一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法转让专利

申请号 : CN202010131789.X

文献号 : CN111300163B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李平段辉高王兆龙

申请人 : 湖南大学

摘要 :

本发明公开了一种离子束抛光的大面积单片集成Fabry‑Pérot腔滤色器制造方法,首先是准备一片衬底;然后,依次在衬底上沉积一定纳米厚度的底层金属层和电介质层薄膜;开展电介质层薄膜的单点驻留抛光试验研究以确定其离子束抛光工艺去除函数;采用栅格路径扫描法对电介质层薄膜开展不同扫描速度条件下的分区域加工;利用检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测并判别;在生成的微纳米台阶阵列结构上沉积一定纳米厚度的顶层金属层;最后,对制造的单片集成Fabry‑Pérot腔滤色器的光谱性能进行测试。本发明的加工方法不仅工艺简单、可操作性强,而且特别适用于单片集成Fabry‑Pérot腔滤色器的大面积、高效率、高精度及低成本可控制造。

权利要求 :

1.一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,其特征在于:首先准备一片衬底;然后,依次在衬底上沉积厚度在光学范围~100nm的底层金属层和厚度在光学范围~1000nm的电介质层薄膜;开展电介质层薄膜的单点驻留抛光试验以确定其离子束抛光工艺去除函数,并采用栅格路径扫描法对电介质层薄膜开展不同扫描速度条件下的分区域加工;通过电子束蒸发系统在已准备好的衬底材料上沉积厚度在光学厚度范围的底层金属层I;底层金属层I在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放;底层金属层I沉积完成后,采用光谱椭偏仪对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜对制得的底层金属层I的表面形貌进行观测;

通过电子束蒸发系统在底层金属层I上沉积厚度在光学厚度范围的电介质层薄膜材料;电介质层薄膜沉积完成后,采用光谱椭偏仪对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜对制得的电介质层薄膜的表面形貌进行观测;

再利用检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测,并判别其检测结果是否符合加工精度要求,若不符合则重新采用离子束抛光工艺对单个微纳米台阶进行修形加工;若符合则在生成的微纳米台阶阵列结构上沉积光学厚度范围~100nm厚度的顶层金属层,即可制造形成单片集成Fabry-Pérot腔滤色器;微纳米台阶阵列结构呈现阶跃式,具体实现过程如下:首先,在离子束抛光机床上开展电介质层薄膜单点驻留抛光试验,获取去除函数A(x,y);接下来,采用栅格路径扫描法对电介质层薄膜材料进行不同扫描速度条件下的分区域加工,即离子束以光栅扫描的方式在所界定的区域表面循环移动,最终形成不同高度的微纳米台阶阵列结构;最后,对制造的单片集成Fabry-Pérot腔滤色器的光谱性能进行测试。

2.根据权利要求1所述的一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,其特征在于:衬底的材料选择硅片或石英玻璃。

3.根据权利要求1所述的一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,其特征在于:采用轮廓仪、激光干涉仪及原子力显微镜对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测,并判别其检测结果是否符合加工精度要求:台阶高度误差≤±5nm,面形精度PV≤λ/10,表面粗糙度Ra≤1nm;若不符合,则根据检测结果重新采用离子束抛光工艺对单个微纳米台阶进行修形加工。

4.根据权利要求1所述的一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,其特征在于:单个微纳米台阶离子束修形加工中选取修形工艺参数,在离子束抛光机床上对检测结果不符合要求的单个微纳米台阶进行修形加工,修形加工完成后再次采用相关检测设备对其检测与评价。

5.根据权利要求1所述的一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,其特征在于:在生成的微纳米台阶阵列结构上沉积厚度在光学厚度范围的顶层金属层II,形成大面积单片集成Fabry-Pérot腔滤色器;顶层金属层II沉积完成后,采用光谱椭偏仪对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜对制得的顶层金属层II的表面形貌进行观测。

说明书 :

一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制

造方法

技术领域

[0001] 本发明属于微纳制造领域,尤其涉及一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造新工艺。

背景技术

[0002] 滤光片是用来选取所需辐射波段的一种光学器件,在超高分辨率成像、光学传感、光通信、光电系统、安防监控等国防安全及民用经济领域中得到了愈来愈广泛的应用。其中,单片集成Fabry-Pérot腔滤色器由于具有宽色域、高对比度及高光学应用效率等优点而受到国内外学者的普遍关注。
[0003] 单片集成Fabry-Pérot腔滤色器的核心单元为单片集成的阶跃式纳米台阶阵列结构,其制造工艺过程中最为关键的工艺在于该结构的高效率、高精度及低成本加工。现有阶跃式纳米台阶阵列结构的加工主要基于紫外光刻、像素化掩膜版光刻、电子束灰度曝光和电子束冰刻等光刻技术,以及光刻工艺和离子束刻蚀工艺相结合的套刻方法来完成。然而,上述光刻技术难以实现大面积和非抗蚀剂材料上的阶跃式纳米台阶阵列结构制作;套刻方法虽然能够实现大面积、高精度和非抗蚀剂材料上的阶跃式微纳米台阶阵列结构加工,但存在整体工艺复杂、掩膜版固化及加工成本过高等问题。例如,专利(申请号:200910207134.X)涉及了一种具有多波长处理功能的单片集成探测器阵列的制备方法,经过多次刻蚀工艺和二次外延生长工艺在GaAs基衬底上实现了多阶梯结构的Fabry-Pérot谐振腔结构。另外,专利(申请号:201410519408.X)和专利(申请号:201410519354.7)提出了一种高精度多台阶微透镜阵列的制作方法,一定程度上解决了现有方法对操作者和操作设备的制作精度要求高、成品率较低及成本高的问题。
[0004] 近年来,随着单片集成Fabry-Pérot腔滤色器的成像质量及大面积应用需求的日益提高,对单片集成的阶跃式纳米台阶阵列结构制造工艺提出了非常苛刻的要求,不仅要求纳米台阶高度精确可控加工,还要求加工效率、加工精度及加工成本同时兼顾。因此,亟需打破现有加工技术的思维定势,发掘具有潜在加工能力的新型微纳制造技术。
[0005] 目前,离子束抛光加工已发展成为超精密光学零件制造工艺链中的一种成熟工艺技术。该技术具有纳米尺度和纳米精度量级的制造能力,是一种高确定性、高稳定性和非接触的加工方式,不仅适用于现代光学中平面光学零件的超精密加工,而且在非球面、自由曲面、异型/薄型等难加工零件中具有巨大的应用市场。因此,将离子束抛光加工技术应用于单片集成的阶跃式纳米台阶阵列结构的加工,并结合高精度镀膜工艺,完全能够实现单片集成Fabry-Pérot腔滤色器的高效率、高精度及低成本可控制造,具有重要的工程应用价值。

发明内容

[0006] 本发明的目的是:
[0007] 针对单片集成Fabry-Pérot腔滤色器在制造工艺过程中存在的问题,开发一种适用于单片集成Fabry-Pérot腔滤色器的高效率、高精度及低成本可控制造新工艺,促进大面积结构色全彩滤光片器件的工程化应用。
[0008] 本发明所采取的技术方案是:一种离子束抛光的大面积单片集成Fabry-Pérot腔滤色器制造方法,首先准备一片高表面精度与高表面质量的衬底;然后,依次在衬底上沉积一定纳米厚度的底层金属层和电介质层薄膜;开展电介质层薄膜的单点驻留抛光试验以确定其离子束抛光工艺去除函数,并采用栅格路径扫描法对电介质层薄膜开展不同扫描速度条件下的分区域加工;再利用检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测,并判别其检测结果是否符合加工精度要求,若不符合则重新采用离子束抛光工艺对单个微纳米台阶进行修形加工;若符合则在生成的微纳米台阶阵列结构上沉积一定纳米厚度的顶层金属层,即可制造形成单片集成Fabry-Pérot腔滤色器;最后,对制造的单片集成Fabry-Pérot腔滤色器的光谱性能进行测试。
[0009] 具体技术方案包括以下几个关键点:
[0010] (1)衬底准备
[0011] 衬底的材料选择硅片或石英玻璃。为了保证微纳米台阶阵列结构高精度制造过程的可靠性与稳定性,需要对订制的大面积衬底材料的表面精度与表面质量提出一定要求。以尺寸为Φ50.8×2mm的硅片衬底和55mm×55mm×2mm的石英玻璃衬底为例,要求它们在全口径范围内的面形精度PV≤λ/10,表面粗糙度Ra≤1nm,同时表面不允许出现裂纹、划痕及凹坑等缺陷。
[0012] (2)底层金属层I沉积以及膜层厚度与形貌观测
[0013] 通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在已准备好的衬底材料上沉积厚度在光学厚度范围(~100nm)的底层金属层I。要求底层金属层I在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。底层金属层I沉积完成后,采用光谱椭偏仪(SE-VE)对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的底层金属层I的表面形貌进行观测。
[0014] (3)电介质层薄膜沉积以及膜层厚度与形貌观测
[0015] 通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在底层金属层I上沉积厚度在光学厚度范围(~1000nm)的电介质层薄膜材料。要求电介质层在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。电介质层薄膜沉积完成后,采用光谱椭偏仪(SE-VE)对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的电介质层薄膜的表面形貌进行观测。
[0016] (4)阶跃式微纳米台阶阵列结构加工
[0017] 首先,在离子束抛光机床上开展电介质层薄膜单点驻留抛光试验,获取去除函数A(x,y)。接下来,采用栅格路径扫描法对电介质层薄膜材料进行不同扫描速度条件下的分区域加工,即离子束以光栅扫描的方式在所界定的区域表面循环移动,最终可形成不同高度的微纳米台阶阵列结构。
[0018] (5)微纳米台阶阵列结构加工结果检测
[0019] 采用轮廓仪(PGI 1240,Taylor Hobson)、激光干涉仪(GPI(TM)XPD,Zygo)及原子力显微镜(MultiMode8,Bruker)等检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测,并判别其检测结果是否符合加工精度要求:台阶高度误差≤±5nm,面形精度PV≤λ/10,表面粗糙度Ra≤1nm。若不符合,则根据检测结果重新采用离子束抛光工艺对单个微纳米台阶进行修形加工。
[0020] (6)单个微纳米台阶离子束修形加工
[0021] 选取合适的修形工艺参数,在离子束抛光机床上对检测结果不符合要求的单个微纳米台阶进行修形加工,修形加工完成后再次采用相关检测设备对其检测与评价。
[0022] (7)顶层金属层II沉积以及膜层厚度与形貌观测
[0023] 在生成的微纳米台阶阵列结构上沉积厚度在光学厚度范围(~100nm)的顶层金属层II,形成大面积单片集成Fabry-Pérot腔滤色器。要求顶层金属层II在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。顶层金属层II沉积完成后,采用光谱椭偏仪(SE-VE)对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的顶层金属层II的表面形貌进行观测。
[0024] (8)大面积单片集成Fabry-Pérot腔滤色器光谱性能测试
[0025] 为了评价Fabry-Pérot腔滤色器的光谱响应特性,需要对反射或透射光谱进行测量。实验的反射或透射光谱可通过微区反射光谱测量系统测得,该系统是基于光学显微镜(MPlanFLN,Olympus)搭建而成并且能够实现高精度物体光谱采集的测试系统。然后,将测试结果与模拟光谱结果进行对比,分析加工工艺的精确度与稳定性。同时,依照国际照明委员会建立的CIE标准色度学系统,将获得的光谱数据转换成人类所能感知的颜色,为颜色数据库的建立提供数据支撑,并用来评价获得的结构色像素的显色性能。
[0026] 从上述技术方案可以看出,本公开提供的Fabry-Pérot腔滤色器制造方法,至少具有以下有益效果:
[0027] 1.大面积、高效率制造。现有的Fabry-Pérot腔滤色器制造方法加工出来的滤色器尺寸较小(通常在毫米量级以下),且加工效率比较低,无法实现大面积制造。相比较而言,离子束抛光采用光栅扫描模式的加工方式,材料去除速率较高,可实现单片集成Fabry-Pérot腔滤色器的纳米台阶阵列结构的大面积制造,滤色器宏观尺寸可达100mm,单个像素尺寸可达50μm。
[0028] 2.高精度制造。现有方法影响Fabry-Pérot腔滤色器制造精度的因素较多,如光子束加工过程中光强度不可控、掩膜版像素固化,电子束曝光存在邻近效应,离子束刻蚀去除材料确定性不足等,导致加工出来的纳米台阶阵列结构加工精度不足。相比较而言,离子束抛光具有确定性和稳定性,而且可针对加工精度不足的单个纳米台阶进行修行加工,因此较容易确保Fabry-Pérot腔滤色器的高精度制造。
[0029] 3.低成本制造。现有加工方法存在掩膜版定制成本较高,电子束光刻设备和聚焦离子束光刻设备昂贵,套刻方法整体工艺复杂、加工性价比低等问题,导致纳米台阶阵列结构加工成本较高,尤其在面向大面积Fabry-Pérot腔滤色器制造时尤为突出。

附图说明

[0030] 现在将描述如本发明的优选但非限制性的实施例,本发明的这些和其他特征、方面和优点在参考附图阅读如下详细描述时将变得显而易见,其中:
[0031] 图1是大面积单片集成Fabry-Pérot腔滤色器的制造工艺流程图。
[0032] 图2是大面积单片集成Fabry-Pérot腔滤色器的制造工艺示意图。
[0033] 图3是大面积单片集成Fabry-Pérot腔滤色器的阶跃式微纳米台阶阵列结构加工示意图。
[0034] 图4是大面积单片集成Fabry-Pérot腔滤色器的显色机理示意图。

具体实施方式

[0035] 下面结合附图对本发明的实施例做详细的说明,以下给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。以下的说明本质上仅仅是示例性的而并不是为了限制本公开、应用或用途。应当理解的是,在全部附图中,对应的附图标记表示相同或对应的部件和特征。本实施例包括:
[0036] 如图1所示:本发明首先是准备一片高表面精度与高表面质量的衬底;然后,依次在衬底上沉积一定纳米厚度的底层金属层和电介质层薄膜;开展电介质层薄膜的单点驻留抛光试验研究以确定其离子束抛光工艺去除函数,并采用栅格路径扫描法对电介质层薄膜开展不同扫描速度条件下的分区域加工;再利用检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测,并判别其检测结果是否符合加工精度要求,若不符合则重新采用离子束抛光工艺对单个微纳米台阶进行修形加工;在生成的微纳米台阶阵列结构上沉积一定纳米厚度的顶层金属层,即可形成单片集成Fabry-Pérot腔滤色器;最后,对制造的单片集成Fabry-Pérot腔滤色器的光谱性能进行测试。
[0037] 如图2所示:大面积衬底材料选用硅片或石英玻璃,其尺寸分别为Φ50.8×2mm和55mm×55mm×2mm,它们在全口径范围内的面形精度PV≤λ/10,表面粗糙度Ra≤1nm,同时表面不允许出现裂纹、划痕及凹坑等缺陷。通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在已准备好的衬底材料上依次沉积厚度在光学厚度范围(~100nm)的底层金属层I和在光学厚度范围(~1000nm)的电介质层薄膜材料。接下来,根据设计的纳米台阶阵列结构,在离子束抛光机床上采用栅格路径扫描法对电介质层薄膜材料进行不同扫描速度条件下的分区域加工,完成纳米台阶阵列结构的制作,要求台阶高度误差≤±5nm,面形精度PV≤λ/10,表面粗糙度Ra≤1nm。最后,在生成的微纳米台阶阵列结构上沉积厚度在光学厚度范围(~
100nm)的顶层金属层II,形成大面积单片集成Fabry-Pérot腔滤色器。金属层和介质层在沉积过程中,要求沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。
[0038] 如图3所示:在电介质层薄膜单点驻留抛光试验获取去除函数A(x,y)的基础上,确定等效的光栅扫描去除函数与对应的微纳米台阶高度,并对离子束抛光加工的工艺路径与扫描速度进行规划。然后,采用栅格路径扫描法对电介质层薄膜材料进行不同扫描速度条件下的分区域加工。下面以图中3×3微纳米台阶阵列结构加工为例进行详细说明。首先,如图3的(a)所示,对OX方向的3×1微纳米台阶阵列结构进行加工,离子束在区域X1、区域X2与区域X3的扫描进给速度分别为vx1、vx2与vx3,且它们之间存在如下关系:vx1vy2>vy3,从而在OX方向形成了3×1微纳米台阶阵列结构。OX方向与OY方向的3×1微纳米台阶阵列结构相互叠加,最终在电介质层薄膜表面形成了如图3的(c)所示的3×3微纳米台阶阵列结构。
[0039] 如图4所示:大面积单片集成Fabry-Pérot腔透射滤色器和Fabry-Pérot腔反射滤色器的显色机理分别如图4的(a)和图4的(b)所示,当白光光源入射该Fabry-Pérot腔滤色器表面时便会选择性的透过或反射所需的结构色。根据这一原理,采用微区反射光谱测量系统对大面积单片集成Fabry-Pérot腔滤色器的光谱性能进行测试,并将测试结果与模拟光谱结果进行对比,分析加工工艺的精确度与稳定性。同时,依照国际照明委员会建立的CIE标准色度学系统,将获得的光谱数据转换成人类所能感知的颜色,为颜色数据库的建立提供数据支撑,并用来评价获得的结构色像素的显色性能。
[0040] 本实施例以大面积单片集成Fabry-Pérot腔透射滤色器为加工对象。具体试验步骤如下:
[0041] (1)采用尺寸为55mm×55mm×2mm的石英玻璃作为衬底材料。为了保证微纳米台阶阵列结构高精度制造过程的可靠性与稳定性,需要对订制的大面积衬底材料的表面精度与表面质量提出一定要求:在全口径范围内的面形精度PV≤λ/10,表面粗糙度Ra≤1nm,同时表面不允许出现裂纹、划痕及凹坑等缺陷。
[0042] (2)底层金属层I选择金属Ag。通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在已准备好的衬底材料上沉积厚度为30nm的底层金属层I,在室温环境下,腔体真空压强低于6×10-6Torr时开始沉积,蒸发沉积速率为 要求金属层在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。底层金属层I沉积完成后,采用光谱椭偏仪(SE-VE)对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的底层金属层I的表面形貌进行观测。
[0043] (3)电介质层薄膜材料选择二氧化钛(TiO2)。通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在底层金属层I上沉积厚度为500nm的电介质层薄膜材料,在室温环境-7下,腔体真空压强低于6×10 Torr时开始沉积,蒸发沉积速率为 要求薄膜沉积过程中沉积速率稳定、薄膜厚度均匀且沉积后无表面应力释放。电介质层薄膜沉积完成后,采用光谱椭偏仪(SE-VE)对薄膜厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的电介质层薄膜的表面形貌进行观测。
[0044] (4)在电介质层薄膜单点驻留抛光试验获取去除函数A(x,y)的基础上,确定等效的光栅扫描去除函数与对应的微纳米台阶高度,并对离子束抛光加工的工艺路径与扫描速度进行规划。然后,采用栅格路径扫描法对电介质层薄膜材料进行不同扫描速度条件下的分区域加工。下面以图中3×3微纳米台阶阵列结构加工为例进行详细说明。首先,如图3的(a)所示,对OX方向的3×1微纳米台阶阵列结构进行加工,离子束在区域X1、区域X2与区域X3的扫描进给速度分别为vx1、vx2与vx3,且它们之间存在如下关系:vx1vy2>vy3,从而在OX方向形成了3×1微纳米台阶阵列结构。OX方向与OY方向的3×1微纳米台阶阵列结构相互叠加,最终在电介质层薄膜表面形成了如图3的(c)所示的3×3微纳米台阶阵列结构。
[0045] (5)对以上加工的3×3微纳米台阶阵列结构的加工结果为检测对象,采用轮廓仪(PGI 1240,Taylor  Hobson)、激光干涉仪(GPI(TM)XP  D,Zygo)及原子力显微镜(MultiMode8,Bruker)等检测装置对单个微纳米台阶的高度、面形精度和表面粗糙度进行检测。然后,判别其检测结果是否符合加工精度要求:台阶高度误差≤±5nm,面形精度PV≤λ/10,表面粗糙度Ra≤1nm。若不符合,则根据检测结果重新采用离子束抛光工艺对单个微纳米台阶进行修形加工。
[0046] (6)顶层金属层II选择金属Ag。通过电子束蒸发系统(Kurt J.Lesker,Lab-Line)在生成的微纳米台阶阵列结构上沉积厚度为30nm的顶层金属层II,在室温环境下,腔体真空压强低于6×10-6Torr时开始沉积,蒸发沉积速率为 要求金属层在沉积过程中沉积速率稳定、膜层厚度均匀且沉积后无表面应力释放。顶层金属层II沉积完成后,采用光谱椭偏仪(SE-VE)对膜层厚度进行测量,并对测量数据的沉积误差进行分析;采用场发射扫描电子显微镜(FESEM,Zeiss Sigma-HD)对制得的顶层金属层II的表面形貌进行观测。
[0047] (7)为了评价Fabry-Pérot腔透射滤色器的光谱响应特性,采用微区反射光谱测量系统对透射光谱进行测量。然后,将测试结果与模拟光谱结果进行对比,分析加工工艺的精确度与稳定性。同时,依照国际照明委员会建立的CIE标准色度学系统,将获得的光谱数据转换成人类所能感知的颜色,为颜色数据库的建立提供数据支撑,并用来评价获得的结构色像素的显色性能。