一种风浪潮综合互补发电集成布置方案转让专利

申请号 : CN202010301049.6

文献号 : CN111520285B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王如意王桢陈诺王裕孔杰杰杨凌罗佳捷贾玉婷蒋世昕李友好霍浩欣

申请人 : 武汉理工大学

摘要 :

本发明主要涉及一种风浪潮综合互补发电集成布置方案,将风力发电系统、摇荡式发电系统、潮汐能发电系统和系泊绳作为一个单元,向四周扩散,形成一种蛛网式的连接布置结构。通过这样的布置方式,将风能、波浪能和潮汐能结合产生的电能存储至中心处风力发电系统底部的混合储能系统,再经海底电缆将各个单元的电能传输至岸上变电站。本发明方案主要作用于近海领域,有效的解决了风电场海域发电形式单一、空间电能利用率低、抗风浪能力差以及系泊配置重复的问题,大大提高了系统在风浪条件下的稳定性和整体的电能传输效率。

权利要求 :

1.一种风浪潮综合互补发电集成布置装置,其特征在于:包括风力发电系统(1)、摇荡式发电系统(2)、潮汐能发电系统(3)和微弹系泊绳,以这种组合方式向周围进行蛛网式扩展形成蛛网式布置结构;所述风力发电系统(1)包括风力发电机桩柱(1‑1),所述摇荡式发电系统(2)包括均匀布置在单个风力发电机桩柱(1‑1)周围的多个摇荡式发电装置(2‑1),靠近所述风力发电机桩柱(1‑1)的摇荡式发电装置(2‑1)与所述风力发电机桩柱(1‑1)之间、相邻摇荡式发电装置(2‑1)之间均分别通过微弹系泊绳绷直连接,形成蛛网式布置结构;蛛网式布置结构整体的最外层摇荡式发电装置(2‑1)向外通过微弹系泊绳与第一海桩(6)绷直连接;相邻摇荡式发电装置(2‑1)在蛛网纬线上设置第二海桩(2‑2)并通过微弹系泊绳绷直连接;所述微弹系泊绳包括专用系泊绳(4),所述专用系泊绳(4)由外侧的系泊钢缆(4‑1)和电缆(4‑2)组成,所述系泊钢缆(4‑1)以缠绕的方式缠绕在电缆(4‑2)上构成专用系泊绳(4);靠近所述风力发电机桩柱(1‑1)的摇荡式发电装置(2‑1)与所述风力发电机桩柱(1‑1)之间、以及相邻摇荡式发电装置(2‑1)之间在蛛网经线上采用专用系泊绳(4)绷直连接;内置的所述电缆(4‑2)在靠近专用系泊绳(4)头部地方从旁边引出,通过多层防水防腐蚀绝缘套(2‑5)保护分别引入风力发电机桩柱(1‑1)、摇荡式发电装置(2‑1)内部。

2.根据权利要求 1所述的一种风浪潮综合互补发电集成布置装置,其特征在于:将所述组合方式作为一个单元,通过微弹系泊绳向四周拓展,形成多单元蛛网式布置结构。

3.根据权利要求 1所述的一种风浪潮综合互补发电集成布置装置,其特征在于:相邻摇荡式发电装置(2‑1)之间的间距与摇荡式发电装置(2‑1)直径比为4:1。

4.根据权利要求 1 或2所述的一种风浪潮综合互补发电集成布置装置,其特征在于:所述风力发电系统(1)下部设置混合储能装置(1‑2),所述风力发电系统(1)、摇荡式发电系统(2)、潮汐能发电系统(3)分别与混合储能装置(1‑2)电连接,通过混合储能装置(1‑2)进行初步电能逆变整合。

5.根据权利要求 1所述的一种风浪潮综合互补发电集成布置装置,其特征在于:所述微弹系泊绳与摇荡式发电装置(2‑1)均通过连接环(4‑3)与第一环扣(2‑4)连接;所述的微弹系泊绳与第一海桩(6)、第二海桩(2‑2)分别采用连接环(4‑3)与第二环扣(2‑3)进行连接,第二环扣(2‑3)在打桩过程中预埋。

6.根据权利要求5所述的一种风浪潮综合互补发电集成布置装置,其特征在于:所述微弹系泊绳与风力发电机桩柱(1‑1)采用连接环(4‑3)与套环(1‑4)进行连接,风力发电机桩柱(1‑1)与套环(1‑4)直接套在一起,套环(1‑4)上有对应环孔(1‑4‑1)。

说明书 :

一种风浪潮综合互补发电集成布置方案

技术领域

[0001] 本发明属于近海浪潮互补发电领域,涉及一种风浪潮互补发电布置方案。

背景技术

[0002] 在近海领域,现代的主要的发电装置为风力发电机,在这样的海域中放置风力发电机能够有效的利用海水水域的空旷的风力,通过风力发电机产生的电能,给在近海作业
的无人机和无人船提供必要的电能,减少从岸上接入电源造成的成本过高问题。
[0003] 从已有的发明专利中了解到,现有的风力发电机的发电组合方式比较单一,布置简单,主要涉及的内容是提高单个发电机的效率。基于这样的情况发现风电场的海水发电
空间利用率低,风力发电机的发电不均匀,以及在风浪恶劣条件下容易已损坏导致在布置
的过程中造成作业和维护的成本高的问题。

发明内容

[0004] 本发明方案解决的技术问题是:克服现有的发电装置组合方式单一、布置方式无须排布、海水风电场海域空间利用率低的问题,海上装备在恶劣海况下稳定性差的问题,风
力发电不均匀的问题,降低发电成本,提高单位空间利用率、系统稳定性和电能传输效率。
[0005] 本发明的技术方案是:一种风浪潮综合互补发电集成布置方案,包括风力发电系统、摇荡式发电系统、潮汐能发电系统和微弹系泊绳,以这种组合方式向周围进行蛛网式扩
展形成蛛网式布置结构。
[0006] 具体地,所述风力发电系统包括风力发电机桩柱,所述摇荡式发电系统包括均匀布置在风力发电机桩柱周围的多个摇荡式发电装置,靠近所述风力发电机桩柱的摇荡式发
电装置与所述风力发电机桩柱之间、相邻摇荡式发电装置之间均分别通过微弹系泊绳绷直
连接,形成蛛网式布置结构。本发明方案主要作用于近海领域,有效的解决了风电场海域发
电形式单一、空间电能利用率低、抗风浪能力差以及系泊配置重复的问题,大大提高了系统
在风浪条件下的稳定性和整体的电能传输效率。
[0007] 进一步地,一种风浪潮综合互补发电集成布置方案,将包括以风力发电系统、摇荡式发电系统、潮汐能发电系统和系泊绳的组合方式作为一个单元,通过微弹系泊绳向四周
拓展,形成多单元蛛网式布置结构。通过向四周拓展方式提高近海海域空间利用率。
[0008] 进一步地,所述微弹系泊绳包括专用系泊绳和普通系泊绳,优选地,所述专用系泊绳由外侧的系泊钢缆和电缆组成,所述系泊钢缆以缠绕的方式缠绕在电线上构成专用系泊
绳,电线通过系泊钢缆中间到达风力发电机桩柱下部的混合储能装置。一方面特制系泊绳
通过缠绕方式保证拥有一定的轻微弹性,其次保护了内置电缆免受海洋环境影响。
[0009] 优选地,所述普通系泊绳由外侧的系泊钢缆和钢丝绳芯组成,所述系泊钢缆以缠绕的方式缠绕在钢丝绳芯上构成普通系泊绳,用于与摇荡式发电系统与海桩的固定连接。
特制系泊绳通过缠绕方式保证拥有一定的轻微弹性。
[0010] 优选地,蛛网式布置结构整体的最外层摇荡式发电装置向外通过普通系泊绳与第一海桩绷直连接。
[0011] 具体地,所述风力发电机桩柱采用海底打桩的方式固定在海底,靠近所述风力发电机桩柱的摇荡式发电装置与所述风力发电机桩柱之间、相邻摇荡式发电装置在蛛网经线
上采用专用系泊绳绷直连接,内置电缆在靠近专用系泊绳头部地方从旁边引出,通过多层
防水防腐蚀绝缘套保护引入风力发电机桩柱、摇荡式发电装置内部;相邻摇荡式发电装置
在蛛网纬线上设置第二海桩并通过普通系泊绳绷直连接。通过在结点处打桩,最大程度将
恶劣海况下的风浪集中载荷分散,提高了系统的稳定性和生存能力。多个摇荡式发电装置
共用同一个风力发电机桩柱,纬线相邻摇荡式发电装置之间共用一个打桩点(海桩),减少
配置重复问题。
[0012] 优选地,相邻摇荡式发电装置之间的间距与摇荡式发电装置直径比为4:1。
[0013] 优选地,所述风力发电系统下部设置混合储能装置,所述风力发电系统、摇荡式发电系统、潮汐能发电系统分别与混合储能装置电连接,通过混合储能装置进行初步电能逆
变整合。本发明的所述混合储能装置布置在中心的风力发电机桩柱上,能够将每个蛛网单
元的电能进行初步逆变整合,并传送至混合储能装置,每个单元的电能通过海底电缆传输
至岸上变电站,通过向对称中心传输的方式提高了电能传输效率。
[0014] 优选地,所述微弹系泊绳与摇荡式发电装置/海桩之间均通过连接环与环扣连接摇荡式发电装置。这种方式可简化连接过程,提高系统稳定性。
[0015] 优选地,所述微弹系泊绳与风力发电机桩柱采用连接环与套环进行连接,风力发电机桩柱与套环直接套在一起,套环上有对应环孔。
[0016] 优选地,所述的潮汐能发电系统套设在风力发电机桩柱上,由四台水轮机和专用系泊绳组成。
[0017] 本发明相比于现有技术的有益效果:本发明的蛛网布置结构为由一个中心伸出的若干放射状系泊绳和围绕这个中心的螺旋状系泊绳构成的网状结构,当受到海上强大风浪
作用时可对动能进行分解,有效抵抗海上剧烈风浪对装置带来的损坏,提高系统稳定性和
电力传输效率;本发明经过实验显示,多单元组合式蜘蛛网能对抗飓风的袭击,承受较大的
集中载荷,另外,尽管局部受力有可能致使网中的一条系泊绳断裂,整张网状系统的其他部
分仍完好无损,可以继续发挥作用,从而确保了风浪潮综合互补发电系统的经久耐用性。

附图说明

[0018] 图1为本发明蛛网式布置整体方案远景俯视图原理图;
[0019] 图2为本发明蛛网式单元布置方案俯视图原理图;
[0020] 图3为本发明蛛网式单元布置方案轴测图原理图;
[0021] 图4为本发明单层组合布置正视图原理图;
[0022] 图5为本发明单层组合布置俯视图原理图;
[0023] 图6为本发明专用系泊绳原理图;
[0024] 图7为本发明普通系泊绳原理图;
[0025] 图8为本发明蛛网式模型静力分析结果图;
[0026] 图9为本发明摇荡式发电装置与系泊绳连接原理图;
[0027] 图10为本发明风力发电桩柱与系泊绳连接原理图;
[0028] 图11为本发明海桩与系泊绳连接原理图。

具体实施方式

[0029] 下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的具体内容仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中
的实施方式,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施方
式,都属于本发明保护的范围。
[0030] 一种风浪潮综合互补发电集成布置方案,包括风力发电系统1、摇荡式发电系统2、潮汐能发电系统3和微弹系泊绳,以这种组合方式向周围进行蛛网式扩展形成蛛网式布置
结构。本发明的蛛网布置结构根据目标海域风力发电机的功率,尺寸,间距等条件去布局,
由于波浪能发电装置(摇荡式发电装置)的尺寸要远小于风力发电机的尺寸和间距,因此摇
荡式发电系统可根据间距情况向外多层延展,使其布置紧凑,稳定性强。每个蛛网单元单元
的层数可根据实际情况调整,每个中心风力发电机周围布置的波浪能发电装置个数也是可
根据实际海域,风机情况进行适配,符合蛛网式结构即可提高稳定性。
[0031] 具体地,所述微弹系泊绳包括专用系泊绳4和普通系泊绳5,如图6所示,所述专用系泊绳4由外侧的系泊钢缆4‑1和电缆4‑2组成,所述系泊钢缆4‑1以缠绕的方式缠绕在电缆
4‑2上构成专用系泊绳4。电缆通过系泊钢缆中间到达风力发电系统下部的混合储能装置1‑
2。如图7所示,所述普通系泊绳5由外侧的系泊钢缆5‑1和钢丝绳芯5‑2组成,所述系泊钢缆
5‑1以缠绕的方式缠绕在钢丝绳芯5‑2上构成普通系泊绳5,用于与摇荡式发电系统2与海桩
的固定连接。
[0032] 实施例1
[0033] 以一个单元六边蛛网布置方案为例:
[0034] 如图2‑5所示,一种风浪潮综合互补发电集成布置方案,通过风力发电系统1、摇荡式发电系统2、潮汐能发电系统3和微弹系泊绳组成一个扩展网络单元,以蛛网式的扩展方
式向四周延伸,构成蛛网式布置结构。风力发电机1‑3产生的电流通过风力发电机桩柱1‑1
内部直接传送至混合储能装置1‑2内。风力发电机桩柱1‑1通过采用海底打桩方式固定在海
底,混合储能系统1‑2布置在风力发电机桩柱1‑1上,并能够进行初步逆变整合。风力发电机
桩柱1‑1底部安装有潮汐能发电系统3,所述潮汐能发电系统3包括四台水轮机3‑1和专用系
泊绳4,均通过专用系泊绳4内的电缆4‑2接入混合储能装置1‑2。
[0035] 所述摇荡式发电系统2包括均匀布置在风力发电机桩柱1‑1周围水面部分的三层摇荡式发电装置2‑1,多个摇荡式发电装置2‑1通过微弹系泊绳共用一个风力发电机桩柱1‑
1。内层的六个摇荡式发电装置2‑1与所述风力发电机桩柱1‑1之间分别通过专用系泊绳4绷
直连接,两两相邻摇荡式发电装置2‑1在蛛网经线上通过专用系泊绳4绷直连接;在蛛网纬
线上相邻摇荡式发电装置2‑1通过普通系泊绳5系在一个第二海桩2‑2上,共用一个系泊点,
以此构成蛛网式布置结构,蛛网式布置结构的最外层摇荡式发电装置2‑1向外通过普通系
泊绳5与第一海桩6绷直连接。每台摇荡式发电装置2‑1分别通过专用系泊绳4将产生的电流
传送至混合储能装置1‑2内。
[0036] 所述摇荡式发电装置2‑1包括外部壳体,壳体内设有摆锤以及与摆锤相连接的传动机构,将摆锤的动能转化成电能。所述摇荡式发电装置2‑1底部连接系泊绳,属于点束缚,
而系泊绳具有一定弹性,因此波浪作用下摇荡式会发生倾倒,从而摆锤转动,而本发明将系
泊绳绷直有助于倾倒摇荡式发电装置2‑1使其做功。
[0037] 蛛网每层的间距可以根据摇荡式发电装置2‑1的尺寸、活动半径匹配,在大浪情况下,摇荡式发电装置2‑1因采用有微弹性的系泊绳,会前后左右运动,缓冲恶劣情况的波浪
力,因此需要给摇荡式发电装置2‑1之间留有一定距离,即活动半径。活动半径至少是摇荡
式发电装置2‑1直径的2倍,也即蛛网每层之间的间距与波浪能发电装置直径之比在4:1左
右为最优比例,可以保证不会互相干涉,其次节约材料。
[0038] 所述混合发电装置1‑2都能够将来自风力发电系统1、摇荡式发电系统2、潮汐能发电系统3的这三种电流进行初步逆变整合,整合后的电流,再通过一条专用系泊绳4经海底
电缆传输至岸上变电站,利用这种方案可大大提高了系统电能传输效率,供给来往的无人
船和无人机电能,进行近海海域的勘测作业。
[0039] 作为本发明优选的一种实施方式,如图9所示,弹性系泊绳与摇荡式发电装置2‑1均通过连接环4‑3与第一环扣2‑4连接,当弹性系泊绳为专用系泊绳时,内置电缆4‑2在靠近
专用系泊绳4头部地方从旁边引出,通过多层防水防腐蚀绝缘套2‑5保护引入摇荡式发电装
置2‑1内部。
[0040] 作为本发明优选的一种实施方式,如图11所示,普通系泊绳5与第一海桩6、第二海桩2‑2采用连接环4‑3与第二环扣2‑3进行连接,第二环扣2‑3在打桩过程中预埋。采用这种
连接方式可以简化连接过程,提高系统稳定性。普通系泊绳5处于绷直状态,形成蛛网式布
置结构。
[0041] 作为本发明优选的一种实施方式,如图10所示,专用系泊绳4与风力发电机桩柱1‑1采用连接环4‑3与套环1‑4进行连接,风力发电机桩柱1‑1与套环1‑4直接套在一起,套环1‑
4上有对应环孔1‑4‑1,内置电缆4‑2在靠近系泊绳4头部地方从旁边引出,通过多层防水防
腐蚀绝缘套2‑5保护引入风力发电机桩柱1‑1内部。这样的连接方式可以保护电缆,另外六
个方向分散受力,减少风力发电机桩的负载,而且套环直接套在桩上,不会破坏电机桩柱的
结构。
[0042] 实施例2
[0043] 以多个单元向四周拓展构成多单元蛛网布置整体结构为例:
[0044] 如图1所示,以实施例1的组合方式作为一个蛛网单元,通过微弹系泊绳向四周拓展,形成多蛛网式发电集成结构,蛛网式布置结构整体的最外层摇荡式发电装置2‑1向外通
过微弹系泊绳与第一海桩6绷直连接。每一个混合发电装置1‑2都能够将三种来源的电流进
行初步逆变整合,整合后的电流,再通过一条专用系泊绳4,直接通往蛛网中心处的风力发
电系统1,将电能统一逆变整合,然后各个单元汇流的电能经海底电缆传输至岸上变电站。
也可以每个单元进行拓展,电能以每个单元单独汇流,输送至岸上变电站。利用这两种方案
均可大大提高系统电能传输效率,供给来往的无人船和无人机电能,进行近海海域的勘测
作业。
[0045] 本发明中蛛网式结构受力特点分析,如图8所示:蛛网式机构的主要特性是吸收激烈的动能,将集中载荷分散到各个结点的海桩2‑2上,以维持系统结构的稳定性和各装置的
安全性。由于网状结构受力分析较困难,为了简化问题,选取放射系泊绳和结点处的桩柱为
简化蛛网模型,在结点处施加载荷进行静力分析。假设系泊绳材料为碳素结构钢为例,在结
点处施加500Mpa单位载荷,通过有限元分析的结果,可以看到材料变形量很小,其承受的最
大应力远大于材料本身的抗拉强度。因此蛛网型布置方案可以大大分散集中载荷,提高系
统稳定性。
[0046] 在此需要说明的是,本发明结点处可以不采用海桩的形式,采用锚链固定在海床上也可,但仍要以该蛛网式方案布置,只是将结点处的桩柱取消,换成锚链锚接点,上述方
案也属于本方案的范畴。
[0047] 本发明说明书中未作详细描写的内容属于本领域技术人员的公知技术。
[0048] 尽管已经示出和描述了本发明的实施方式,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施方式进行多种变化、修改、
替换和变型,本发明的范围由所附权利要求及其等同物限定。