则不需要像IGBT+二极管那样使用两种元件。另外,通过利用使用了SiC和GaN等宽带间隙半导体的半导体元件,能够提供更小型、更低损失的半导体装置。
[0101] 以上,虽然记载了本发明的实施方式,但是不应该理解为构成该公开的一部分的论述以及附图限定本发明。根据该公开,本领域的技术人员将明白各种替代实施方式、实施例和运用技术。
[0102] 符号说明
[0103] 1、31:上臂侧半导体元件
[0104] 2、32:下臂侧半导体元件
[0105] 3:上面电压施加区域
[0106] 4:下面电压施加区域
[0107] 5:第一主电极
[0108] 6:第二主电极
[0109] 7:第三主电极
[0110] 8:连接孔
[0111] 9:填料(树脂)
[0112] 10:半导体模块
[0113] 11:基板
[0114] 16:栅极
[0115] 17:平面部件
[0116] 18:第一驱动电路层
[0117] 19:第二驱动电路层
[0118] 20:上臂侧驱动器IC(第一驱动器IC)
[0119] 21:下臂侧驱动器IC(第二驱动器IC)
[0120] 22:高电位输入端子
[0121] 23:低电位输入端子
[0122] 24:输出端子
[0123] 25:一主面
[0124] 26:相反主面
[0125] 33:绝缘基板