一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制备方法和应用转让专利

申请号 : CN202010390546.8

文献号 : CN111521657B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 魏秋平周科朝马莉李海超朱睿童杨万林

申请人 : 中南大学

摘要 :

本发明公开了一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制备方法和应用,所述多巴胺生物传感器,包括工作电极、对电极和参比电极,所述工作电极的基底电极为多孔硼掺杂金刚石电极,所述多孔硼掺杂金刚石电极表面修饰有纳米碳黑颗粒和萘芬膜。本发明中多孔硼掺杂金刚石电极具有高比表面积,可以增加传感器的响应电流,而所修饰的纳米碳黑颗粒和萘芬膜作为电极的保护膜和功能性隔层,碳黑颗粒可以将干扰物的氧化电位提前,减少信号干扰,萘芬同时扮演了抑制干扰物和稳定碳黑颗粒的作用。

权利要求 :

1.一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,其特征在于:包括工作电极、对电极和参比电极,所述工作电极的基底电极为多孔硼掺杂金刚石电极,所述多孔硼掺杂金刚石电极表面修饰有纳米碳黑颗粒和萘芬膜,所述多孔硼掺杂金刚石电极包括硅片衬底,设置于所述硅片衬底表面的多孔掺硼金刚石层;所述纳米碳黑颗粒的尺寸为50‑100nm。

2.根据权利要求1所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,其特征在于:所述多孔掺硼金刚石层的厚度为5‑20μm;所述的金刚石晶粒尺寸为5‑10μm。

3.制备如权利要求1‑2任意一项所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的方法,其特征在于:包括如下步骤:步骤1沉积掺硼金刚石层

采用化学气相沉积的方法在硅基衬底上沉积掺硼金刚石层,控制掺硼金刚石层的厚度为5‑20μm;

步骤2多孔硼掺杂金刚石电极的制备采用磁控溅射法在掺硼金刚石层表面溅射一层厚度为5‑50nm的镍层,然后置于氢气气氛下热处理将掺硼金刚石层表面刻蚀成多孔结构,再采用酸性溶液去除孔内镍颗粒即得多孔硼掺杂金刚石电极,

步骤3多孔硼掺杂金刚石电极的修饰在步骤2所得多孔硼掺杂金刚石电极表面滴涂含纳米碳黑颗粒的溶液,烘干后,再滴涂萘芬溶液,晾干即得表面修饰有纳米碳黑颗粒和萘芬膜的多孔硼掺杂金刚石电极;

步骤4传感器的制备

将步骤3所得的表面修饰有纳米碳黑颗粒和萘芬膜的多孔硼掺杂金刚石电极作为工作电极,铂片作为对电极,Ag/AgCl电极作为参比电极,组装即得多巴胺生物传感器。

4.根据权利要求3所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,其特征在于:步骤1中,化学气相沉积的工艺参数为:硅基衬底的表面温度为700‑900℃,沉积气压为2.5‑5KPa,沉积时间为4‑10h;通入的甲烷、硼烷、氢气的比例为1‑20:0.3‑1:

30‑49;

步骤1中,所述化学气相沉积为热丝化学气相沉积,热丝匝数为10‑20匝,热丝温度为

2000‑2500℃。

5.根据权利要求3所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,其特征在于:步骤2中,采用纯度≥99.99%的镍靶,磁控溅射的功率为50‑150W,气压为0.5‑2Pa;

步骤2中,氢气气氛的通入量为40‑100SCCM,热处理的温度为600‑1000℃,热处理的时间为100‑300min,热处理时炉内气压为10‑20KPa;

步骤2中,采用酸洗溶液于80‑100℃浸泡表面刻蚀成多孔结构的掺硼金刚石层100‑

150min,即得多孔硼掺杂金刚石电极,所述酸性溶液为硝酸溶液,硝酸的质量分数为10‑

30%。

6.根据权利要求3所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,其特征在于:步骤3中,在步骤2所得多孔硼掺杂金刚石电极表面滴涂5‑20μl含纳米碳黑颗粒的溶液;所述含纳米碳黑颗粒的溶液的获得方式为:将纳米碳黑颗粒加入异丙醇中,超声100‑200min即可,所述纳米碳黑颗粒与异丙醇的质量体积比为0.1‑1g:10ml。

7.根据权利要求3所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,其特征在于:步骤3中,滴涂萘芬溶液的量为1‑50μl,所述萘芬溶液中,萘芬的质量分数为1‑10%;溶剂为异丙醇。

8.根据权利要求1‑2任意一项所述的一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的应用,其特征在于:将所述多巴胺生物传感器应用于多巴胺定量检测。

说明书 :

一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制

备方法和应用

技术领域

[0001] 本发明属于电化学生物传感器技术领域,尤其是涉及一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制备方法和应用。

背景技术

[0002] 多巴胺是NA的前体物质,是下丘脑多巴胺和脑垂体腺中的一种关键神经递质,中枢神经系统中多巴胺的浓度受精神因素的影响,神经末梢的GnRH和多巴胺间存在着轴突联
系并相互作用,以及多巴胺有抑制GnRH分泌的作用。多巴胺含量的检测对人类的健康以及
疾病的诊断、治疗和控制有着重要意义。
[0003] 生物传感器(biosensor)是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理换能器有机结合的器械或装置,是发展生物技术必不可少的一种先进的检测方
法与监控方法,也是物质分子水平的快速、微量分析方法。生物传感器的结构(组成)根据定
义,包括两部分:1、生物活性材料(也叫生物敏感膜、分子识别元件)。2、物理换能器(也叫传
感器);其中传感器部分,其作用是将各种生物的、化学的和物理的信息转变成电信号。目
前,已报道的血多巴胺检测方法较多,常见的有气液色谱‑质谱联用法、温度测定法、分子发
光法、比色法、电化学方法等,但是这些检测方法中的选择性大多依赖于对多巴胺特异性识
别的酶或抗体,并具有损坏性和成本相当昂贵。
[0004] 电化学非酶生物传感器检测具有操作简单、灵敏度高、响应时间短的优势,而且其稳定性和可用性比酶传感器更好。
[0005] 当前主流的多巴胺生物传感器,可以两大类。一类是通过选择性离子透过膜,对非多巴胺类的小分子物质进行阻拦,而只选择性的通过多巴胺分子,从而达到电极表面只有
多巴胺分子反应,获得多巴胺分子的氧化电流;另一类是在电极表面修饰活性物质,通过修
饰物对多巴胺与多巴胺干扰物的氧化电位不同从而达到选择性检测多巴胺的目的。但是这
两类方法都不能完全保证检测过程不受干扰,前者在面对一些与多巴胺类似的正电离子时
会失去选择性,而后者即使将干扰物与多巴胺的氧化电位区分得足够大,仍然存在干扰物
与多巴胺的反应产物多巴胺醌反应,使得检测结果失准的问题,如,通过碳纳米管修饰的电
极即使将主要干扰物抗坏血酸与多巴胺的氧化电位分得足够远,多巴胺的氧化产物仍然会
与溶液中的抗坏血酸反应生成新的多巴胺,而新生成的多巴胺将会改变原检测多巴胺的浓
度,检测结果自然失准。

发明内容

[0006] 针对现有技术的不足,本发明第一个目的在于提供一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器。
[0007] 本发明的第二个目的在于提供一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法。
[0008] 本发明的第二个目的在于提供一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的应用。
[0009] 为了实现上述目的,本发明采用如下技术方案:
[0010] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,包括工作电极、对电极和参比电极,所述工作电极的基底电极为多孔硼掺杂金刚石电极,所述多孔硼掺杂金
刚石电极表面修饰有纳米碳黑颗粒和萘芬膜。
[0011] 在本发明中,所提供的多巴胺生物传感器的工作电极为表面修修饰有纳米碳黑颗粒和萘芬膜的多孔硼掺杂金刚石电极,多孔硼掺杂金刚石电极具有高比表面积,可以增加
传感器的响应电流,而所修饰的纳米碳黑颗粒和萘芬膜作为电极的保护膜和功能性隔层,
碳黑颗粒可以将干扰物的氧化电位提前,减少信号干扰,萘芬同时扮演了抑制干扰物和稳
定碳黑颗粒的作用。
[0012] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,所述多孔硼掺杂金刚石电极包括硅片衬底,设置于所述硅片衬底表面的多孔掺硼金刚石层。
[0013] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,所述多孔掺硼金刚石层的厚度为5‑20μm;所述的金刚石晶粒尺寸范围5‑10μm。
[0014] 多孔掺硼金刚石层表面为多孔结构,该多孔结构是通过控制镍层厚度(5‑50nm)与热处理刻蚀时间(100‑300min)来调控的,通过多孔结构的控制以及匹配最适宜粒径的纳米
碳黑颗粒,从而使电极的性能达到最佳值。
[0015] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,所述纳米碳黑颗粒的尺寸在为50‑100nm。发明人发现,当纳米碳黑的颗粒尺寸在50‑100nm时,所得电极的性能
最优。
[0016] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,以铂片作为对电极,Ag/AgCl电极作为参比电极。
[0017] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,包括如下步骤:
[0018] 步骤1沉积掺硼金刚石层
[0019] 采用化学气相沉积的方法在硅基衬底上沉积掺硼金刚石层,控制掺硼金刚石层的厚度为5‑20μm;
[0020] 步骤2多孔硼掺杂金刚石电极的制备
[0021] 采用磁控溅射法在掺硼金刚石层表面溅射一层厚度为5‑50nm的镍层,然后置于氢气气氛下热处理将掺硼金刚石层表面刻蚀成多孔结构,再采用酸性溶液去除孔内镍颗粒即
得多孔硼掺杂金刚石电极,
[0022] 步骤3多孔硼掺杂金刚石电极的修饰
[0023] 在步骤2所得多孔硼掺杂金刚石电极表面滴涂含纳米碳黑颗粒的溶液,烘干后,再滴涂萘芬溶液,晾干即得表面修饰有纳米碳黑颗粒和萘芬膜的多孔硼掺杂金刚石电极;
[0024] 步骤4传感器的制备
[0025] 将步骤3所得的表面修饰有纳米碳黑颗粒和萘芬膜的多孔硼掺杂金刚石电极作为工作电极,铂片作为对电极,Ag/AgCl电极作为参比电极,组装即得多巴胺生物传感器。
[0026] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤1中,化学气相沉积的工艺参数为:硅基衬底的表面温度为700‑900℃,沉积气压为2.5‑5KPa,
沉积时间为4‑10h;通入的甲烷、硼烷、氢气的比例为1‑20:0.3‑1:30‑49。
[0027] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤1中,所述化学气相沉积为热丝化学气相沉积,热丝匝数为10‑20匝,热丝温度为2000‑2500
℃。
[0028] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤1中,所述硅基衬底先置于丙酮溶液中,超声清洗5‑20min,再于去离子水中超声清洗10‑
20min,烘干后再进行沉积。
[0029] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤2中,采用纯度≥99.99%的镍靶,磁控溅射的功率为50‑150W,气压为0.5‑2Pa。
[0030] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤2中,氢气气氛的通入量为40‑100SCCM,热处理的温度为600‑1000℃,热处理的时间为100‑
300min,热处理时炉内气压为10‑20KPa。
[0031] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤2中,采用酸洗溶液于80‑100℃浸泡表面刻蚀成多孔结构的掺硼金刚石层100‑150min,即得
多孔硼掺杂金刚石电极,所述酸性溶液为硝酸溶液,硝酸的质量分数为10‑30%。
[0032] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤3中,在步骤2所得多孔硼掺杂金刚石电极表面滴涂5‑20μl含纳米碳黑颗粒的溶液;所述含纳
米碳黑颗粒的溶液的获得方式为:将纳米碳黑颗粒加入异丙醇中,超声100‑200min即可,所
述纳米碳黑颗粒与异丙醇的质量体积比为0.1‑1g:10ml。
[0033] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的制备方法,步骤3中,滴涂萘芬溶液的量为1‑50μl,优选为5‑10μl;所述萘芬溶液中,原料萘芬的质量分数为
1‑10%;溶剂为异丙醇。
[0034] 本发明一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器的应用,将所述多巴胺生物传感器应用于多巴胺定量检测。
[0035] 有益效果
[0036] 本发明提供了一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器,所述多孔硼掺杂金刚石电极具有高比表面积,可以增加传感器的响应电流,而所修饰的纳米碳黑颗粒
和萘芬膜作为电极的保护膜和功能性隔层,通过碳黑纳米颗粒的强氧化性,将抗坏血酸的
氧化电位提前,这样,能够与多巴胺氧化生成的多巴胺醌反应的抗坏血酸就会因为反应的
贫化效应而大大减少;第二,修饰的萘芬膜能够进一步阻止贫化后依然存在的少量抗坏血
酸到达电极表面,从而基本消除抗坏血酸的影响。
[0037] 在本发明中的制备方法,采用CVD金刚石生长方法,在硅基底上生长一层均匀致密的金刚石膜,再将金刚石刻蚀成多孔结构,这样可以有效增加电极的比表面积,增大传感器
的活性面积,从而得到较大的响应电流,最后再在多孔金刚石上修饰功能性的纳米碳黑颗
粒和萘芬膜,实现多巴胺的选择性检测。

附图说明

[0038] 图1为实施例1中金刚石膜未刻蚀的扫描(SEM)图;
[0039] 图2为实施例1中金刚石膜刻蚀完的多孔形貌扫描(SEM)图;
[0040] 图3为实施例1中多孔金刚石修饰完纳米碳黑颗粒的形貌扫描(SEM)图;
[0041] 图4为实施例1中多孔金刚石修饰完纳米碳黑颗粒和萘芬膜的形貌扫描(SEM)图。

具体实施方式

[0042] 通过以下实施例进一步阐明本发明的实质性特点和显著进步,但本发明绝非仅局限于实施例。
[0043] 实施例1
[0044] 步骤1、掺硼金刚石膜的制备。首先将硅片衬底放置于丙酮溶液中,超声清洗5分钟,去除表面油渍;然后在去离子水中超声清洗10分钟,烘干炉中吹干后放入化学气相沉积
室进行掺硼金刚石的生长,生长过程中的热丝匝数为10匝,热丝温度控制在2000℃,基片表
面温度为700℃,气体比例为甲烷/硼烷/氢气等于1/0.3/49,腔压约2.5千帕,生长的金刚石
膜晶粒大小在5‑7微米直径,金刚石膜厚范围为5‑10微米,如图1所示。
[0045] 步骤2、镍层溅射。方法为使用物理磁控溅射设备,在0.5帕的气压下,使用纯度为99.99%的高纯镍靶,在步骤1中的金刚石膜上均匀溅射一层镍膜,溅射功率为50瓦,镍层厚
度在5‑20nm。
[0046] 步骤3、氢环境下的高温热处理刻蚀。方法为,将步骤2中制备得的薄片放入冷壁热处理炉中,通入40SCCM的氢气,刻蚀温度控制在600℃,刻蚀气压控制在10千帕,刻蚀时间为
100分钟,刻蚀形貌如图2所示。
[0047] 步骤4、镍颗粒去除。方法为,将步骤3中刻蚀完的电极片放入10%的硝酸溶液,加入到80℃,保温100分钟,将镍颗粒去除干净。
[0048] 步骤5、碳黑颗粒和萘芬溶液修饰。方法为,将0.5克的平均粒径为75nm碳黑颗粒融入10毫升异丙醇溶液,超声100分钟获得碳黑悬浮溶液,使用移液管取5微升碳黑悬浮液滴
涂在电极表面,碳黑修饰形貌如图3所示;接着在烘干炉中烘干后,取5微升异丙醇稀释的
5%萘芬溶液滴涂于碳黑表面,室温下晾干,最终修饰形貌如图4所示。
[0049] 步骤6、传感器制备与检测。方法为,将步骤5获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器。检测对象为浓度范围在0.01‑500μM
的多巴胺溶液,干扰对象为500μM的抗坏血酸溶液和500μM的尿酸溶液,三类溶液的底液均
采用0.01M的PBS溶液。将干扰物分别加入不同浓度的多巴胺溶液当中,使用封装后的电极
进行检测分析,检测分析过程采用循环伏安法(扫描速度为20mV每秒)和方波伏安法(脉冲
幅值为30mV,频率采用5赫兹)。检测结果显示:该电极对于多巴胺的检测限位50nM.检测线
性范围达到5‑50μM。
[0050] 实施例2
[0051] 步骤1、掺硼金刚石膜的制备。首先将硅片衬底放置于丙酮溶液中,超声清洗10分钟,去除表面油渍;然后在去离子水中超声清洗15分钟,烘干炉中吹干后放入化学气相沉积
室进行掺硼金刚石的生长,生长过程中的热丝匝数为15匝,热丝温度控制在2250℃,基片表
面温度为800℃,气体比例为甲烷/硼烷/氢气等于1/0.3/49,腔压约3.0千帕,生长的金刚石
膜晶粒大小在6‑8微米直径,膜厚范围为10‑15微米。
[0052] 步骤2、镍层溅射。方法为使用物理磁控溅射设备,在1帕的气压下,使用纯度为99.99%的高纯镍靶,在步骤1中的金刚石膜上均匀溅射一层镍膜,溅射功率为100瓦,镍层
厚度在20‑40nm。
[0053] 步骤3、氢环境下的高温热处理刻蚀。方法为,将步骤2中制备得的薄片放入冷壁热处理炉中,通入60SCCM的氢气,刻蚀温度控制在800℃,刻蚀气压控制在15千帕,刻蚀时间为
200分钟。
[0054] 步骤4、镍颗粒去除。方法为,将步骤3中刻蚀完的电极片放入10%的硝酸溶液,加入到90℃,保温125分钟,将镍颗粒去除干净。
[0055] 步骤5、碳黑颗粒和萘芬溶液修饰。方法为,将0.5克的平均粒径为75nm碳黑颗粒融入10毫升异丙醇溶液,超声150获得碳黑悬浮溶液,使用移液管取10微升碳黑悬浮液滴涂在
电极表面,在烘干炉中烘干后,取7微升异丙醇稀释的5%萘芬溶液滴涂于碳黑表面,室温下
晾干。
[0056] 步骤6、传感器制备与检测。方法为,将步骤5获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器。检测对象为浓度范围在0.01‑500μM
的多巴胺溶液,干扰对象为1000μM的抗坏血酸溶液和1000μM的尿酸溶液,三类溶液的底液
均采用0.01M的PBS溶液。将干扰物分别加入不同浓度的多巴胺溶液当中,使用封装后的电
极进行检测分析,检测分析过程采用循环伏安法(扫描速度为30mV每秒)和方波伏安法(脉
冲幅值为35mV,频率采用10赫兹)。检测结果显示:该电极对于多巴胺的检测限位30nM.检测
线性范围达到1‑80μM。
[0057] 实施例3
[0058] 步骤1、掺硼金刚石膜的制备。首先将硅片衬底放置于丙酮溶液中,超声清洗20分钟,去除表面油渍;然后在去离子水中超声清洗20分钟,烘干炉中吹干后放入化学气相沉积
室进行掺硼金刚石的生长,生长过程中的热丝匝数为20匝,热丝温度控制在2500℃,基片表
面温度为900℃,气体比例为甲烷/硼烷/氢气等于1/0.3/49,腔压约5千帕,生长的金刚石膜
晶粒大小在8‑10微米直径,膜厚范围为15‑20微米。
[0059] 步骤2、镍层溅射。方法为使用物理磁控溅射设备,在2帕的气压下,使用纯度为99.99%的高纯镍靶,在步骤1中的金刚石膜上均匀溅射一层镍膜,溅射功率为150瓦,镍层
厚度在50nm。
[0060] 步骤3、氢环境下的高温热处理刻蚀。方法为,将步骤2中制备得的薄片放入冷壁热处理炉中,通入100SCCM的氢气,刻蚀温度控制在1000℃,刻蚀气压控制在20千帕,刻蚀时间
为300分钟。
[0061] 步骤4、镍颗粒去除。方法为,将步骤3中刻蚀完的电极片放入10%的硝酸溶液,加入到100℃,保温150分钟,将镍颗粒去除干净。
[0062] 步骤5、碳黑颗粒和萘芬溶液修饰。方法为,将0.5克的平均粒径为75nm碳黑颗粒融入10毫升异丙醇溶液,超声200分钟获得碳黑悬浮溶液,使用移液管取20微升碳黑悬浮液滴
涂在电极表面,在烘干炉中烘干后,取10微升异丙醇稀释的5%萘芬溶液滴涂于碳黑表面,
室温下晾干。
[0063] 步骤6、传感器制备与检测。方法为,将步骤5获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器。检测对象为浓度范围在0.01‑500μM
的多巴胺溶液,干扰对象为1500μM的抗坏血酸溶液和1500μM的尿酸溶液,三类溶液的底液
均采用0.01M的PBS溶液。将干扰物分别加入不同浓度的多巴胺溶液当中,使用封装后的电
极进行检测分析,检测分析过程采用循环伏安法(扫描速度为40mV每秒)和方波伏安法(脉
冲幅值为40mV,频率采用15赫兹)。检测结果显示:该电极对于多巴胺的检测限位16nM.检测
线性范围达到0.1‑100μM。
[0064] 对比例1
[0065] 该对比例1其他条件与实施例1相同,仅生长金刚石膜的热丝匝数为8匝,但生长出的金刚石膜不能完全覆盖基底,主要原因是匝数太少导致热丝下方的热辐射覆盖面积不
足,从而基底部分区域温度达不到金刚石的形核以及生长温度,最终生长不出连续的金刚
石层。
[0066] 对比例2
[0067] 该对比例2其他条件与实施例1相同,仅生长金刚石膜的热丝匝数为25匝,但生长金刚石膜过程中热丝变形非常严重,在形核初期就会熔断,导致实验失败。主要原因是钨丝
匝数太多,总长度太大,带来的热变形过量,从而产生变形严重的现象,进一步的,过度的变
形会产生热应力,最终导致热丝不能长久使用,直接熔断。
[0068] 对比例3
[0069] 该对比例3其他条件与实施例1相同,仅生长金刚石膜时控制的热丝温度在1800℃,但在基底上却不能生长出金刚石膜,主要原因为热丝温度太低,裂解的C原子数量较少,
另外也导致基底温度过低,两方面直接导致在基底不能形成有效形核,最终生长金刚石失
败。
[0070] 对比例4
[0071] 该对比例4其他条件与实施例3相同,仅刻蚀金刚石用的镍层厚度为80nm,刻蚀完后发现镍颗粒团聚成尺寸较大的微米颗粒,表面呈现黑色石墨层,为能有效地刻蚀出多孔。
主要原因是镍层太厚,团聚的镍颗粒尺寸太大,镍颗粒下方刻蚀出的碳原子不能很好地被
氢气带走,造成石墨层堆积,刻蚀中止。
[0072] 对比例5
[0073] 该对比例5其他条件与实施例1相同,仅是不进行萘芬溶液的修饰。但是在进行多巴胺的选择性检测时,发现两个主要明显的不足。一是只用碳黑溶液修饰的电极虽然能把
多巴胺和抗坏血酸的氧化电位区分开(电位差达到200mV),但是与单独检测同样浓度的多
巴胺溶液相比(0.01‑500μM的不包含干扰物抗坏血酸的多巴胺溶液),各个浓度的检测信号
明显增大(增大信号达到了原值的30%),这说明仅用碳黑修饰的电极,虽然能贫化抗坏血
酸的影响,但是不能完全消除其对多巴胺检测信号的干扰,造成检测结果的不准确;另一个
问题是该电极上的碳黑颗粒虽然嵌入进了金刚石孔内,稳定性比无孔修饰有所增强,但是
其稳定性依然不足,表现为检测3‑5天后碳黑颗粒出现较明显的脱落现象,达不到萘芬膜修
饰进一步固定的效果。
[0074] 对比例6
[0075] 该对比例6其他条件与实施例1相同,仅是碳黑颗粒的粒径为20nm的碳黑颗粒。在检测多巴胺溶液(0.01‑500μM)时,发现电极活性严重不足,检测电流信号仅为实时例1中的
20%左右。主要原因为碳黑颗粒粒径太小,导致大部分颗粒都完全嵌入进了孔背部,这样碳
黑颗粒的裸露活性面积就大大减少,可用于检测多巴胺的有效面积自然就会严重不足。