一种立式微生物检测芯片转让专利

申请号 : CN202010409245.5

文献号 : CN111632633B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郑同玉

申请人 : 杭州方略生物科技有限公司

摘要 :

本发明涉及一种立式微生物检测芯片,包括在芯片进口和出口之间弯折延伸的输送通道和设置在所述输送通道水平部分的容纳腔,容纳腔的底部布置有出口连通至下一级水平设置的分配通道的侧流通道,竖直设置的芯片允许将激励光光源和荧光检测元件设置在芯片两侧,从而可以完全屏蔽激励光的背景干扰;侧流通道的进出口端分别连通于容纳腔底部和下级分配通道,能够在不消耗连续相流体的情况下实现对微液滴的诱导;侧流通道可以单独设置在结构层,从而减小甚至消除已被填充的容纳腔对液滴的诱导效应;通过在芯片盖片层和基片层的外侧涂覆偏振方向相反的偏振涂层,从而实现对激励光到荧光检测元件间的光路的完全阻断,同时,配合在芯片两侧设置的外部偏振元件,还可以阻断透过容纳腔侧壁射出的荧光信号到荧光检测元件之间的光路,避免相邻荧光信号点之间的信号融合。

权利要求 :

1.一种立式微生物检测芯片(10),其特征在于:所述芯片(10)在使用时竖直放置,其包括盖片层(1)和基片层(2),所述盖片层(1)上开设有进口通孔(11)和出口通孔(12),所述进口通孔(11)的位置高于出口通孔(12);所述基片层(2)的一侧设有非贯通的槽状微通道,所述微通道包括对应于盖片层(1)的进口通孔(11)和出口通孔(12)的进样槽(21)和出样槽(22),连通所述进样槽(21)和出样槽(22),并在两者之间弯折延伸的输送通道(23),所述输送通道(23)包括若干条水平延伸的分配通道(231)及连接于上一级分配通道(231)的末端和下一级分配通道(231)的首端的连接通道(232);相邻两个分配通道(231)之间的位置设有若干与所述分配通道(231)的下缘连通的容纳腔(24);所述容纳腔(24)的底部设置有连通下一级分配通道(231)的上缘的侧流通道(25);在盖片层(1)和基片层(2)的非贴合侧分别涂覆有偏振方向相反的偏振涂层或涂覆有吸光涂层;所述偏振涂层和吸光涂层均不覆盖容纳腔(24)。

2.如权利要求1所述的微生物检测芯片,其特征在于:所述侧流通道(25)的出口位于相邻两个容纳腔(24)之间,从而能够防止自此流出的侧向流冲击容纳腔(24)中的微液滴。

3.如权利要求1所述的微生物检测芯片,其特征在于:所述容纳腔(24)为圆形腔,其深度等于所述圆形腔的直径;所述侧流通道(25)的深度与所述容纳腔(24)的深度相同。

4.如权利要求1所述的微生物检测芯片,其特征在于:所述容纳腔(24)的上半部分与所述分配通道(231)的下缘连通,形成小于容纳腔(24)的直径的开口;从而在过容纳腔的圆心的水平截面上,所述容纳腔(24)的腔壁(241)与所述开口的边缘之间形成能够包裹微液滴的上半部分的檐部(242)。

5.如权利要求4所述的微生物检测芯片,其特征在于:在容纳腔(24)的开口的下游侧设置所述檐部(242);而在其开口的上游侧设置圆弧倒角的引导部(243);所述引导部(243)的半径与所述檐部(242)的高度相同。

6.一种立式微生物检测芯片(10),其特征在于:所述芯片(10)在使用时竖直放置,其包括具有相同形状和尺寸的盖片层(1),基片层(2),和夹设于盖片层(1)和基片层(2)之间的结构层(3);所述盖片层(1)和基片层(2)具有重叠的非贯通的微通道结构;所述盖片层(1)具有贯通的进口通孔(11)和出口通孔(12),还具有非贯通的盖片层输送通道(13)和盖片层容纳腔(14);基片层(2)具有非贯通的进样槽(21)、出样槽(22)、输送通道(23)和容纳腔(24);所述结构层(3)包括与盖片层(1)和基片层(2)上的微通道结构重叠的部分,和对应于所述进口通孔(11)和出口通孔(12)的进样中槽(31)和出样中槽(32);仅结构层(3)的微通道结构包括用于形成侧向流的中层侧流通道(35);所述结构层(3)的微通道结构均为贯通结构,从而盖片层(1)、结构层(3)和基片层(2)相互叠合后能构成完整的组合输送通道、组合进样槽、组合出样槽和组合容纳腔,但侧流通道仅存在于结构层(3)。

7.如权利要求6所述的立式微生物检测芯片,其特征在于:所述结构层(3)上的微通道结构的侧壁相比于盖片层(1)和基片层(2)上的微通道结构的侧壁具有更强的亲水性,以允许所述中层侧流通道(35)在具有相对小的截面面积的情况下,提供同等的侧向流强度。

8.如权利要求6所述的立式微生物检测芯片,其特征在于:所述芯片(10)的盖片层(1)和基片层(2)的非贴合侧分别涂覆有偏振方向相反的偏振涂层,所述偏振涂层完整覆盖所述盖片层(1)和基片层(2)的非贴合侧。

9.如权利要求6所述的立式微生物检测芯片,其特征在于:所述芯片(10)的盖片层(1)和基片层(2)的非贴合侧分别涂覆有偏振方向相反的偏振涂层,所述偏振涂层不覆盖组合容纳腔。

10.如权利要求6所述的立式微生物检测芯片,其特征在于:所述芯片(10)的基片层(2)的非贴合表面涂覆有吸光涂层;所述吸光涂层不覆盖组合容纳腔。

说明书 :

一种立式微生物检测芯片

技术领域

[0001] 本发明涉及一种生物检测装置,具体涉及一种通过PCR反应执行对病毒、细菌等微生物特异性DNA检测的立式微生物检测芯片。

背景技术

[0002] 基于微液滴的数字PCR芯片是当下最先进的核酸定量检测方法之一,相比于传统PCR技术,数字PCR将含有目标基因、引物、聚合酶等的溶液稀释后,分成几十到几十万份微
小、独立的反应器,使每个反应器的核酸模板数少于或者等于1个,对每个反应器进行传统 
PCR扩增并进行荧光检测。将含有目标基因的反应器标记为1,不含目标基因的反应器标记
为0,根据相对比例和反应器的体积,并利用泊松分布推算出原始溶液的核酸浓度。
[0003] 目前,数字PCR的主流实施方式是基于具有微反应腔阵列的微流控芯片;来自于液滴制备单元的油包水液滴被分配至微反应腔阵列中,在此经历若干次升温‑退火扩增循环
后,向微反应腔引入激励光,包括目标核酸模板的微液滴在激励光的照射下发出荧光,检测
次荧光,并进行统计分析后即可获得相应检测结果。数字PCR检测过程的主要步骤中,微液
滴在微反应腔中的有效分配、对荧光信号的准确捕捉均在很大程度上影响检测结果的可靠
性。
[0004] 现有技术中主要借助于分配通道及布置相似分配通道中的例如凸起等微结构对液滴进行局部阻挡,以提高微反应腔的有效填充率(指单液滴填充率,不包括无填充和多液
滴填充的反应腔)。但由于微通道自身及所述局部阻挡的阻力作用,导致分配通道上下游之
间流动的连续相流体存在较大的压差,而这会导致分配通道上下游处微反应腔填充效果的
巨大差异。
[0005] 此外,在对扩增后的微反应腔进行荧光检测的过程中,入射的激励光经芯片的反射、折射等往往造成强烈的背景干扰;同时,由于微阵列孔极小的间距,及位于微反应腔中
的微液滴受激后发出的荧光的无定向特性,使得相邻微孔之间的荧光信号常有部分穿越孔
壁而与相邻液滴发出的荧光信号混为一体,难以区分的问题。

发明内容

[0006] 为解决现有技术中的上述问题,本发明提供一种立式微生物检测芯片。本发明的立式微生物检测芯片能够提供相比于现有技术更高的液滴有效填充率,同时降低甚至消除
激励光等杂光造成的背景干扰,还能够有效抑制相邻液滴的荧光信号之间的混合,有效改
善不同信号点之间的独立性。
[0007] 为达到上述技术效果,本发明具体提供如下方案:
[0008] 一种立式微生物检测芯片,为便于表述,下文均以芯片10指代所述立式微生物检测芯片,所述芯片10在使用时竖直放置,其包括盖片层1和基片层2,所述盖片层1上开设有
进口通孔11和出口通孔12,所述进口通孔11的位置高于出口通孔12;优选所述进出口通孔
11和出口通孔12位于所述芯片10的竖直中轴线的同一侧的上下两端,例如左侧。
[0009] 所述基片层2上布置有微通道结构,所述微通道结构为非贯穿的槽,以利于微结构各处的相互定位。所述微通道结构包括分别对应于盖片层1的进口通孔11和出口通孔12的
进样槽21和出样槽22,连通所述进样槽21和出样槽22,并在两者之间弯折延伸的输送通道
23,所述输送通道23包括若干条水平延伸的分配通道231及连接于上一级分配通道231的末
端和下一级分配通道231的首端的连接通道232。
[0010] 除与出样槽22连通的分配通道231外,每一条分配通道231的下侧壁上均连通有若干容纳腔24,所述容纳腔24位于相邻两个分配通道231之间。
[0011] 优选所述容纳腔24的底部设置有连通下一级分配通道231的上缘的侧流通道25;由于通道的流动阻力,在上游分配通道231中流动的连续相流体具有相对更高的动能或流
体压力,因而允许在上游分配通道231中流动的连续相流体的一部分从所述侧流通道25处
直接流入下游分配通道231,从而在每个所述容纳腔24的底部形成侧向流,可以将仍在分配
通道231中流动的连续相流体和微液滴定义为主体流;所述侧向流能够诱导主体流中的微
液滴进入所述容纳腔24,同时,形成所述侧向流的连续相流体在下游分配通道231中重新汇
入主体流,即整个分配过程中,连续相流体并未产生损耗。
[0012] 保持连续相流体量的恒定对微液滴的分配过程是重要的,对于侧向流中连续相流体的处理,也可以设置额外的汇流通道对其进行收集或排放,但需要注意的是,填充在容纳
腔24中的微液滴并不能有效的封闭所述侧流通道25,因此,收集或排放所述侧向流会导致
主体流中连续相流体的持续减少,从而产生因流体损失而导致的失压,这不利于液滴的分
配过程,尤其对于微液滴阵列中微液滴数量较多时;此外,连续相流体的作用一方面是作为
液滴的输送介质,另一方面,其也起到分隔相邻液滴的作用;因此,连续相流体的损耗还会
导致相邻液滴间的间距越来越小,甚至间距变为零(该现象会在分配路径较长时出现),从
而产生液滴融合风险。
[0013] 优选的,所述侧流通道25的出口位于相邻两个容纳腔24之间,从而能够防止自此流出的侧向流冲击容纳腔24中的微液滴。具体的,可以将连通于不同分配通道231的两排容
纳腔24相互交错设置,同时将所述侧流通道25竖直设置在所述容纳腔24的底部;或者,可以
在容纳腔24定位于分配通道231的相同位置的情况下,将所述侧流通道25的至少出口部分
倾斜的设置,以防止对所述容纳腔24中的微液滴的冲击。所述侧流通道25的出口部的倾斜
方向优选使得侧向流的水平分量与相应分配通道231中的主体流的方向相同,从而所述侧
向流的竖直分量可以为所述微液滴提供额外的引导。
[0014] 优选的,所述容纳腔24为圆形腔,且其深度等于所述圆形腔的直径(均采用垂直于芯片的视角),从而允许填充在所述容纳腔24中的微液滴保持较好的球形度。所述侧流通道
25的深度与所述容纳腔24的深度相同,以利于基片层2的制造及保证芯片各部微结构尺寸
的均一性。
[0015] 优选的,所述容纳腔24的上半部分与所述分配通道231的下缘连通,形成小于容纳腔24的直径的开口;从而在过圆心的水平截面上,所述容纳腔24的腔壁241与所述开口的两
个边缘之间形成两个对称的,能够包裹微液滴的上半部分的局部的檐部242,该檐部242能
够有效防止已填充的微液滴在主体流的冲刷下从容纳腔24中逃逸。
[0016] 上述容纳腔24在其开口处具有双檐部242构造,因而其开口的宽度小于容纳腔24的直径,这使得与容纳腔24的直径相匹配的微液滴需要经历一定程度的变形才能进入所述
容纳腔24,这会对液滴的分配过程造成一定的困难;或者可以进一步减小微液滴的尺寸,使
其无需经过变形即可进入所述容纳腔,但过小的液滴容易造成容纳腔24中的多液滴填充或
者在容纳腔24入口处的液滴堆积等不期望的情况。因此,优选的,所述开口的宽度(指沿主
体流方向的尺寸)不小于容纳腔24的直径的3/4,以降低对进入容纳腔24中的微液滴的形变
量要求或者在选择具有适当小的尺寸的微液滴。
[0017] 此外,本发明发现,使用单檐部242构造可以有效解决液滴填充过程中的形变需求与采用小尺寸液滴导致的液滴堆积风险两个问题。具体的,仅在容纳腔24的开口的下游侧
设置所述檐部242;而在其开口的上游侧设置类似于圆弧倒角的引导部243;优选所述引导
部243的半径与所述檐部242的高度相同。单檐部242构造能够起到与双檐部242构造类似的
对微液滴的包裹作用,同时,由于引导部243的存在,容纳腔24的开口宽度大于其直径,微液
滴无需经历形变即可进入容纳腔24,进而允许选用与容纳腔直径更加贴近的微液滴,降低
液滴在容纳腔中的多重填充或堆积的风险。
[0018] 优选的,所述芯片10可以包括更多的层结构,例如盖片层1,基片层2和夹设与盖片层1和基片层2之间的结构层3;其中,所述结构层3可以为单层结构或多层结构。
[0019] 所述盖片层1和基片层2具有相同的形状和尺寸,还具有重叠(包括相同的通道形状、尺寸和相对于所在层的位置定位)的非贯通的微通道结构,其中所述微通道结构包括输
送通道和容纳腔的局部;区别在于所述盖片层1具有贯通的进口通孔11和出口通孔12;基片
层2则具有相应的非贯通的进样槽21和出样槽22。所述结构层3包括与盖片层1和基片层2上
的微通道结构重叠的部分,和对应于所述进口通孔11和出口通孔12的进样中槽31和出样中
槽32。其中,盖片层1和基片层2的微通道结构均不包括侧流通道,而结构层3的微通道结构
包括中层侧流通道35;所述结构层3的微通道结构均为贯通结构,从而盖片层1、结构层3和
基片层2相互叠合后构成完整组合的输送通道、进样槽、出样槽和容纳腔,但侧流通道仅存
在于结构层3。
[0020] 这样的设置允许所述侧流通道具有正方形的通道截面,进而能被填充在组合容纳腔中的微液滴更好的封闭,否则,所述侧流通道25的长方形截面难以被微液滴有效的封闭,
使得即使容纳腔24被填充后,所述侧流通道25仍然会向主体流中的微液滴提供诱导,这会
降低液滴分配速率,同时增加液滴堆积的风险。
[0021] 由于结构层3的上微通道结构均为贯通结构,使其片层包括相互分离的边框37和块单元36;其中,相邻的两个块单元36之间形成中层容纳腔34、中层侧流通道35和中层输送
通道33的非边缘部分;块单元36与边框37之间形成所述中层输送通道33的边缘部分。
[0022] 为与盖片层1及基片层2之间准确的组合形成整体微通道结构,所述结构层3的相互分离的边框37和块单元36之间需要被精确的定位,这可以借助于在结构层3的光刻期间
使用刚性的惰性支撑板件实现,具体的将在下文芯片制备方法部分详述。
[0023] 具有多层(指三层及以上)结构的芯片10同样可以具有用于包裹已填充液滴的上半部,进而抵抗主体流的冲刷的檐部242;具体的可以是双檐部242结构,或与前文所述类似
的位于容纳腔下游的单檐部242和位于容纳腔上游的引导部243结构。其中,所述檐部242和
引导部243均由盖片层1、基片层2和结构层3组合构成。
[0024] 优选的,所述结构层3上的微通道结构的侧壁相比于盖片层1和基片层2上的微通道结构的侧壁具有更强的亲水性,以允许所述中层侧流通道35在具有相对小的截面面积的
情况下,提供同等的侧向流强度,从而不至于因中层侧流通道35截面积的减小而降低对微
液滴的诱导作用。
[0025] 优选的,对于双层结构或更多层结构的芯片10,在其盖片层1和基片层2的非贴合侧分别涂覆有偏振方向相反的偏振涂层。这样的设置允许在芯片10竖直设置时,将激励光
源与荧光信号检测元件,如CCD相机分别设置于芯片10的两侧,从而激励光穿过盖片层1表
面的偏振涂层后,以单偏振态(例如P偏振光)照射微液滴,透过液滴的P偏振激励光继续射
向基片层2,而该基片层2表面上的偏振涂层与盖片层1上的偏振涂层的偏振方向相反,因而
仅允许S偏振光透过,因此,P偏振态的激励光将被基片层2截留,而不能继续射向CCD相机,
从而消除了激励光的背景干扰。
[0026] 所述偏振涂层也可以采用分别设于芯片10上下游光路上的外置偏振元件替代。
[0027] 优选的,在基片层2的非贴合表面设在吸光涂层;所述吸光涂层不覆盖容纳腔24或组合容纳腔。这样的吸光涂层可以借助于掩模实现,即使用与光刻掩模互补的掩模部分(也
可以加工以去除输送通道和侧流通道的遮掩部分而仅保留可以遮掩容纳腔的部分)遮盖所
述容纳腔,然后在相应的层表面实施所述吸光涂层。这样的设置允许配合外置偏振元件防
止相邻液滴的荧光信号相互融合。具体的,分别在芯片10前后两侧的光路上设置偏振方向
相反的偏振元件。当激励光射向芯片10时,首先经上游偏振元件专为P偏振光,穿过容纳腔
24意外部分的P偏振光被基片层2表面的吸光涂层吸收,而不能透过芯片;射入并透过容纳
腔24中的微液滴的P偏振光则被下游侧偏振元件完全截留;这与前文的偏振方案效果基本
相同,可以阻断激励光射向CCD相机。除此之外,微液滴中的荧光探针发出的荧光四散发射,
其中,射向吸光涂层的荧光信号被吸收,因而不能透过,而仅有射向吸光涂层上对应于容纳
腔24的空白部分的荧光信号才能透过,随后经下游侧偏振元件转为S偏振荧光后射向CCD相
机,此过程中,相邻液滴之间穿过腔壁而可能导致相邻信号地融合的荧光部分被消除,同时
激励光向CCD相机的传播路径也被完全阻断,因此,所获得的荧光信号更加清晰,容易辨认。
[0028] 这样的效果还可以借助于偏振涂层和外部偏振元件的组合实现,例如,在芯片10的光路上游侧设置P偏振元件,下游设置S偏振元件,同时,在芯片10的迎光侧,例如盖片层1
的外侧设置S偏振涂层,背光侧设置P偏振涂层;其中,所述偏振涂层不覆盖容纳腔或组合容
纳腔。
[0029] 在此设置下,激励光透过P偏振元件后,以P偏振态射向芯片10的盖片层1,其中部分P偏振激励光被S偏振涂层阻挡而不能透过盖片层1,仅射向容纳腔部分的P偏振光可以透
过盖片层1和基片层2,随后射向下游的S偏振元件,在该处,透过的激励光被完全阻断;微液
滴中的荧光探针受激后发出荧光信号,其中,部分荧光信号透过基片层2上的P偏振涂层而
变成P偏振荧光,然后射向芯片10下游的S偏振元件,并在该处被完全阻断;还有部分荧光信
号透过基片层2上对应于容纳腔的缺口部分,以非偏振光的形式射向S偏振元件,透过所述S
偏振元件后,以S偏振态的荧光形式射向CCD相机。
[0030] 本发明还提供一种基于前述芯片10的微生物检测系统,所述检测系统包括检测平台4、芯片10及遮光罩7;所述检测平台4上设置有用于固定竖直设置的芯片10的固定部,例
如所述固定部可以是允许所述芯片10插设固定的插槽43,当然,还可以采用其他本领域常
规的固定方式。所述插槽43优选垂直于所述检测平台4的长轴固定,且沿所述检测平台4的
长轴方向,在所述插槽43的前后方分别以平行于所述芯片10的方式设置有第一偏振元件42
和第二偏振元件44;其中,第一偏振元件42与第二偏振元件44的偏振方向相反。在所述检测
平台4的一端固定设置有光源架41,所述光源架41上固定设有激励光的光源5,所述光源5被
定位为其发出的激励光垂直射向所述第一、第二偏振元件;在所述检测平台4的相对端(指
与光源位置相对的一端)固定设有感光元件45,所述感光元件45用于接收荧光信号。
[0031] 所述检测平台4上,对应于芯片10的位置的一侧还竖直设置有供液组件6;所述供液组件6可以夹持芯片10的一侧,并可以通过所述芯片10的进口通孔11向其供应带有液滴
的连续相流体及从所述芯片10的出口通孔12接收分配液滴后的剩余流体。
[0032] 所述供液组件6包括垂直于所述芯片10设置的通道壁61;及平行于所述芯片10设置,且在所述芯片10插设与所述插槽43时,能够抵靠所述芯片10的短壁62;所述短壁62被定
位为不遮挡芯片10上的容纳腔;所述通道壁61的上下两侧分别设有一条滑动槽63;其在位
于上方的滑动槽63内滑动设有对应于芯片10的进口通孔11的进液滑块64;位于下方的滑动
槽63内滑动设置有对应于芯片10的出口通孔12的出液滑块65;所述进液滑块64和出液滑块
65正对芯片10的一侧分别设有能够与所述芯片10的进口通孔11和出口通孔12流体密封的
针66。
[0033] 所述检测平台4上表面的边缘一周设置有凹槽46,所述凹槽46用于配合遮光罩7。其中所述遮光罩7的内表面涂覆有吸光材料,从而能够防止外部光线透过,并能够吸收内部
射向其的散射光线,进而降低杂光干扰。
[0034] 本发明还提供一种制备所述芯片10的方法,具体的,当所述芯片10仅包括盖片层1和基片层2双层结构时,步骤如下:
[0035] 步骤1,选择具有相同形状和尺寸的盖片层和基片层,其中,片层的材质可以采用本领域常规的材料,如玻璃、PDMS等;
[0036] 步骤2,制备掩模,分别制备盖片掩模和基片掩模,其中,所述盖片掩模仅包括用于形成进口通孔11和出口通孔12的缺口;所述基片掩模包括用于形成进样槽21、出样槽22、输
送通23、容纳腔24和侧流通道25的缺口;
[0037] 步骤3,旋涂光刻胶,分别在盖片层1和基片层2的单侧旋涂光刻胶;
[0038] 步骤4,覆盖掩模,分别在所述盖片层1和基片层2的涂胶测覆盖盖片掩模和基片掩模;
[0039] 步骤5,紫外照射,使用紫外光从各片层的掩模侧照射相应片层,掩模缺口处的光刻胶在紫外光作用下发生化学反应;
[0040] 步骤6,烘干各片层;
[0041] 步骤7,蚀刻,使用蚀刻液蚀刻步骤6中得到的各片层,其中,盖片层1进行充分蚀刻,以得到贯通的进口通孔11和出口通孔12;基片层控制蚀刻量程度,以得到非贯通的微通
道结构;
[0042] 步骤8,去除光刻胶,将盖片层1的任意一侧与基片层2的微通道侧固定贴合(可采用本领域公知的贴合方式),得到具有双层结构的芯片10。
[0043] 当所述芯片10仅包括盖片层1、基片层2和结构层3时,步骤如下:
[0044] 步骤1,步骤1,选择具有相同形状和尺寸的盖片层、基片层和结构层,其中,片层的材质可以采用本领域常规的材料,如玻璃、PDMS等;
[0045] 步骤2,制备掩模,分别制备盖片掩模、盖片第二掩模、基片掩模和结构层掩模;其中,盖片掩模仅包括用于形成进口通孔11和出口通孔12的缺口;盖片第二掩模仅包括用于
形成盖片层输送通道13和盖片层容纳腔14的缺口;所述基片掩模仅包括用于形成进样槽
21、出样槽22、输送通23、容纳腔24的缺口;所述结构层掩模包括用于形成进样中槽31、出样
中槽32、中层输送通道33、中层容纳腔24和中层侧流通道35的缺口;其中各掩模上的对应缺
口具有相同的形状和尺寸,且被定位使得制备所得的各层的微结构能够形成完整的组合微
通道;
[0046] 步骤3,一次涂胶,在盖片层1和基片层2的单侧旋涂光刻胶,在结构层3的双侧旋涂光刻胶;
[0047] 步骤4,覆盖掩模,在盖片层1和基片层2的涂胶侧分别覆盖盖片掩模和基片掩模,在所述结构层3的两个涂胶测分别覆盖结构层掩模和刚性支撑板件;
[0048] 步骤5,一次紫外照射,使用紫外光从各片层的掩模侧照射相应片层,掩模缺口处的光刻胶在紫外光作用下发生化学反应;
[0049] 步骤6,烘干各片层;
[0050] 步骤7,一次蚀刻,使用蚀刻液蚀刻步骤6中得到的各片层,其中,盖片层1进行充分蚀刻,以得到贯通的进口通孔11和出口通孔12;基片层控制蚀刻量程度,以得到非贯通的微
通道结构;结构层3进行充分蚀刻,得到贯通的微通道结构,此时,结构层3被蚀刻成相互分
离的边框37和块单元36,但在结构侧掩模的相对侧,相互分离的边框37和块单元36仍通过
未被紫外光照射的光刻胶固定定位在刚性支撑板件上,因而仍保持相互间的位置定位;
[0051] 步骤8,去除光刻胶,将各片层掩模侧的光刻胶去除;
[0052] 步骤9,二次涂胶,在盖片层的任意一侧第二次旋涂光刻胶;
[0053] 步骤10,在步骤9中得到盖片层的涂胶测覆盖盖片层第二掩模,并按照步骤5‑8中的方式对盖片层进行紫外照射,烘干,蚀刻和剥胶;从而得到具有贯通的进口通孔11和出口
通孔12及非贯通的盖片层输送通道13和盖片层容纳腔14的盖片层;
[0054] 步骤11,将盖片层1的微通道侧与结构层3的无刚性支撑板件的一侧固定贴合,然后取出结构层3与刚性支撑板件间的光刻胶,从而使结构层3与刚性支撑板件分离,再将基
片层2的微通道侧与结构层3固定贴合,从而得到具有三层结构的芯片10。
[0055] 优选的,还包括如下步骤:
[0056] 步骤12,制备涂层掩模,所述涂层掩模仅覆盖盖片层1和基片层2上的容纳腔,考虑到所述容纳腔相互之间离散分布,可采用本领域常规的覆膜贴纸的形式制作所述涂层掩
模,以保证掩模遮挡部位的精确定位;将所述涂层掩模分别定位的贴合至盖片层1和基片层
2的非通道侧;
[0057] 步骤13,施加偏振涂层,在所述盖片层1和基片层2的掩模侧分别施加偏振涂层,其中,两个偏振涂层的偏振方向相反。
[0058] 步骤14,烘干步骤13中得到的芯片10,撕除涂层掩模,得到具有偏振涂层的三层结构的芯片10。
[0059] 相比于现有技术,本发明至少能够取得如下有益效果:竖直设置的芯片允许将激励光光源和荧光检测元件设置在芯片两侧,从而可以完全屏蔽激励光的背景干扰;在芯片
的微通道结构上布置有侧流通道,同时侧流通道的进出口端分别连通于容纳腔底部和下级
分配通道,能够在不消耗连续相流体的情况下实现对微液滴的诱导,提高了液滴填充效率,
同时不易出现液滴融合缺陷;将侧流通道单独设置在结构层,从而允许已填充的液滴较好
的封闭相应的侧流通道,从而减小甚至消除已被填充的容纳腔对液滴的诱导效应,提高液
滴分配效果,并降低液滴堆积的风险;通过在芯片盖片层和基片层的外侧涂覆偏振方向相
反的偏振涂层,从而实现对激励光到荧光检测元件间的光路的完全阻断,同时,配合在芯片
两侧设置的外部偏振元件,还可以阻断透过容纳腔侧壁射出的荧光信号到荧光检测元件之
间的光路,避免相邻荧光信号点之间的信号融合。

附图说明

[0060] 图1为具有双层结构的芯片示意图;
[0061] 图2为图1中区域A的局部放大视图;
[0062] 图3为图1中基片层的微通道侧视图之一;
[0063] 图4为图1中基片层的微通道侧视图之二;
[0064] 图5为图1中所示芯片的水平剖面图;
[0065] 图6为图1中基片层的微通道层视图之三;
[0066] 图7为图6中区域B的立体放大图;
[0067] 图8为图6中区域B的局部放大图;
[0068] 图9为图8中所示芯片的水平剖面图之一;
[0069] 图10为图8中所示芯片的水平剖面图之二(非图8所示区域);
[0070] 图11为具有三层结构的芯片示意图;
[0071] 图12为图11中区域C的局部放大图;
[0072] 图13为图11中区域D的局部放大图;
[0073] 图14为图11中区域E的局部放大图;
[0074] 图15为图11中三层芯片贴合后区域C、D、E的组合放大图之一;
[0075] 图16为图11中三层芯片贴合后区域C、D、E的组合放大图之二;
[0076] 图17为图15所示芯片的水平剖面图;
[0077] 图18为图16所示芯片的水平剖面图之一;
[0078] 图19为图16所示芯片的水平剖面图之二(非图16所示区域);
[0079] 图20为检测平台与芯片的组合示意图;
[0080] 图21为遮光罩的示意图;
[0081] 图22为供液组件的视角一;
[0082] 图23为供液组件的视角二;
[0083] 图中:1为盖片层,11为进口通孔,12为出口通孔,13为盖片层输送通道,14为盖片层容纳腔,2为基片层,21为进样槽,22为出样槽,23为输送通道,231为分配通道,232为连接
通道,24为容纳腔,241为腔壁,242为檐部,243为引导部,25为侧流通道,3为结构层,31为进
样中槽,32为出样中槽,33为中层输送通道,34为中层容纳腔,35为中层侧流通道,36为块单
元,37为边框,4为检测平台,41为光源架,42为第一偏振元件,43为插槽,44为第二偏振元
件,45为感光元件,46为凹槽,5为光源,6为供液组件,61为通道壁,62为短壁,63为滑动槽,
64为进液滑块,65为出液滑块,66为针,7为遮光罩,10为芯片。

具体实施方式

[0084] 为更好地阐述本发明的技术构思,下面结合附图对本发明的方案做进一步的说明。
[0085] 实施例1
[0086] 参见图1‑2,提供一种立式微生物检测芯片,所述芯片10在使用时竖直放置,其包括盖片层1和基片层2,所述盖片层1上开设有进口通孔11和出口通孔12,所述进口通孔11的
位置高于出口通孔12;所述进出口通孔11和出口通孔12位于所述芯片10的竖直中轴线的左
侧上下两端。
[0087] 所述基片层2上布置有微通道结构,所述微通道结构为非贯穿的槽。所述微通道结构包括分别对应于盖片层1的进口通孔11和出口通孔12的进样槽21和出样槽22,连通所述
进样槽21和出样槽22,并在两者之间弯折延伸的输送通道23,所述输送通道23包括若干条
水平延伸的分配通道231及连接于上一级分配通道231的末端和下一级分配通道231的首端
的连接通道232。
[0088] 参见图3,除与出样槽22连通的分配通道231外,每一条分配通道231的下侧壁上均连通有若干容纳腔24,所述容纳腔24位于相邻两个分配通道231之间。
[0089] 所述容纳腔24的底部设置有连通下一级分配通道231的上缘的侧流通道25。所述侧流通道25的出口位于相邻两个容纳腔24之间,从而能够防止自此流出的侧向流冲击容纳
腔24中的微液滴。具体的,参见图3,可以将连通于不同分配通道231的两排容纳腔24相互交
错设置,同时将所述侧流通道25竖直设置在所述容纳腔24的底部;或者,参见图4,可以在容
纳腔24定位于分配通道231的相同位置的情况下,将所述侧流通道25的至少出口部分倾斜
的设置,所述侧流通道25的出口部的倾斜方向使得侧向流的水平分量与相应分配通道231
中的主体流的方向相同。
[0090] 参见图5,所述容纳腔24为圆形腔,且其深度等于所述圆形腔的直径(均采用垂直于芯片的视角。所述侧流通道25的深度与所述容纳腔24的深度相同。
[0091] 所述容纳腔24的上半部分与所述分配通道231的下缘连通,形成小于容纳腔24的直径的开口;从而在过圆心的水平截面上,所述容纳腔24的腔壁241与所述开口的两个边缘
之间形成两个对称的,能够包裹微液滴的上半部分的局部的檐部242。
[0092] 参见图5,所述容纳腔24在其开口处具有双檐部242构造,因而其开口的宽度小于容纳腔24的直,所述开口的宽度不小于容纳腔24的直径的3/4。
[0093] 或者,参见图6‑10,所述容纳腔24在其开口处具有单檐部242构造。具体的,仅在容纳腔24的开口的下游侧设置所述檐部242;而在其开口的上游侧设置类似于圆弧倒角的引
导部243;所述引导部243的半径与所述檐部242的高度相同。
[0094] 实施例2
[0095] 参见图11,提供一种一种立式微生物检测芯片,所述芯片10在使用时竖直放置,其包括具有相同形状和尺寸的盖片层1,基片层2,和夹设于盖片层1和基片层2之间的结构层
3。
[0096] 参见图12‑14,所述盖片层1和基片层2具有重叠(包括相同的通道形状、尺寸和相对于所在层的位置定位)的非贯通的微通道结构;所述盖片层1具有贯通的进口通孔11和出
口通孔12;基片层2则具有相应的非贯通的进样槽21和出样槽22。
[0097] 参见图15‑16,所述结构层3包括与盖片层1和基片层2上的微通道结构重叠的部分,和对应于所述进口通孔11和出口通孔12的进样中槽31和出样中槽32。其中,盖片层1和
基片层2的微通道结构均不包括侧流通道,而结构层3的微通道结构包括中层侧流通道35;
所述结构层3的微通道结构均为贯通结构,从而盖片层1、结构层3和基片层2相互叠合后能
构成完整组合的输送通道、进样槽、出样槽和容纳腔,但侧流通道仅存在于结构层3。
[0098] 参见图17‑19,所述芯片1具有檐部242;具体的可以是双檐部242结构,或与前文所述类似的位于容纳腔下游的单檐部242和位于容纳腔上游的引导部243结构。其中,所述檐
部242和引导部243均由盖片层1、基片层2和结构层3组合构成。
[0099] 所述结构层3上的微通道结构的侧壁相比于盖片层1和基片层2上的微通道结构的侧壁具有更强的亲水性,以允许所述中层侧流通道35在具有相对小的截面面积的情况下,
提供同等的侧向流强度,从而不至于因中层侧流通道35截面积的减小而降低对微液滴的诱
导作用。
[0100] 实施例3
[0101] 区别于实施例1或2的是,所述芯片10的盖片层1和基片层2的非贴合侧分别涂覆有偏振方向相反的偏振涂层,所述偏振涂层完整覆盖所述盖片层1和基片层2的非贴合侧。
[0102] 实施例4
[0103] 区别于实施例3的是,所述偏振涂层不覆盖容纳腔24或组合容纳腔。
[0104] 实施例5
[0105] 区别于实施例1‑4的是,所述芯片10的基片层2的非贴合表面涂覆有吸光涂层;所述吸光涂层不覆盖容纳腔24或组合容纳腔。
[0106] 实施例6
[0107] 参见图20‑23,提供一种基于前述芯片10的微生物检测系统,所述检测系统包括检测平台4、芯片10及遮光罩7;所述检测平台4上设置有用于固定竖直设置的芯片10的固定
部,例如所述固定部可以是允许所述芯片10插设固定的插槽43,所述插槽43垂直于所述检
测平台4的长轴固定,且沿所述检测平台4的长轴方向,在所述插槽43的前后方分别以平行
于所述芯片10的方式设置有第一偏振元件42和第二偏振元件44;其中,第一偏振元件42与
第二偏振元件44的偏振方向相反。在所述检测平台4的一端固定设置有光源架41,所述光源
架41上固定设有激励光的光源5,所述光源5被定位为其发出的激励光垂直射向所述第一、
第二偏振元件;在所述检测平台4的相对端固定设有感光元件45。
[0108] 所述检测平台4上,对应于芯片10的位置的一侧还竖直设置有供液组件6;所述供液组件6包括垂直于所述芯片10设置的通道壁61;及平行于所述芯片10设置,且在所述芯片
10插设与所述插槽43时,能够抵靠所述芯片10的短壁62;所述短壁62不遮挡芯片10上的容
纳腔;所述通道壁61的上下两侧分别设有一条滑动槽63;且在位于上方的滑动槽63内滑动
设有对应于芯片10的进口通孔11的进液滑块64;位于下方的滑动槽63内滑动设置有对应于
芯片10的出口通孔12的出液滑块65;所述进液滑块64和出液滑块65正对芯片10的一侧分别
设有能够与所述芯片10的进口通孔11和出口通孔12流体密封的针66。
[0109] 所述检测平台4上表面的边缘一周设置有凹槽46,所述凹槽46用于配合遮光罩7。其中所述遮光罩7的内表面涂覆有吸光材料。
[0110] 以上仅是对本发明的构思的最佳实施方式举例,其不应当被理解为是对本发明所有可行实施方式的限制,本领域的普通技术人员在不经过创造性劳动的情况下常规手段的
简单替换等方式得当的技术方案也属于本发的可行范畴。本发明的保护范围以权利要求书
的限定为准。