一种二胺单体及其制备方法、聚酰亚胺及其制备方法和应用转让专利

申请号 : CN202010423522.8

文献号 : CN111471036B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张艺龙禹波吴慧焱周竹欣蒋星刘四委池振国许家瑞

申请人 : 中山大学

摘要 :

本发明公开了一种二胺单体及其制备方法、聚酰亚胺及其制备方法和应用,并基于该发光结构单元,采用高分子室温缩聚合成方法制备得到一类新型热致延迟荧光(TADF)聚酰亚胺高分子材料,此类聚酰亚胺具有优异的可溶性、较高的玻璃化转变温度和热稳定性。进一步以此高分子为发光层,通过简单的溶液旋涂方式,制备得到器件性能优异的有机发光器件。本发明方法具有极高的步骤经济性和原子经济性,实验方法操作简单、设计难度低、组合方式多样和反应区域选择性好是主要特点。

权利要求 :

1.一种二胺单体,其特征在于,分子结构通式为:式中,M选自独立的化学键单键、‑S‑、‑O‑、 基团中的一种,R1和R2分别选自H、甲氧基、烷基或二烷基胺中的一种。

2.一种根据权利要求1所述的二胺单体的制备方法,其特征在于,包括以下步骤:(1)将含有M、R1和R2结构的单胺单体与二氟二苯酮,在碱性环境中反应,得到单取代氟化二苯甲酮化合物;

(2)步骤(1)制备的单取代氟化二苯甲酮衍生物进一步和3,6‑二溴咔唑或2,7‑二溴咔唑,在含有等当量碱的DMF分散液中反应得到双取代溴化二苯甲酮化合物;

(3)步骤(2)制备的双取代溴化二苯甲酮化合物和氨基苯硼酸盐酸盐通过suzuki反应,在有机溶剂和碱性水溶液混合溶剂中催化苯硼酸偶联反应,制备得到所述的二胺单体;

步骤(1)中,M为独立的化学键单键、‑S‑、‑O‑或 R1和R2为H、甲氧基、烷基或二烷基胺。

3.一种含有权利要求1所述二胺单体的具有热致延迟荧光性能的聚酰亚胺高分子,其特征在于,分子结构通式如下:

式中,n和m表示聚合度,n/m=1/99‑100/0,X、W为四价的芳香族烃基或脂肪族烃基,Z为二价的芳香族烃基或脂肪族烃基,Y为所述二胺单体。

4.根据权利要求3所述的聚酰亚胺高分子,其特征在于,Z选自以下结构:X、W选自以下结构中的一种:

5.一种根据权利要求3或4任一项所述的聚酰亚胺高分子的制备方法,其特征在于,包括以下步骤:在氮气或氩气氛围中,将含有Y结构的二胺单体或者同时含有Y和Z结构的混合二胺单体与含X结构的二酐或同时含X和W结构的混合二酐单体,按照摩尔比为1:(1~1.2)的比例溶解于极性非质子型溶剂中,在‑10℃~30℃条件下,持续搅拌反应24~48h,得聚酰胺酸粘稠液,经化学酰亚胺化法或热酰亚胺化法,即可得到通式如(一)的聚酰亚胺高分子。

6.根据权利要求5所述的聚酰亚胺的制备方法,其特征在于,含有Y结构的二胺单体或者含有Y和Z结构的混合二胺单体与含X结构的二酐单体或者含X和W结构的二酐单体总质量占反应物料总质量的5~50%。

7.根据权利要求5所述的聚酰亚胺的制备方法,其特征在于,所述非质子型极性有机溶剂选自N‑甲基吡咯烷酮、N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜、环丁砜、间甲酚和四氢呋喃的一种或两种以上混和溶剂。

8.一种根据权利要求3‑4任一项所述的聚酰亚胺在有机光电二极管或光信息储存器件材料中的应用。

9.一种包含权利要求3‑4任一项所述的聚酰亚胺的有机发光器件,其特征在于,包括:第一电极,第二电极和夹在第一电极和第二电极之间的发光层,所述发光层包括分子结构通式为(一)的聚酰亚胺。

10.根据权利要求9所述的有机发光器件,其特征在于,在第一电极和第二电极之间还包括空穴注入层、空穴传输层、空穴阻挡层、电子阻挡层电子传输层和电子注入层的至少一层。

说明书 :

一种二胺单体及其制备方法、聚酰亚胺及其制备方法和应用

技术领域

[0001] 本发明属于有机光电高分子领域,具体涉及一种二胺单体及其制备方法、聚酰亚胺及其制备方法和应用。

背景技术

[0002] 随着有机半导体技术的发展,对信息材料收集、储存、处理和传递信息能力的要求越来越高。与传统的无机材料相比,有机材料因其具有体积小、结构可设计性强、易于制备、
价格低廉且具有很好的柔韧性、更易制备大面积和可折叠的电子器件等优点,受到广泛关
注。自1987年,邓青云博士(Appl.Phys.Lett.,1987,51,913.)利用真空蒸镀法制备由有机
小分子和金属薄膜构成的层状有机发光二极管(OLED),获得了具有较好发光效率和较低驱
动电压的有机电致发光器件,开创了层状结构有机电致发光的基本模型,充分显示出OLED
显示技术具有全固化自发光、柔性可折叠、余旋辐射广视角、几乎无穷高的对比度、较低耗
电、极高反应速度以及无放射性和高能辐射等优点(Rev.Mod.Phys.,2013,85,1245;
Chem.Rev.,2016,116,13279;Chem.Mater.,2004,16,4413;Adv.Funct.Mater.,2016,26,
2545;Adv.Funct.Mater.,2016,26,776.),为有机光电器件奠定了良好的基础。
[0003] 常用于制备有机发光分子器件的方法包括:热蒸发蒸镀法、溶液旋涂加工法和喷墨打印法等。有机小分子发光器件通常主要采用真空蒸镀法进行器件制备,是当今OLED主
流制备工艺,但由于蒸镀过程复杂、时效性差,一方面,有机小分子良好自结晶性能,随着时
间的延长,自结晶过程容易破坏薄膜平整性和传输性能;另一方面,在溶液加工过程中很难
得到性能均一的薄膜。因此具有高效简便、低成本等优点的溶液加工方式成为研究热点。高
分子聚合物发光器件则通常采用溶液旋涂加工法和喷墨打印法进行器件制备,主要归因于
高分子良好的成膜特性、较差的自结晶性、薄膜结构稳定性和薄膜热力学稳定性,可适用于
制备大面积、透明、柔性可穿戴器件。因此,制备具有优良膜结构稳定性的电致发光层尤为
重要。
[0004] 2016年,Adachi课题组(Adv.Mater.,2016,28,4019.)通过Suzuki反应聚合制备了一系列新型交替D‑A型TADF高分子,以该高分子为发光材料,制备的掺杂型OLEDs器件发射
绿光,最大外量子效率(EQE)可达9.3%。Huang课题组(J.Mater.Chem.C,2018,6,2690.)将
缺电子二苯砜单体和富电子氨基衍生物交替共聚制备了PTSn系列蓝光高分子。通过溶液旋
涂制备得到的掺杂器件外量子效率较低,仅为5.3%,但其蓝光发射光谱纯度和美国国家电
视标准委员会(NTSC)标准极为接近。Nikolaenko课题组(Adv.Mater.,2015,27,7236.)最早
合成了主链含有TADF发光单元的新型可溶性非共轭高分子材料,由供体单元和受体单元经
Suzuki反应缩聚而成,其器件外量子效率可达10.1%。Bryce等(Macromolecules,2016,49,
5452.)首次将不同比例的苯乙烯和V‑PTZ‑DBTO2单体共聚得到TADF发光高分子,器件效率
‑2 ‑2
表现良好,最大外量子效率可达20.1%,但其效率滚降明显,100cdm 和1000cdm 处效率分
别5.5%和1.8%。这些TADF高分子材料虽然作为电致发光层制备得到电致发光器件,并取
得一定的外量子效率,但是局限性较大。其一,共轭高分子主链结构单一,共轭主链三线态
能级往往偏低,不能有效抑制能量耗散,难以获得蓝光器件;此外,虽然能够制备得到高外
量子效率发光器件,但是很难进行光谱调节,发光颜色较单一;其次,共轭高分子溶解性较
差,在共轭高分子设计过程中,必须引入柔性烷基燕尾链才能提升高分子溶解性。在一定程
度上,燕尾链较大程度上降低了共轭高分子溶解性;再者,受高分子主链聚合度影响较大,
不同聚合度所得光谱差异性较大,发光色纯度往往难以控制。其二,当前用于电致发光材料
的非共轭高分子通常为柔性高分子聚合物,虽然可以很大程度上提高三线态能级,但其传
输性能较差,高分子制备过程复杂,需要金属催化剂参与反应,金属催化剂后期难以完全除
去。不论无机材料还是有机材料,外来杂质对器件结构性能影响很大,对聚合物材料来说,
不仅存在外来杂质的影响,其内部存在的微观结构缺陷同样会产生大量电荷陷阱,陷阱的
存在易引起空间电荷局部累积,进而诱发局部放电和电老化。再者,其耐热性、高分子结构
稳定性以及抗老化性均难以和刚性聚合物相媲美,而这些指标对光电器件尤为重要。因此,
开发一种制备过程简单、普适范围广的新型热致延迟荧光(TADF)材料显得很有必要。
[0005] 聚酰亚胺(Polyimide,PI)是指主链上含有酰亚胺环(‑CO‑N‑CO‑)的一类高性能聚合物,主要由二胺和二酐缩聚而成。1955年DuPont公司申请了国际上首项专利,随后深入研
究并开发了一系列PI材料,聚酰亚胺才开始进入蓬勃发展的时代。由于PI具有优良的热性
能、机械性能、电学性能、尺寸稳定性和结构的可设计性,使得其在有机电存储、非线性光学
材料、液晶显示取向膜材料、液晶显示的相位差补偿膜材料、电致发光二极管等有机电子器
件领域有了长足的发展。通过合理设计具有TADF性能和良好传输性能的二胺,并调节不同
功能结构二胺单体的组成比例,与脂肪性二酐通过简单的室温缩聚方法,可聚合得到具有
TADF性能的聚酰亚胺材料,赋予聚酰亚胺高分子电致发光特性,拓展其在OLED领域的应用。

发明内容

[0006] 本发明的主要目的是提供一种二胺单体及其制备方法、聚酰亚胺及其制备方法和应用。通过调节和选择合理的单体分子结构,可以赋予聚合物材料不同亮度和外量子效率。
目标单体可以和商业化二胺和二酐进行均聚,得到的聚酰亚胺材料具有良好的热学性能和
电致发光性能。
[0007] 本发明的技术方案之一,一种二胺单体,分子结构通式为:
[0008]
[0009] 式中,M选自独立的化学键单键、‑S‑、‑O‑、 烷基基团中的一种,R1和R2分别选自H、甲氧基、烷基、芳环或二烷基胺中的一种。
[0010] 优选的,式中 选自以下结构中的一种:
[0011]
[0012] 优选的,R1和R2分别选自以下结构中的一种:
[0013]
[0014] 本发明的技术方案之二,上述的二胺单体的制备方法,包括以下步骤:
[0015] (1)将含有M、R1和R2结构的单胺单体与二氟二苯酮,在碱性环境中反应,得到单取代氟化二苯甲酮化合物;
[0016] (2)步骤(1)制备的单取代氟化二苯甲酮衍生物进一步和3,6‑二溴咔唑或2,7‑二溴咔唑,在含有等当量碱的DMF分散液中反应得到双取代溴化二苯甲酮化合物;
[0017] (3)步骤(2)制备的双取代溴化二苯甲酮化合物和氨基苯硼酸盐酸盐通过suzuki反应,在有机溶剂和碱性水溶液混合溶剂中催化苯硼酸偶联反应,制备得到所述的二胺单
体。
[0018] 优选的,步骤(1)中使用无水四氢呋喃作为溶剂,碱性环境为氢化钠或叔丁醇钾环境,步骤(2)中使用无水N,N’‑二甲基甲酰胺作溶剂,碳酸铯作为碱,步骤(3)中分析纯四氢
呋喃作为溶剂,反应碱溶液为2M的碳酸钾或乙酸钾水溶液。
[0019] 本发明的技术方案之三,一种含有上述二胺单体的具有热致延迟荧光性能的聚酰亚胺高分子,分子结构通式如下:
[0020]
[0021] 式中,n和m表示聚合度,n/m=1/99‑100/0,X、W为四价的芳香族烃基或脂肪族烃基,Z为二价的芳香族烃基或脂肪族烃基,Y为所述二胺单体。
[0022] 优选的,Z选自以下结构:
[0023]
[0024] 优选的,X、W选自以下结构中的一种:
[0025]
[0026] 本发明的技术方案之四,上述聚酰亚胺高分子的制备方法,包括以下步骤:在氮气或氩气氛围中,将含有Y结构的二胺单体或者同时含有Y和Z结构的混合二胺单体与含X结构
的二酐或同时含X和W结构的混合二酐单体,按照摩尔比为1:(1~1.2)的比例溶解于极性非
质子型溶剂中,在‑10℃~30℃条件下,持续搅拌反应24~48h,得聚酰胺酸粘稠液,经化学
酰亚胺化法或热酰亚胺化法,即可得到通式如(一)的聚酰亚胺高分子。
[0027] 优选的,在氮气或氩气氛围中,将含有Y结构的二胺单体或者同时含有Y和Z结构的混合二胺单体与含X结构的二酐或同时含X和W结构的混合二酐单体,按照摩尔比为1:1.02
的比例溶解于极性非质子型溶剂中;最佳反应温度为‑10℃。
[0028] 聚酰胺酸粘稠液经化学酰亚胺化法制备得到聚酰亚胺高分子,其光量子效率良好,经热酰亚胺化法制备得到聚酰亚胺高分子,其光量子效率相对化学酰亚胺化法低,主要
归因于热酰亚胺化需要经历350℃高温处理1h,在不能保证绝对真空的条件下,少量氧气和
水的存在,容易对高分子发光单元造成影响,因此,化学酰亚胺化法更佳。
[0029] 优选的,聚合物的数均分子量为100000Da到150000Da。当数均分子量过大时,对于部分聚酰亚胺高分子溶解性能降低,采用聚合物的发光层制造变得困难。
[0030] 优选的,所述含有Y结构的二胺单体或者含有Y和Z结构的混合二胺单体与含X结构的二酐单体或者含X和W结构的二酐单体总质量占反应物料总质量的5~50%;
[0031] 优选的,所述非质子型极性有机溶剂选自N‑甲基吡咯烷酮、N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜、环丁砜、间甲酚和四氢呋喃的一种或两种以上混和溶剂;
[0032] 优选的,所述化学酰亚胺化的具体步骤为:在聚酰胺酸粘稠液中加入脱水剂和催化剂,室温搅拌24~40h,之后倒入乙醇或四氢呋喃中得到聚酰亚胺沉淀,过滤干燥,即得聚
酰亚胺粉体;
[0033] 本发明的技术方案之五,上述聚酰亚胺在有机光电二极管或光信息储存器件材料中的应用;
[0034] 本发明的技术方案之六,一种包含上述聚酰亚胺的有机发光器件,包括:第一电极,第二电极和夹在第一电极和第二电极之间的发光层,所述发光层包括分子结构通式为
(一)的聚酰亚胺;
[0035] 优选的,在第一电极和第二电极之间还包括空穴注入层、空穴传输层、空穴阻挡层、电子阻挡层电子传输层和电子注入层的至少一层。
[0036] 优选的,所述包含上述聚酰亚胺的有机发光器件选自以下结构中的一种:
[0037] 第一类:第一电极/空穴注入层/发光层/电子传输层/电子注入层/第二电极结构;
[0038] 第二类:第一电极/空穴注入层/发光层/空穴阻挡层/电子传输层/电子注入层/第二电极结构;
[0039] 与现有技术相比,本发明具有以下有益效果:
[0040] 根据本发明的包括Y结构单元的聚酰亚胺显示出高PL量子效率。与传统的聚合物有机发光器件相比,根据本发明的聚酰亚胺制备的有机发光器件在效率上和亮度上具有改
善的发光特性。
[0041] 聚酰亚胺的玻璃化转变温度可以高达300℃到350℃。通常而言,当玻璃化转变温度低于120℃时,器件耐热性低,相比于其它大多数高分子,如聚乙烯类高分子,当玻璃化转
变温度高于200℃时,聚合期间单体易发生断裂而言,本发明所得高分子具有明显优势。

附图说明

[0042] 图1是本发明实施例1制备的聚酰亚胺的红外光谱图。从图中可以清晰看出,在‑1 ‑1
1729cm 和1791cm 处酰亚胺环上的羰基非对称和对称伸缩振动吸收峰,表明聚酰亚胺高
分子的形成。
[0043] 图2是本发明实施例1制备的聚酰亚胺的热失重曲线图;
[0044] 图3是本发明实施例1制备的聚酰亚胺的变温寿命图谱图;
[0045] 图4是本发明实施例1有机光电器件结构的界面图;
[0046] 图5是本发明实施例6制备的透明薄膜的紫外可见光投射性能图。
[0047] 具体实施例方式
[0048] 现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
[0049] 应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
[0050] 另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围
内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立
地包括或排除在范围内。
[0051] 除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的
实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所
有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的
文献冲突时,以本说明书的内容为准。
[0052] 在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实
施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
[0053] 实施例1
[0054] 利用吩噻嗪和4,4’‑二氟二苯酮通过亲核取代反应得到4‑氟‑4’‑吩噻嗪二苯甲酮化合物,进一步和3,6‑二溴咔唑反应得到双取代二苯甲酮化合物,最后与4‑氨基苯硼酸盐
酸盐通过suzuki反应得到含有Y结构的目标二胺单体,具体如下:
[0055] 在室温下,将5g(25.1mmol)吩噻嗪和1.2g(30.1mmol,60wt.%inkerosene)氢化钠溶解于无水四氢呋喃中,氮气氛围下反应30min后,快速加入5.47g(25.1mmol)4,4’‑二氟二
苯酮,继续反应24h后,加入5mL稀盐酸终止反应,柱层析法分离得目标产物4‑氟‑4’‑吩噻嗪
1
二苯甲酮化合物。HNMR(400MHz,DMSO‑d6,δ):7.89–7.75(m,4H),7.46–7.33(m,4H),7.33–
7.22(m,4H),7.22–7.14(td,J=7.6,1.2,2H),7.12–7.04(dd,J=8.0,1.2,2H).
[0056] 将4g(10.1mmol)4‑氟‑4’‑吩噻嗪二苯甲酮化合物和3.27g(10.1mmol)3,6‑二溴咔唑溶解于20mL无水N,N’‑二甲基甲酰胺中,加入4.92g碳酸铯,于150℃,氮气氛围下反应
24h,对水沉降,过滤取滤饼,用乙醇和乙酸乙酯洗涤,即得目标产物双取代二苯甲酮化合
1
物。HNMR(400MHz,DMSO‑d6,δ):8.67–8.56(s,2H),8.06–7.97(m,2H),7.95–7.85(d,J=
8.3,2H),7.86–7.77(m,2H),7.67–7.56(dt,J=8.8,1.6,2H),7.53–7.38(dd,J=15.0,8.1,
4H),7.39–7.24(dt,J=12.2,8.0,4H),7.24–7.10(m,4H).
[0057] 将4g(5.7mmol)双取代二苯甲酮化合物溶于100mL四氢呋喃中,氮气氛围下,加入催化当量的四三苯基膦钯(5wt.%),于室温搅拌10min,加入30mL2M碳酸钾溶液,继续搅拌
10min,最后加入2.46g4‑氨基苯硼酸盐酸盐,于85℃反应24h。柱层析法分离得目标产物含
1
有Y结构的目标二胺单体。HNMR(400MHz,DMSO‑d6,δ):8.58–8.53(d,J=1.8,2H),8.09–
8.02(m,2H),7.96–7.90(m,2H),7.91–7.85(m,2H),7.69–7.64(dd,J=8.7,1.9,2H),7.60–
7.55(d,J=8.6,2H),7.55–7.49(m,4H),7.47–7.42(dd,J=7.7,1.5,2H),7.35–7.27(m,
4H),7.22–7.16(td,J=7.6,1.3,2H),7.15–7.10(dd,J=8.1,1.3,2H),6.73–6.67(m,4H),
5.23–5.12(s,4H).
[0058] 在‑10℃下,氩气保护下,将4.0g(5.5mmol)含有Y结构的目标二胺单体和4.9g(22.0mmol)4,4’‑二氨基二苯醚溶解于48mL无水N,N’‑二甲基甲酰胺中,待完全溶解后,加
入5.6g(28.0mmol)氢化均苯四甲酸酐,低温持续搅拌30h后,获得均相、透明、粘稠的聚酰亚
胺酸溶液。将18.78mL乙酸酐和7.51mL吡啶加入所得粘稠液中,继续搅拌30h后,将所得聚酰
亚胺溶液缓慢倒入1L乙醇中,得到块状沉淀,并用四氢呋喃索氏提取24h,烘干即得最终目
标高分子PI‑1。
[0059] 该聚合物5%热失重温度为520℃,玻璃化转变温度为328℃。PI‑1在N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有机溶剂中有较好溶解性。其红外谱图
如图1所示,热失重曲线如图2所示。
[0060] 图3进一步表征证实,PI‑1具有明显TADF特性,可用于光电器件的制备。因此,将上述制备的PI‑1配制成10mg/mL的DMF溶液,再加入10mg9,9'‑(1,3‑苯基)二‑9H‑咔唑,溶解充
分后低温保存。将ITO玻璃片依次用去离子水、异丙醇、丙酮洗涤,干燥待用。将PEDOT:PSS水
溶液旋涂在ITO玻璃上,以2000r/s得转速,旋涂60s,于120℃加热30min,除去残留溶剂;待
降至室温后,将上述PI‑1DMF溶液旋涂于其上,转速控制在2000r/s,旋涂时间为60s,150℃
加热30min。冷却后转移至蒸镀仓,依次蒸镀DPEPO、TPBi、LiF和Al,制得第二类器件,其具体
结构为ITO/PEDOT:PSS/PI:mCP/DPEPO/TPBi/LiF/Al,其剖面结构如图4所示。
[0061] 所得器件开启电压为5.0V,最大流明亮度可达5000cd/m2,最大外量子效率高达7.3%。
[0062] 本实施例中的电致发光性能聚酰亚胺(PI‑1)的分子结构式如下:
[0063]
[0064] 实施例2
[0065] 含有Y结构的目标二胺单体的制备过程同实施例1;
[0066] 在‑10℃下,氩气保护下,将4.0g(5.5mmol)含有Y结构的目标二胺单体和4.9g(22.0mmol)4,4’‑二氨基二苯醚溶解于48mL无水N,N’‑二甲基甲酰胺中,待完全溶解后,加
入5.6g(28.0mmol)氢化均苯四甲酸酐,低温持续搅拌30h后,获得均相、透明、粘稠的聚酰亚
胺酸溶液。将粘液倒于玻璃板上,流延至均匀厚度后转移至真空烘箱中,抽真空30min,按照
80℃、‑150℃、‑250℃、‑350℃程序升温,至充分热酰亚胺化,得完整聚酰亚胺自支撑薄膜
PI‑1,该聚合物5%热失重温度为520℃,玻璃化转变温度为328℃。PI‑1在N,N’‑二甲基甲酰
胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有机溶剂中有较好溶解性。
[0067] 将上述制备的PI‑1配制成10mg/mL的DMF溶液,再加入10mg9,9'‑(1,3‑苯基)二‑9H‑咔唑,溶解充分后低温保存。将ITO玻璃片依次用去离子水、异丙醇、丙酮洗涤,干燥待
用。将PEDOT:PSS水溶液旋涂在ITO玻璃上,以2000r/s得转速,旋涂60s,于120℃加热30min,
除去残留溶剂;待降至室温后,将上述PI‑1DMF溶液旋涂于其上,转速控制在2000r/s,旋涂
时间为60s,150℃加热30min。冷却后转移至蒸镀仓,依次蒸镀DPEPO、TPBi、LiF和Al,制得第
二类器件,具体结构为ITO/PEDOT:PSS/PI:mCP/DPEPO/TPBi/LiF/Al。
[0068] 所得器件开启电压为4.2V,最大流明亮度可达4000cd/m2,最大外量子效率高达5.2%。但是相比化学酰亚胺化法而言,高温氧气氧化影响了制备的聚酰亚胺的最大流明亮
度和最大外量子效率。
[0069] 本实施例中的电致发光性能聚酰亚胺(PI‑1)的分子结构式如下:
[0070]
[0071] 实施例3
[0072] 含有Y结构的目标二胺单体的制备过程同实施例1;
[0073] 在‑10℃下,氩气保护下,将4.0g(5.5mmol)含有Y结构的目标二胺单体和9.4g(22.0mmol)4,4'‑(9‑苯基‑9H‑咔唑‑3,6‑基)二苯基胺溶解于48mL无水N,N’‑二甲基甲酰胺
中,待完全溶解后,加入5.6g(28.0mmol)氢化均苯四甲酸酐,低温持续搅拌30h后,获得均
相、透明、粘稠的聚酰亚胺酸溶液。将18.78mL乙酸酐和7.51mL吡啶加入所得粘稠液中,继续
搅拌30h后,将所得聚酰亚胺溶液缓慢倒入1L乙醇中,得到块状沉淀,并用四氢呋喃索氏提
取24h,烘干即得最终目标高分子PI‑2。
[0074] 该聚合物5%热失重温度为519℃,玻璃化转变温度为345℃。PI‑2在N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有机溶剂中有较好溶解性。
[0075] 将上述制备的PI‑2配制成10mg/mL的DMF溶液,再加入10mg9,9'‑(1,3‑苯基)二‑9H‑咔唑,溶解充分后低温保存。将ITO玻璃片依次用去离子水、异丙醇、丙酮洗涤,干燥待
用。将PEDOT:PSS水溶液旋涂在ITO玻璃上,以2000r/s得转速,旋涂60s,于120℃加热30min,
除去残留溶剂;待降至室温后,将上述PI‑1DMF溶液旋涂于其上,转速控制在2000r/s,旋涂
时间为60s,150℃加热30min。冷却后转移至蒸镀仓,依次蒸镀DPEPO、TPBi、LiF和Al,制得第
二类器件,其具体结构为ITO/PEDOT:PSS/PI:mCP/DPEPO/TPBi/LiF/Al。
[0076] 所得器件开启电压为4.2V,最大流明亮度可达10000cd/m2,最大外量子效率高达21.1%。
[0077] 本实施例中的电致发光性能聚酰亚胺(PI‑2)的分子结构式如下:
[0078]
[0079] 实施例4
[0080] 将20g(70.7mmol)对溴碘苯溶于100mL无水四氢呋喃中,在氮气氛围下,加入1.69g(70.7mmol)煤屑和0.05g碘单质,于室温下搅拌反应16h,即得目标产物4‑溴‑苯基碘化镁溶
液,待用。
[0081] 称取3.25g(23.5mmol)亚磷酸二乙酯溶于50mL无水四氢呋喃中,氮气氛围中,缓慢滴加至上述4‑溴‑苯基碘化镁溶液中,室温持续反应过夜,缓慢加入氯化铵水溶液终止反
1
应,柱层析法分离得目标化合物二(4‑溴苯)膦氧。HNMR(300MHz,CDCl3,δ)8.02(d,J=
487Hz,1H),7.65(dd,J=8.3,2.2Hz,4H),7.53(dd,J=13.2,8.3Hz,4H).
[0082] 分别将4g(11.1mmol)二(4‑溴苯)膦氧、0.1g(0.5mmol)Pd(OAc)2、4.1g9‑(4‑碘苯基)‑咔唑、0.2g(0.5mmol)1,4‑二(二苯基膦氧)丁烷和3.3mL(20.0mmol)(i‑Pr)2NEt溶于
100mL无水甲苯中,氮气氛围中,100℃反应2h,柱层析法分离得目标化合物二溴苯咔唑膦氧
1
化合物。HNMR(400MHz,Chloroform‑d,δ)8.14(d,J=7.7Hz,2H),7.87(dd,J=11.5,8.3Hz,
2H),7.79–7.67(m,6H),7.63(dd,J=11.2,8.5Hz,4H),7.48(d,J=8.1Hz,2H),7.42(t,J=
7.6Hz,2H),7.32(t,J=7.4Hz,2H).
[0083] 将3.4g(5.7mmol)双取代二苯甲酮化合物溶于100mL四氢呋喃中,氮气氛围下,加入催化当量的四三苯基膦钯(5wt.%),于室温搅拌10min,加入30mL2M碳酸钾溶液,继续搅
拌10min,最后加入2.46g4‑氨基苯硼酸盐酸盐,于85℃反应24h。柱层析法分离得目标产物
1
二胺基膦氧咔唑二胺单体。HNMR(400MHz,DMSO‑d6,δ)8.26(d,J=7.7Hz,2H),7.96(dd,J=
10.9,8.5Hz,2H),7.87(d,J=8.2Hz,2H),7.82–7.66(m,8H),7.53(d,J=8.3Hz,2H),7.47
(d,J=8.6Hz,6H),7.32(t,J=7.4Hz,2H),6.67(d,J=8.5Hz,4H),5.40(s,4H).
[0084] 含有Y结构的目标二胺单体的制备过程同实施例1;
[0085] 在‑10℃下,氩气保护下,将4.0g(5.5mmol)含有Y结构的目标二胺单体和13.8g(22.0mmol)(4‑(9H‑咔唑‑9‑基)苯基)二(4'‑氨基‑[1,1'‑二苯基]‑4‑基)氧膦溶解于48mL
无水N,N’‑二甲基甲酰胺中,待完全溶解后,加入5.6g(28.0mmol)氢化均苯四甲酸酐,低温
持续搅拌30h后,获得均相、透明、粘稠的聚酰亚胺酸溶液。将18.78mL乙酸酐和7.51mL吡啶
加入所得粘稠液中,继续搅拌30h后,将所得聚酰亚胺溶液缓慢倒入1L乙醇中,得到块状沉
淀,并用四氢呋喃索氏提取24h,烘干即得最终目标高分子PI‑3。
[0086] 该聚合物5%热失重温度为542℃,玻璃化转变温度为352℃。PI‑3在N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有机溶剂中有较好溶解性。
[0087] 将上述制备的PI‑3配制成10mg/mL的DMAc溶液,再加入10mg9,9'‑(1,3‑苯基)二‑9H‑咔唑,溶解充分后低温保存。将ITO玻璃片依次用去离子水、异丙醇、丙酮洗涤,干燥待
用。将PEDOT:PSS水溶液旋涂在ITO玻璃上,以2000r/s得转速,旋涂60s,于120℃加热30min,
除去残留溶剂;待降至室温后,将上述PI‑1DMF溶液旋涂于其上,转速控制在2000r/s,旋涂
时间为60s,150℃加热30min。冷却后转移至蒸镀仓,依次蒸镀DPEPO、TPBi、LiF和Al,制得第
二类器件,其具体结构为ITO/PEDOT:PSS/PI:mCP/DPEPO/TPBi/LiF/Al。
[0088] 所得器件开启电压为3.6V,最大流明亮度可达2000cd/m2,最大外量子效率高达4.1%。
[0089] 本实施例中的电致发光性能聚酰亚胺(PI‑3)的分子结构式如下:
[0090]
[0091] 实施例5
[0092] 将10g(27.2mmol)2,7‑二溴‑9,9二甲基吖啶和12.45g(65.4mmol)碘化亚酮分散于无水100mLDMF溶剂中,置换反应氛围为氩气氛围后,加入甲醇钠/甲醇溶液(30%,250mL),
于150℃下持续反应24h,柱层析法分离得目标产物2,7‑二甲氧基‑9,9二甲基吖啶化合物。
1
HNMR(500MHz,DMSO‑d6,δ)7.96(s,1H),6.72(d,J=7.5Hz,2H),6.55(d,J=2.0Hz,2H),6.47
(dd,J=7.5,2.0Hz,2H),3.72(s,6H),1.61(s,6H).
[0093] 在室温下,将5g(18.6mmol)2,7‑二甲氧基‑9,9二甲基吖啶化合物和1.1g(27.8mmol,60wt.%in煤油)氢化钠溶解于无水四氢呋喃中,氮气氛围下反应30min后,快速
加入4.06g(18.6mmol)4,4’‑二氟二苯酮,继续反应24h后,加入5mL稀盐酸终止反应,柱层析
1
法分离得目标产物4‑氟‑4’‑吖啶二苯甲酮化合物。HNMR(500MHz,DMSO‑d6,δ)7.85–7.73(m,
4H),7.53–7.41(m,2H),7.29–7.17(m,2H),6.82–6.71(m,4H),6.65(dd,J=7.5,2.0Hz,2H),
3.72(s,6H),1.64(s,6H).
[0094] 将4g(8.5mmol)4‑氟‑4’‑吖啶二苯甲酮化合物和2.78g(8.5mmol)3,6‑二溴咔唑溶解于20mL无水N,N’‑二甲基甲酰胺中,加入2.77g(8.5mmol)碳酸铯,于150℃,氮气氛围下反
应24h,对水沉降,过滤取滤饼,用乙醇和乙酸乙酯洗涤,即得目标产物双取代二溴二苯甲酮
1
化合物。HNMR(500MHz,DMSO‑d6)δ8.34(d,J=1.4Hz,0H),8.34–8.26(m,0H),8.18(d,J=
1.4Hz,0H),8.05(d,J=7.5Hz,0H),7.99–7.92(m,0H),7.85(d,J=7.6Hz,0H),7.56(dd,J=
7.5,1.5Hz,0H),7.49(dd,J=7.7,1.9Hz,0H),6.88(dd,J=7.5,2.0Hz,0H),6.87–6.81(m,
0H),6.75(d,J=7.5Hz,0H),6.67(d,J=2.1Hz,0H),6.46(dd,J=7.5,2.0Hz,0H),3.72(s,
1H),1.65(s,1H).
[0095] 将4g(5.2mmol)双取代二溴二苯甲酮化合物溶于100mL四氢呋喃中,氮气氛围下,加入催化当量的四三苯基膦钯(5wt.%),于室温搅拌10min,加入30mL2M碳酸钾溶液,继续
搅拌10min,最后加入2.15g(12.4mmol)4‑氨基苯硼酸盐酸盐,于85℃反应24h。柱层析法分
1
离得目标产物含有Y结构的目标二胺单体。HNMR(500MHz,DMSO‑d6,δ)9.09(d,J=1.4Hz,
1H),8.39–8.30(m,4H),8.16–8.05(m,2H),8.01–7.94(m,2H),7.94–7.83(m,3H),7.50(dd,J
=7.6,1.9Hz,4H),7.14–7.07(m,2H),6.93–6.74(m,6H),6.76–6.69(m,3H),6.42(dd,J=
7.5,2.0Hz,1H),5.24(s,4H),3.72(s,6H),1.66(d,J=1.1Hz,6H).
[0096] 在‑10℃下,氩气保护下,将4.0g(5.0mmol)含有Y结构的目标二胺单体和4.0g(20.0mmol)4,4’‑二氨基二苯醚溶解于48mL无水N,N’‑二甲基甲酰胺中,待完全溶解后,加
入5.7g(25.5mmol)氢化均苯四甲酸酐,低温持续搅拌30h后,获得均相、透明、粘稠的聚酰亚
胺酸溶液。将18.78mL乙酸酐和7.51mL吡啶加入所得粘稠液中,继续搅拌30h后,将所得聚酰
亚胺溶液缓慢倒入1L乙醇中,得到块状沉淀,并用四氢呋喃索氏提取24h,烘干即得最终目
标高分子PI‑4。
[0097]
[0098] 实施例6
[0099] 在5℃下,氩气保护下,4.0g(17.8mmol)4,4’‑二氨基二苯醚溶解于48mL无水N,N’‑二甲基甲酰胺中,待完全溶解后,加入3.7g(20.2mmol)氢化均苯四甲酸酐,低温持续搅拌
30h后,获得均相、透明、粘稠的聚酰亚胺酸溶液。将18.78mL乙酸酐和7.51mL吡啶加入所得
粘稠液中,继续搅拌30h后,将所得聚酰亚胺溶液缓慢倒入1L乙醇中,得到纤维状沉淀,并用
乙醇索氏提取24h,烘干即得最终目标高分子PI‑5。
[0100]
[0101] 该聚合物5%热失重温度为452℃,玻璃化转变温度为340℃。PI‑5在二氯甲烷、四氢呋喃、N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有机溶剂中有较好
溶解性。
[0102] 上述结构得到的高分子为白色纤维,溶解于DMF溶剂中,再次涂布于玻璃板上,经250o退火后可得无色透明薄膜,薄膜的的紫外可见光透过实验如图5所示,其400nm处透光
率可达75%,有利于电致发光光子的透过。但是由于不含PTCN发光中心,所得高分子没有荧
光性能,进一步证明发光中心为PTCN单元,二ODA单元为非法光中心,仅作为连接基团。
[0103] 实施例7
[0104] 在‑10℃下,氩气保护下,将4g(7.6mmol)4,4'‑(9‑苯基‑9H‑咔唑‑3,6‑基)二苯基胺溶解于20mL无水N,N’‑二甲基甲酰胺中,待完全溶解后,加入1.8g(7.8mmol)氢化均苯四
甲酸酐,低温持续搅拌30h后,获得均相、透明、粘稠的聚酰亚胺酸溶液。将8.78mL乙酸酐和
4.51mL吡啶加入所得粘稠液中,继续搅拌30h后,将所得聚酰亚胺溶液缓慢倒入1L乙醇中,
得到块状沉淀,并用四氢呋喃索氏提取24h,烘干即得最终目标高分子PI‑6。
[0105] 该聚合物5%热失重温度为530℃,TGA实验表明,400℃以下无法测得该高分子的玻璃化转变温度。PI‑6在N,N’‑二甲基甲酰胺、N,N’‑二甲基乙酰胺、二甲基亚砜等强极性有
机溶剂中有较好溶解性。该高分子荧光光谱表现为深蓝光发射,和PI‑5高分子相似,薄膜为
无色透明材料,在高分子中为非发光中心,证实PTCN为唯一发光中心。
[0106]