靶向性相变纳米药物系统及其制备方法与应用转让专利

申请号 : CN202010387824.4

文献号 : CN111557926B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 曾粒凡奎钟玲王志刚冉海涛郝兰

申请人 : 重庆医科大学

摘要 :

本发明涉及生物医药技术领域,具体涉及了靶向性相变纳米药物系统及其制备方法与应用。靶向性相变纳米药物系统,包括主体,主体内包裹有液态氟碳,主体上载有药物,主体上共价连接有BMS‑470539。该药物系统可以解决现有技术中免疫相关肾脏病采用免疫抑制治疗时存在的毒副作用和靶向性弱的问题。本靶向性相变纳米药物系统可以应用于制备治疗免疫性肾病的相关药物上。

权利要求 :

1.靶向性相变纳米药物系统,其特征在于:包括主体,主体内包裹有全氟正戊烷,主体上载有药物,主体上共价连接有BMS‑470539;

其由如下方法制备获得:

使用混合溶剂溶解脂质和药物,然后将混合溶剂蒸干,得到脂质薄膜;使用缓冲液将所述脂质薄膜水化,然后加入全氟正戊烷,再经过超声处理,获得靶向性相变纳米药物系统;

所述脂质由二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、胆固醇和 DSPE‑PEG‑COOH — BMS‑ α组成; 所述DSPE‑PEG‑COOH—BMS‑α由二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基和BMS‑470539为原料合成。

2.根据权利要求1所述的靶向性相变纳米药物系统,其特征在于:所述药物为地塞米松。

3.根据权利要求2所述的靶向性相变纳米药物系统的制备方法,其特征在于,包括以下步骤:

(1)使用二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基和BMS‑470539为原料合成DSPE‑PEG‑COOH—BMS‑α;

(2)使用混合溶剂溶解脂质和药物,所述脂质由二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、胆固醇和DSPE‑PEG‑COOH—BMS‑α组成,然后将混合溶剂蒸干,得到脂质薄膜;

(3)使用缓冲液将所述脂质薄膜水化,然后加入全氟正戊烷,再经过超声处理,获得药物系统DEX/PFP@LIPs‑BMS‑α。

4.根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基和BMS‑470539通过碳二亚胺法缩合获得DSPE‑PEG‑COOH—BMS‑α。

5.根据权利要求4所述的制备方法,其特征在于,在步骤(2)中,二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、DSPE‑PEG‑COOH‑BMS‑α以及胆固醇的摩尔比为69:8:8:15。

6.根据权利要求5所述的制备方法,其特征在于,在步骤(2)中,所述混合溶剂由三氯甲烷和甲醇组成。

7.根据权利要求6所述的制备方法,其特征在于,在步骤(2)中,所述药物为地塞米松,地塞米松与脂质的质量比为1:2。

8.根据权利要求1或2中任一项权利要求所述的靶向性相变纳米药物系统在制备治疗免疫性肾病的药物上的应用。

说明书 :

靶向性相变纳米药物系统及其制备方法与应用

技术领域

[0001] 本发明涉及生物医药技术领域,具体涉及了靶向性相变纳米药物系统及其制备方法与应用。

背景技术

[0002] 免疫性肾病是一组由多种病因引起的具有相同免疫病理学特征的慢性肾小球疾病。免疫性肾病包括紫癜性肾炎、狼疮性肾炎、IgA肾病等,由于患者的免疫系统功能紊乱,
产生的免疫复合物沉积在肾脏中,对肾脏的固有细胞造成损伤,引发炎症反应等,破坏肾脏
固有细胞的正常功能而使患者出现蛋白尿、血尿、水肿等肾病症状。
[0003] 免疫相关肾脏病,如膜性肾病(MN)是肾病综合征常见的病理类型之一,MN全球年发病率为1.2/10万,大部分为特发性膜性肾病(IMN)。IMN自发病起5‑10年可出现不同程度
的肾功能损害,特别容易并发肾静脉血栓(可高达40%‑50%),这将降低肾脏存活率,因此
对有进展危险或患有严重和持续的肾炎综合征的患者,建议进行免疫抑制治疗,以在长远
时间获得完全或部分缓解。
[0004] 运用免疫抑制剂进行免疫抑制治疗,在获益的同时,仍然存在药物毒副作用较强和缺少药物靶向性等问题。例如,静脉使用环磷酰胺(CTX/CP)所带来的风险包括:骨髓抑
制、肝功能损害、出血性膀胱炎、性腺抑制、胃肠道反应、脱发等。目前无论是静脉,还是口服
运用免疫抑制剂进行治疗,其毒副作用都无法有效避免。并且药物不能靶向目的组织,进一
步加剧了其毒副作用。

发明内容

[0005] 本发明的目的在于提供一种靶向性相变纳米药物系统,以解决现有技术中免疫相关肾脏病采用免疫抑制治疗时存在毒副作用和靶向性弱的问题。
[0006] 为实现上述目的,本发明采用的技术方案如下:
[0007] 靶向性相变纳米药物系统,包括主体,主体内包裹有液态氟碳,主体上载有药物,主体上共价连接有BMS‑470539。
[0008] 采用上述技术方案,技术原理为:通过化合物BMS‑470539定点靶向肾脏病变部位,然后利用低功率聚焦超声LIFU在肾脏病变部位照射,利用液态氟碳化合物的相变性质,使
主体因体积变化而爆破,实现定点释药,从而达到靶向治疗的效果,避免药物在其他部位释
放而带来的副作用。
[0009] 本发明的有益效果在于:
[0010] (1)利用化合物BMS‑470539(缩写为:BMS‑α)作为靶向配体,由于它只激活特发性膜性肾病患者肾脏足细胞上高表达的黑皮质素1受体MC1R,而不激活其他任何亚型的黑素
受体,因此具有高效性、高选择性的特点,能够起到导航的作用;同时,在化合物BMS‑470539
与黑皮质素1受体MC1R结合后,使cAMP水平升高,这是通过cAMP‑PKA通路实现信号传导,调
控核转录因子,具有提高过氧化氢酶活性,降低足细胞活性氧水平,稳定、修复足细胞的细
胞骨架的效应,从而对患者肾脏的病变部位起到修复治疗的作用。
[0011] (2)通过在主体内包覆声致相变的液态氟碳化合物,利用液态氟碳化合物在液态时具有良好的稳定性,当被包裹入该主体中后,在低功率聚焦超声LIFU的辐照下能够发生
液‑气相变,使其体积增大,使主体内部压强增大,当增大到一定值时能够使主体爆破;因此
利用这一变化过程,在主体到达肾脏病变部位时,通过低功率聚焦超声LIFU在该组织外部
进行辐照,使主体其内的液态氟碳化合物发生液‑气相变,从而在病变处爆破,实现药物释
放。
[0012] 进一步,所述主体为脂质纳米微球。
[0013] 采用上述技术方案,脂质体与生物体细胞膜结构相似、较长的体内循环时间、能携带亲水性及疏水性药物、毒性小、组织摄取效率高。
[0014] 进一步,所述液态氟碳为全氟正戊烷。
[0015] 采用上述技术方案,全氟正戊烷(PFP)是其中常用的一种液态氟碳,沸点为29℃,在常温下均为液态,外界压力减小至气化压力阈值或温度升高至沸点以上时,可发生液气
相转变,可用于超声成像。
[0016] 进一步,所述药物为地塞米松。
[0017] 采用上述技术方案,地塞米松主要适用于过敏性与自身免疫性炎症性疾,是一种常用的免疫抑制剂。发明人将地塞米松包载在本纳米药物系统中,想通过该系统的靶向功
能和定点释放功能降低地塞米松对生物体的副作用,并且脂质主体对地塞米松进行包载并
在生物体中实现传递,也可以降低地塞米松的毒性。发明人意外发现,地塞米松包载到本药
物系统中,表面连接BMS‑α形成DEX/PFP@Lips‑BMS‑α后,对足细胞增殖具有促进作用,这对
促进足细胞稳定性和缓解免疫相关性肾病具有积极意义(实验例4)。
[0018] 进一步,靶向性相变纳米药物系统的制备方法,包括以下步骤:
[0019] (1)使用二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基和BMS‑470539为原料合成DSPE‑PEG‑COOH—BMS‑α;
[0020] (2)使用混合溶剂溶解脂质和药物,所述脂质由二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、胆固醇和DSPE‑PEG‑COOH—BMS‑α组成,然后将混合溶剂蒸干,得到脂质薄膜;
[0021] (3)使用缓冲液将所述脂质薄膜水化,然后加入全氟正戊烷,再经过超声处理,获得药物系统DEX/PFP@LIPs‑BMS‑α。
[0022] 采用上述技术方案,以二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基、胆固醇与化合物BMS‑470539为原料,先利用二硬脂酰磷脂酰乙
醇胺‑聚乙二醇‑羧基与化合物BMS‑470539通过碳二亚胺法反应得到缩合后的化合物,然后
采用双乳化法制备纳米主体,最后使纳米主体与全氟正戊烷PFP反应得到该药物系统。该制
备方法条件温和,操作简单,能够快速、成功地制备出大小均一、形态规则、分散性好、性质
稳定的靶向相变化合物BMS‑470539的纳米主体。该纳米粒具有良好的生物相容性,通过化
合物BMS‑470539对肾小球具有良好的靶向能力,联合低强度聚焦超声对药物进行定点释
放,提高治疗的特异性,避免治疗的副作用。
[0023] 进一步,在步骤(1)中,二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基和BMS‑470539通过碳二亚胺法缩合获得DSPE‑PEG‑COOH—BMS‑α。
[0024] 采用上述技术方案,二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基中的羧基和BMS‑470539中的氨基可以在一定条件下缩合。
[0025] 进一步,在步骤(2)中,二棕榈酰磷脂酰胆碱、二棕榈酰磷脂酰甘油、DSPE‑PEG‑COOH‑BMS‑α以及胆固醇的摩尔比为69:8:8:15。
[0026] 采用上述技术方案,可形成稳定的脂质薄膜,并充分负载具有靶向和治疗功能的DSPE‑PEG‑COOH‑BMS‑α。
[0027] 进一步,在步骤(2)中,所述混合溶剂由三氯甲烷和甲醇组成。
[0028] 采用上述技术方案,三氯甲烷和甲醇组成的混合溶剂可以将脂质物质充分溶解并使其混合均匀。
[0029] 进一步,在步骤(2)中,所述药物为地塞米松,地塞米松与脂质的质量比为1:2。
[0030] 采用上述技术方案,地塞米松主要适用于过敏性与自身免疫性炎症性疾,是一种常用的免疫抑制剂。且采用上述质量比,可以将药物稳定负载到药物系统上。
[0031] 进一步,靶向性相变纳米药物系统在制备治疗免疫性肾病的药物上的应用。
[0032] 采用上述技术方案,BMS‑470539具有足细胞靶向和稳定足细胞骨架的作用,可以应用于免疫性肾病的治疗中。

附图说明

[0033] 图1为本发明实施例1中DEX/PFP@LIPs‑BMS‑α的共聚焦显微镜观察结果(×800);
[0034] 图2为本发明实施例1中DEX/PFP@LIPs‑BMS‑α的粒径分布及稳定性分析结果;
[0035] 图3为本发明实施例1、3和4中的药物系统(DEX/PFP@LIPs‑BMS‑α、PFP@LIPs和Dex/PFP@LIPs)的电位分布情况;
[0036] 图4为本发明实施例1中DEX/PFP@LIPs‑BMS‑α的透射电镜观察结果;
[0037] 图5为本发明实验例1的共聚焦显微镜观察结果(PA治疗144h,恢复24h,从左向右依次为:merge通道、DAPI通道和FITC(Alexa 488)通道);
[0038] 图6为本发明实验例1的共聚焦显微镜观察结果(DSPE‑PEG‑COOH‑BMS‑α治疗144h,恢复24h,从左向右依次为:merge通道、DAPI通道和FITC(Alexa 488)通道);
[0039] 图7为本发明实验例1的共聚焦显微镜观察结果(PA治疗72h,恢复96h,从左向右依次为:merge通道、DAPI通道和FITC(Alexa 488)通道);
[0040] 图8为本发明实验例1的共聚焦显微镜观察结果(PBS治疗168h,从左向右依次为:merge通道、DAPI通道和FITC(Alexa 488)通道);
[0041] 图9为本发明实验例1的荧光半定量分析结果;
[0042] 图10为本发明实验例2的共聚焦显微镜观察结果(空白对照组,merge通道);
[0043] 图11为本发明实验例2的共聚焦显微镜观察结果(阴性对照组1,TRTIC(DiI)通道);
[0044] 图12为本发明实验例2的共聚焦显微镜观察结果(阴性对照组2,TRTIC(DiI)通道);
[0045] 图13为本发明实验例2的共聚焦显微镜观察结果(阴性对照组3,TRTIC(DiI)通道);
[0046] 图14为本发明实验例2的共聚焦显微镜观察结果(实验组1,TRTIC(DiI)通道);
[0047] 图15为本发明实验例2的共聚焦显微镜观察结果(实验组2,TRTIC(DiI)通道);
[0048] 图16为本发明实验例2的共聚焦显微镜观察结果(实验组3,TRTIC(DiI)通道);
[0049] 图17为本发明实验例3的共聚焦显微镜观察结果(对照组,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0050] 图18为本发明实验例3的共聚焦显微镜观察结果(实验组1,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0051] 图19为本发明实验例3的共聚焦显微镜观察结果(实验组2,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0052] 图20为本发明实验例3的共聚焦显微镜观察结果(实验组3,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0053] 图21为本发明实验例3的共聚焦显微镜观察结果(实验组4,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0054] 图22为本发明实验例3的共聚焦显微镜观察结果(实验组5,TRTIC(罗丹明标记鬼笔环肽/TRITC Phalloidin)黑白通道);
[0055] 图23为本发明实验例3的荧光半定量分析结果;
[0056] 图24为本发明实验例4的细胞毒性实验结果;
[0057] 图25为本发明实验例5的紫外吸光光度实验结果;
[0058] 图26为本发明实验例6的LIFU致相变B‑mode曲线图;
[0059] 图27为本发明实验例6的LIFU致相变CEUS‑mode曲线图;
[0060] 图28为本发明实验例7的释药实验结果(4℃);
[0061] 图29为本发明实验例7的释药实验结果(37℃);
[0062] 图30为本发明实验例7的释药实验结果(37℃联合LIFU);

具体实施方式

[0063] 下面通过具体实施方式进一步详细说明:
[0064] 实施例1:靶向性相变纳米药物系统的制备(DEX/PFP@LIPs‑BMS‑α)
[0065] (1)DSPE‑PEG‑COOH—BMS‑α的合成
[0066] 以二硬脂酰磷脂酰乙醇胺‑聚乙二醇‑羧基(DSPE‑PEG(2000)‑COOH)与化合物BMS‑470539(简称BMS‑α)为原料,通过碳二亚胺法制备得到缩合后的化合物(二硬脂酰磷脂酰乙
醇胺‑聚乙二醇‑羧基—BMS‑α,DSPE‑PEG‑COOH—BMS‑α)。
[0067] 取80mg(0.027mmol)DSPE‑PEG(2000)‑COOH,溶于20ml二甲基甲酰胺(DMF)中;加入3.8mg(0.027mmol)无水1‑羟基苯并三氮唑(HOBT);再加入3.5mg(0.027mmol)N,N‑二异丙基
碳二亚胺(DIC),震荡0.5h;然后加入2ml DMF溶的15mg(0.025mmol)化合物BMS‑470539,常
温震荡24h后;经HPLC纯化得到目标产物DSPE‑PEG‑COOH—BMS‑α。最后得到的目标产物经
Mass Spectrometry和HPLC检测,确定目标产物为DSPE‑PEG‑COOH—BMS‑α。
[0068] (2)制备脂质薄膜
[0069] 将二棕榈酰磷脂酰胆碱(DPPC)、二棕榈酰磷脂酰甘油(DPPG)、步骤(1)中制备所得化合物(DSPE‑PEG‑COOH‑BMS‑α)与胆固醇(CHO)按69:8:8:15的摩尔比例置于圆底烧瓶中,
每10mg脂质(脂质包括DPPC、DPPG、DSPE‑PEG‑COOH‑BMS‑α和CHO四种物质)加入4mg地塞米松
(Dexamethasone,DEX),然后加5ml三氯甲烷和2ml甲醇充分溶解。在水浴温度为55℃、负压
为‑0.1MPa的环境下旋转蒸发30min,由此得到脂质薄膜。
[0070] (3)制备纳米药物系统DEX/PFP@LIPs‑BMS‑α
[0071] 每10mg脂质加入2ml PBS缓冲液(PH=7.4)对步骤(2)中所得脂质薄膜进行水化并充分洗脱。然后每10mg脂质加入200ul全氟正戊烷PFP,使用低温超声声震仪(1000w*5%,
20HZ,5s/5s的工作/停歇,5min)进行超声。再在温度为4℃的条件下进行离心(8000转,
5min),弃上层清液,得到下层沉淀,即为药物系统DEX/PFP@LIPs‑BMS‑α。
[0072] 本实施例制备的DEX/PFP@LIPs‑BMS‑α即为本方案的靶向性相变纳米药物系统,包括主体脂质微球,主体内包裹有声致相变的全氟正戊烷PFP(液态氟碳化合物的一种),主体
上嵌入有药物地塞米松DEX,主体上通过酰胺键连接有用于靶向肾小球的化合物BMS‑
470539。本实施例制备的DEX/PFP@LIPs‑BMS‑α的成品外观呈乳白色。在共聚焦显微镜(×
800)下观察本实施例制备的DEX/PFP@LIPs‑BMS‑α的形态,结果如图1所示。对本方案制备的
DEX/PFP@LIPs‑BMS‑α进行透射电镜观察,结果如图4所示,DEX/PFP@LIPs—BMS‑α呈圆球形。
由此可见,纳米脂质微球MP/PFP@LIPs—BMS‑470539的外形均呈球形,大小均一,形态规则,
分散性好。
[0073] 对本实施例制备的DEX/PFP@LIPs‑BMS‑α采用马尔文粒径分析仪进行粒径分布及稳定性分析(如图2所示):将DEX/PFP@LIPs‑BMS‑α分别放置0天、7天和14天后,分别测量
DEX/PFP@LIPs‑BMS‑α粒径。第0天粒径(197.9±3.9)nm,第7天粒径(207.5±11.5)nm,第14
天粒径(218.9±16.3)nm。各时间点比较差异无统计学意义(对上述三组粒径数据进行
anova分析,p大于0.1,三组数据无显著差异),表明此药物系统具有良好稳定性。
[0074] 对本方案制备的DEX/PFP@LIPs‑BMS‑α进行电位分析,结果如图3所示,平均Zeta电位为(‑53.8±1.7)mV。Dex/PFP@LIPs—BMS‑α与PFP/LIPs、Dex/PFP@LIPs分别比较差异具有
显著统计学意义,其中,*表示p<0.05,**表示p<0.01。
[0075] 实施例2:靶向性相变纳米药物系统的制备(PFP@LIPs‑BMS‑α)
[0076] 本实施例的制备方法同实施例1,不同点在于步骤(2),具体如下:
[0077] (2)制备脂质薄膜
[0078] 将二棕榈酰磷脂酰胆碱(DPPC)、二棕榈酰磷脂酰甘油(DPPG)、步骤(1)中制备所得化合物(DSPE‑PEG‑COOH‑BMS‑α)与胆固醇(CHO)按69:8:8:15的摩尔比例置于圆底烧瓶中,
并同时加入Dil。Dil的用量为每10mg脂质(脂质包括DPPC、DPPG、DSPE‑PEG‑COOH‑BMS‑α和
CHO四种物质)加入0.5mg Dil。然后加5ml三氯甲烷和2ml甲醇充分溶解。在水浴温度为55
℃、负压为‑0.1MPa的环境下旋转蒸发30min,由此得到脂质薄膜。
[0079] 实施例3:相变纳米药物系统的制备(PFP@LIPs)
[0080] 本实施例基本同实施例2,不同点在于:不使用DSPE‑PEG‑COOH—BMS‑α(即无(1)DSPE‑PEG‑COOH—BMS‑α的合成),在(2)和(3)的合成步骤中,使用DSPE‑PEG‑COOH代替DSPE‑
PEG‑COOH—BMS‑α。对本方案制备的PFP@LIPs进行电位分析,结果如图3所示,平均Zeta电位
为(‑42.3±0.9)mV。
[0081] 实施例4:相变纳米药物系统的制备(DEX/PFP@LIPs)
[0082] 本实施例基本同实施例1,不同点在于:不使用DSPE‑PEG‑COOH—BMS‑α(即无(1)DSPE‑PEG‑COOH—BMS‑α的合成),在(2)和(3)的合成步骤中,使用DSPE‑PEG‑COOH代替DSPE‑
PEG‑COOH—BMS‑α。对本方案制备的DEX/PFP@LIPs进行电位分析,结果如图3所示,平均Zeta
电位为(‑47.6±1.2)mV。
[0083] 实验例1:人肾脏足细胞MC1R诱导高表达及验证
[0084] 接种人肾足细胞(北京北纳创联生物技术有限公司,产品编号:BNCC340460)于无菌培养瓶中,并添加含有10%胎牛血清和1%青霉素‑链霉素的McCoy’s 5A培养基,培养瓶
置于温37℃,5%CO2细胞培养箱中培养八天,足细胞接种于T25细胞培养瓶。实验组1加入含
有5ug/ml嘌呤霉素氨基核苷(PA;MCE公司,NSC 3056)的培养基4ml治疗144h,恢复24h;实验
组2加入含有10nM DSPE‑PEG‑COOH‑BMS‑α(实施例1中制备)的培养基4ml治疗144h,恢复
24h;实验组3加入含有5ug/ml PA的培养基4ml治疗72h,恢复96h;对照组加入实验组等同量
1×PBS治疗168h。
[0085] 实验前两天将各组细胞接种于共聚焦皿(半径r=15mm)培养。共聚焦皿中细胞合适密度时,用37℃PBS清洗细胞两次;用含4%多聚甲醛的PBS室温下固定15min,37℃PBS洗
涤三次;用含PBS的0.1%聚氧乙烯辛基苯基醚(Triton X–100)室温下渗透处理细胞5min,
PBS洗涤三次;含PBS的1%牛血清白蛋白(BSA)室温下处理1h,PBS洗涤三次;加入100ul兔抗
MC1R抗体(abcam公司,ab236734,稀释比例1:130),置于4℃冰箱过夜,随后PBS洗涤三次;加
入100ul羊抗兔IgG H&L(Alexa 488、abcam公司,ab150077,稀释比例1:1000),室温孵
化1h,PBS洗涤三次;4',6‑二脒基‑2‑苯基吲哚DAPI复染10min,PBS洗涤两次后于共聚焦显
微镜下观察。
[0086] 共聚焦显微镜观察结果如图7‑图10所示,羊抗兔IgG H&L在488nm激光下发射绿色荧光;DAPI染色细胞核,激光激发后发射蓝色荧光。荧光半定量分析结果如图9所示,其
中,****表示P<0.05。上述实验结果说明正常人肾脏足细胞及PA诱导后的人肾脏足细胞均
表达MC1R,PA能促进MC1R表达且与诱导时间有关。DSPE‑PEG‑COOH‑BMS‑α治疗后荧光强度减
弱,是与DSPE‑PEG‑COOH‑BMS‑α治疗后MC1R表达减少有关。在本实验例中,共有三个通道,
merge通道展示了DAPI发出的蓝色荧光和Alexa 488发出的绿色荧光,DAPI通道展示
了DAPI发出的蓝色荧光,FITC(Alexa 488)通道展示了Alexa 488发出的绿色荧
光(图5‑图8仅展示了merge通道,其余两个通道未示)。
[0087] 实验例2:PFP@LIPs‑BMS‑α靶向人肾脏足细胞验证
[0088] 接种人肾足细胞于无菌培养瓶中,并添加含有10%胎牛血清和1%青霉素‑链霉素的McCoy’s 5A培养基,培养瓶置于温37℃,5%CO2细胞培养箱中培养七天,足细胞接种于
T25培养瓶,细胞中加入含有5ug/ml嘌呤霉素氨基核苷(PA)的培养基4ml治疗72h,恢复
120h。
[0089] 进行下述实验前两天将细胞接种于共聚焦皿(半径r=15mm)培养。共聚焦皿中细胞合适密度时,用37℃PBS清洗细胞两次;加入培养基(McCoy’s 5A、10%胎牛血清及1%青
霉素‑链霉素)1ml于共聚焦皿中,同时空白对照组加入PBS(40ul),孵化120min;阴性对照组
1加入PFP@LIPs(2.5mg/ml,40ul),孵化30min;阴性对照组2加入PFP@LIPs(2.5mg/ml,
40ul),孵化60min;阴性对照组3加入PFP@LIPs(2.5mg/ml,40ul),孵化120min;实验组1加入
PFP@LIPs‑BMS‑α(2.5mg/ml,40ul),孵化30min;实验组2加入PFP@LIPs‑BMS‑α(2.5mg/ml,
40ul),孵化60min;实验组3加入PFP@LIPs‑BMS‑α(2.5mg/ml,40ul),孵化120min。其中,PFP@
LIPs‑BMS‑α的制备过程同实施例2,并且在制备过程中加入了DiI荧光染料。
[0090] 所有组按上述条件孵化结束后按照如下条件处理:用37℃PBS清洗细胞三次,每次5min;用含4%多聚甲醛的PBS室温下固定15min,再用37℃PBS洗涤水三次;DAPI复染10min,
然后用PBS洗涤两次后于共聚焦显微镜下观察。
[0091] 共聚焦显微镜观察结果如图10‑16所示,纳米脂质微球PFP@LIPs‑BMS‑α制备过程中加入DiI荧光染料,激光激发下发射共色荧光;DAPI染色细胞核,激光激发后发射蓝色荧
光。各组按照上述条件处理细胞,空白对照组TRTIC通道未见红色荧光,只有DAPI发出的蓝
色荧光(图10中箭头所示);阴性对照组随着PFP@LIPs‑BMS‑α与细胞孵化时间延长,TRTIC通
道可见散在、逐渐增强的红色荧光(图11‑图13,图中亮点以及颜色浅于背景的部分即为纳
米粒上的DiI荧光染料发出的红色荧光);实验组(图14‑图16)随着PFP@LIPs‑BMS‑α与细胞
孵化时间延长,TRTIC通道的荧光强度逐渐增强。在孵化时间短时,荧光信号散在细胞膜周
围,孵化时间增长,细胞膜周围和细胞内均具有红色荧光,表明纳米脂质微球PFP@LIPs‑
BMS‑α能够有效靶向人肾脏足细胞。在本实验例中,采用了四种通道对样本进行了观测,
merge通道显示了Dil发出的红色荧光和DAPI发出的蓝色荧光,DAPI通道显示了DAPI发出的
蓝色荧光,TRTIC(DiI)通道展示了Dil发出的红色荧光、TD通道展示了merge通道的黑白图
像(图11‑16仅展示部分通道)。
[0092] 实验例3:靶稳定和修复人肾脏足细胞验证
[0093] 接种人肾足细胞于无菌培养瓶中,并添加含有10%胎牛血清和1%青霉素‑链霉素的McCoy’s 5A培养基,培养瓶置于温37℃,5%CO2细胞培养箱中培养七天,足细胞接种于
T25培养瓶。实验组1加入含有100nM BMS‑α的培养基4ml治疗72h,恢复96h;实验组2加入含
有DSPE‑PEG‑COOH—BMS‑α(实施例1中制备,以BMS‑α当量计算100nM)的培养基4ml治疗72h,
恢复96h;实验组3加入含有PA(5ug/ml)的培养基4ml治疗72h,恢复96h;实验组4先加入含有
PA(5ug/ml)的培养基4ml治疗72h,然后加入含有BMS‑α(100nM)的培养基4ml治疗72h,再恢
复24h;实验组5先加入含有PA(5ug/ml)的培养基4ml治疗72h,然后加入含有DSPE‑PEG‑
COOH—BMS‑α(以BMS‑α当量计算100nM)的培养基4ml治疗72h,再恢复24h;对照组加入实验
组同等量1×PBS治疗168h。实验前2d将各组细胞接种于共聚焦皿(半径r=15mm)培养。共聚
焦皿中细胞合适密度时,37℃PBS清洗细胞2次;用含4%多聚甲醛的PBS室温下固定15min,
37℃PBS洗涤3次;用含PBS的0.1%Triton x–100室温下渗透处理细胞30min,PBS洗涤3次;
含PBS的1%BSA室温下处理15min,PBS洗涤3次;加入300ul罗丹明标记鬼笔环肽(TRITC 
Phalloidin,上海翊圣公司,40734ES75),100nM,室温下孵化30min,PBS洗涤3次;DAPI复染
10min,PBS洗涤2次后于共聚焦显微镜下观察。
[0094] 共聚焦显微镜观察结果如图17‑22所示,荧光半定量分析结果如图23所示。实验结果显示:罗丹明标记鬼笔环肽(TRITC Phalloidin)与各组细胞孵化30min,激光下发射红色
荧光,细胞骨架呈现红色丝状;DAPI染色细胞核,激光激发后发射蓝色荧光(图中未示)。对
照组及实验组1、2荧光最强,细胞骨架清晰、排序有序;实验组4、5荧光次之,细胞骨架可见;
实验组3最弱,细胞骨架紊乱、断裂。在本实验例中,merge通道显示了荧光显微镜下罗丹明
标记鬼笔环肽的红色荧光和DAPI的蓝色荧光,TRTIC通道显示了荧光显微镜下罗丹明标记
鬼笔环肽的红色荧光,TRTIC通道黑白是将TRTIC通道显示的图像转换成了黑白图像(图17‑
22中仅展示了TRTIC通道黑白)。对照组(PBS 168h)与实验组1(BMS‑α72h)、实验组2(DSPE—
BMS‑α72h)进行荧光半定量分析,无显著差异(P>0.05)。实验组3与余各组进行荧光半定量
分析,均具有显著差异(P<0.05)。表明BMS‑α、DSPE‑PEG‑COOH—BMS‑α不影响正常肾脏足细
胞的细胞骨架排列,PA可致肾脏足细胞的细胞骨架断裂、紊乱,而BMS‑α、DSPE‑PEG‑COOH‑
BMS‑α具有无差异性修复断裂、紊乱的肾脏足细胞细胞骨架的功能,将DSPE‑PEG(2000)‑
COOH与BMS‑α共价连接,不会影响BMS‑α的骨架修复功能。
[0095] 实验例4:细胞毒性实验
[0096] 对DEX/PFP@LIPs‑BMS‑α与Dex的细胞毒性进行了实验研究。接种人肾足细胞于无菌培养瓶中,并添加含有10%胎牛血清和1%青霉素‑链霉素的McCoy’s 5A培养基,培养瓶
置于37℃,5%CO2细胞培养箱中培养约13天,96孔板中每孔接种10000个细胞培养24h,然后
药物系统组分别添加100ul浓度为0.1mg/ml、0.2mg/ml、0.4mg/ml、0.6mg/ml、0.8mg/ml、
1.0mg/ml的Dex/PFP@LIPs—BMS‑α,每个浓度重复5次。另外,Dex组分别添加100ul同药物系
统组中的Dex相同当量浓度的Dex,分别为0.032mg/ml、0.064mg/ml、0.128mg/ml、0.192mg/
ml、0.256mg/ml和0.32mg/ml,每个浓度重复5次。添加后均再培养24h,按照CCK‑8方案测定
细胞毒性。实验结果如图24所示,Dex对细胞无明显毒性,DEX/PFP@LIPs‑BMS‑α随着浓度增
加有促进细胞增殖的作用。0.8和1.0mg/ml时,DEX/PFP@LIPs‑BMS‑α显示出了较强的促进增
殖作用。
[0097] 实验例5:紫外吸光光度分析
[0098] 对实施例1和实施例2制备的药物系统(分别是DEX/PFP@LIPs‑BMS‑α和PFP@LIPs‑BMS‑α)进行紫外吸光光度分析,实验结果如图25所示,表明实施例1中的药物系统中成功负
载了Dex。
[0099] 实验例6:LIFU致相变实验
[0100] 将实施例1中的DEX/PFP@LIPs‑BMS‑α纳米脂质微球(原浓度2.5mg/ml),稀释32倍2 2 2
后装载于琼脂孔中,在LIFU功率0.8w/cm、1.6w/cm 、2.4w/cm(5s工作/5s暂停)下分别作用
0‑5min时长的超声,在B‑mode与CEUS‑mode进行显像观察。实验结果如图26和图27所示,说
明DEX/PFP@LIPs‑BMS‑α具有超声显像功能,LIFU可致该纳米微球相变释放药物,在2.4w/
2
cm功率下作用3min相变最为显著。
[0101] 实施例7:释药实验
[0102] DEX/PFP@LIPs—BMS‑α纳米脂质微球(实施例1中制备)在4℃、37℃、37℃联合LIFU情况下透析法和紫外分光光度法测定Dex释放速率。PBS(0.01mol/L,PH=7.4)中加入0.5%
Tween‑80(V/V)配置成释放液。分别取3个分子截留大小为3000Da的透析袋,各加入释放液
2ml,并添加Dex/PFP@LIPs—BMS‑α1mg。透析袋浸泡于60ml释放液中,分别置放于4℃、37℃
和37℃中120转/min持续搅拌,分别于2h、4h、6h、8h、10h、12h、24h和48h取透析袋外2ml释放
2
液,同时加入2ml释放液。另37℃‑LIFU分别于8h、12h予以LIFU 2.4w/cm ,3min(5s工作/5暂
停)。所取释放液采用分光光度法测定242nm处的吸光值。试验结果如图28‑30所示,同时间
点吸光值37℃‑LIFU>37℃>4℃,表面升高温度有助于Dex药物释放,LIFU能促进药物释
放。
[0103] 实施例8:体内实验
[0104] 将Dex/PFP@LIPs—BMS‑α纳米脂质微球靶向被动型海曼肾炎(PHN)模型鼠肾小球。采用兔抗Fx1A抗体(Probetex Inc.)制备PHN模型,140g‑160g健康雄性SD大鼠,首次给予
Anti‑Fx1A IgG抗体1.5ml,1周后追加0.5ml。共计14天通过尿蛋白等指标评价、筛选成功动
物模型。无靶组(n=5)尾静脉给予DiI标记的Dex/PFP@LIPs(2.5mg/ml,500ul),分别于注射
后4h、8h、16h、24h和48h取肾脏组织,冰冻切片后于共聚焦下观察。有靶组(n=5)尾静脉给
予DiI标记的Dex/PFP@LIPs—BMS‑α(2.5mg/ml,500ul),分别于注射后4h、8h、16h、24h和48h
取肾脏组织,冰冻切片后于共聚焦下观察。实验结果显示:DiI标记的Dex/PFP@LIPs和Dex/
PFP@LIPs—BMS‑α等量(2.5mg)尾静脉注射,肾脏冰冻切片共聚焦显微镜观察,蓝色为DAPI
所染细胞核,蓝色及暗红色为肾脏组织自发光,颗粒状橘红色为DiI标记的有靶和无靶纳米
药物系统。Dex/PFP@LIPs注射后8h肾小球出现标记的药物系统,16h、24h时增加不显著,48h
较前药物系统富集减少。Dex/PFP@LIPs—BMS‑α注射后几乎全部靶向肾小球,4h出现标记的
药物系统,16h、24h、48h可观察到药物系统显著富集。
[0105] 以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以
作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的
效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的
具体实施方式等记载可以用于解释权利要求的内容。